

Appendix

A. Proof for Lemmas

A.1. Proof for Lemma 1

Proof. We try to build the connection between noisy distribution $\tilde{\mathcal{D}}$ and the underlying Bayes optimal distribution \mathcal{D}^* by the noise rates e_+ and e_- . The primary difference from the proof of Lemma 2 in [24] is the usage of \mathcal{D}^* . Note:

$$\begin{aligned}
& \mathbb{E}_{\tilde{\mathcal{D}}}[\ell(f(X), \tilde{Y})] \\
&= \mathbb{E}_{\mathcal{D}^*} \left[\sum_{j \in \{-1, +1\}} \mathbb{P}(\tilde{Y} = j | X, Y^*) \ell(f(X), j) \right] \\
&= \mathbb{E}_{\mathcal{D}^*} \left[\sum_{j \in \{-1, +1\}} \mathbb{P}(\tilde{Y} = j | Y^*) \ell(f(X), j) \right] \\
&= \sum_{i \in \{-1, +1\}} \mathbb{P}(Y^* = i) \mathbb{E}_{\mathcal{D}^* | Y^* = i} [\mathbb{P}(\tilde{Y} = +1 | Y^* = i) \ell(f(X), +1) + \mathbb{P}(\tilde{Y} = -1 | Y^* = i) \ell(f(X), -1)] \\
&= \mathbb{P}(Y^* = +1) \mathbb{E}_{\mathcal{D}^* | Y^* = +1} [(1 - e_+) \ell(f(X), +1) + e_+ \ell(f(X), -1)] \\
&\quad + \mathbb{P}(Y^* = -1) \mathbb{E}_{\mathcal{D}^* | Y^* = -1} [(1 - e_-) \ell(f(X), -1) + e_- \ell(f(X), +1)].
\end{aligned}$$

Similarly, following the proof of Lemma 2 in [24], we can prove this lemma. \square

A.2. Proof for Lemma 2

Peer Loss on the Bayes Optimal Distribution Recall our goal is to learn a classifier f from the noisy distribution $\tilde{\mathcal{D}}$ which also minimizes the loss on the corresponding Bayes optimal distribution \mathcal{D}^* , i.e. $\mathbb{E}[\mathbb{1}(f(X), Y^*)], (X, Y^*) \sim \mathcal{D}^*$. Before considering the case with label noise, we need to prove peer loss functions induce the Bayes optimal classifier when minimizing the 0-1 loss on \mathcal{D}^* as in Lemma 2.

Lemma 2. *Given the Bayes optimal distribution \mathcal{D}^* , the optimal peer classifier defined below:*

$$f_{\text{peer}}^* = \arg \min_f \mathbb{E}_{\mathcal{D}^*} [\mathbb{1}_{PL}(f(X), Y^*)]$$

also minimizes $\mathbb{E}_{\mathcal{D}^*} [\mathbb{1}(f(X), Y^*)]$.

See the proof below. It has been shown in [24] that Lemma 2 holds for the clean distribution \mathcal{D} when the clean dataset is class-balanced, i.e. $\mathbb{P}(Y = -1) = \mathbb{P}(Y = +1) = 0.5$. For the Bayes optimal distribution \mathcal{D}^* , as shown in Lemma 2, there is *no requirement* for the prior $p^* := \mathbb{P}(Y^* = +1)$.

Proof. Recall Y^* is the Bayes optimal label defined as

$$Y^* | X := \arg \max_Y \mathbb{P}(Y | X), (X, Y) \sim \mathcal{D}.$$

We need to prove that the “optimal peer classifier” defined below:

$$f_{\text{peer}}^* = \arg \min_f \mathbb{E}_{\mathcal{D}^*} [\mathbb{1}_{PL}(f(X), Y^*)]$$

is the same as the Bayes optimal classifier f^* . To see this, suppose the claim is wrong. Denote by (notations ϵ_+ and ϵ_- are defined only for this proof):

$$\epsilon_+ := \mathbb{P}(f_{\text{peer}}^*(X) = -1 | f^*(X) = +1), \quad \epsilon_- := \mathbb{P}(f_{\text{peer}}^*(X) = +1 | f^*(X) = -1)$$

and denote by $p^* := \mathbb{P}(f^*(X) = +1)$. Then

$$\begin{aligned}
& \mathbb{E}_{\mathcal{D}^*}[\mathbb{1}_{\text{PL}}(f_{\text{peer}}^*(X), Y^*)] \\
&= \mathbb{P}(f_{\text{peer}}^*(X) \neq Y^*) - p^* \cdot \mathbb{P}(f_{\text{peer}}^*(X) \neq +1) - (1 - p^*) \cdot \mathbb{P}(f_{\text{peer}}^*(X) \neq -1) \\
&= p^* \cdot \epsilon_+ + (1 - p^*) \cdot \epsilon_- - p^* \cdot \mathbb{P}(f_{\text{peer}}^*(X) \neq +1) - (1 - p^*) \cdot \mathbb{P}(f_{\text{peer}}^*(X) \neq -1) \\
&= p^* \cdot \epsilon_+ + (1 - p^*) \cdot \epsilon_- \\
&\quad - p^* \cdot (\mathbb{P}(f_{\text{peer}}^*(X) \neq +1 | f^*(X) \neq +1) \mathbb{P}(f^*(X) \neq +1) + \mathbb{P}(f_{\text{peer}}^*(X) \neq +1 | f^*(X) \neq -1) \mathbb{P}(f^*(X) \neq -1)) \\
&\quad - (1 - p^*) \cdot (\mathbb{P}(f_{\text{peer}}^*(X) \neq -1 | f^*(X) \neq +1) \mathbb{P}(f^*(X) \neq +1) + \mathbb{P}(f_{\text{peer}}^*(X) \neq -1 | f^*(X) \neq -1) \mathbb{P}(f^*(X) \neq -1)) \\
&= p^* \cdot \epsilon_+ + (1 - p^*) \cdot \epsilon_- \\
&\quad - p^* \cdot \mathbb{P}(f^*(X) \neq +1) (1 - \epsilon_-) - p^* \cdot \mathbb{P}(f^*(X) \neq -1) \cdot \epsilon_+ \\
&\quad - (1 - p^*) \cdot \mathbb{P}(f^*(X) \neq -1) (1 - \epsilon_+) - (1 - p^*) \cdot \mathbb{P}(f^*(X) \neq +1) \cdot \epsilon_- \\
&= 0 - p^* \cdot \mathbb{P}(f^*(X) \neq +1) - (1 - p^*) \cdot \mathbb{P}(f^*(X) \neq -1) \\
&\quad + p^* (\epsilon_+ + \mathbb{P}(f^*(X) \neq +1) \epsilon_- - \mathbb{P}(f^*(X) \neq -1) \epsilon_+) \\
&\quad + (1 - p^*) (\epsilon_- + \mathbb{P}(f^*(X) \neq -1) \epsilon_+ - \mathbb{P}(f^*(X) \neq +1) \epsilon_-) \\
&> 0 - p^* \cdot \mathbb{P}(f^*(X) \neq +1) - (1 - p^*) \cdot \mathbb{P}(f^*(X) \neq -1) \\
&= \mathbb{E}_{\mathcal{D}^*}[\mathbb{1}_{\text{PL}}(f^*(X), Y^*)]
\end{aligned}$$

contradicting the optimality of f_{peer}^* . Thus our claim is proved. \square

B. Proof for Theorems

B.1. Proof for Theorem 1

Proof. The covariance $\text{Cov}(\cdot, \cdot)$ in this proof is taken over the Bayes optimal distribution \mathcal{D}^* . The following proof is built on the result of Theorem 2, i.e. Eq. (2). First note

$$\begin{aligned}
\text{Cov}(Z_1(X), \mathbb{1}(f_1(X), Y^*) - \mathbb{1}(f_2(X), Y^*)) &= \mathbb{E}[(Z_1(X) - \mathbb{E}[Z_1(X)]) \cdot (\mathbb{1}(f_1(X), Y^*) - \mathbb{1}(f_2(X), Y^*))] \\
&\leq \mathbb{E}[|(Z_1(X) - \mathbb{E}[Z_1(X)])|] \\
&\leq \mathbb{E}|e_+(X) - \mathbb{E}[e_+(X)]| + \mathbb{E}|e_-(X) - \mathbb{E}[e_-(X)]|
\end{aligned}$$

Similarly, one can show that

$$\text{Cov}(Z_2(X), \mathbb{1}(f_1(X), -1) - \mathbb{1}(f_2(X), -1)) \leq \mathbb{E}|e_+(X) - \mathbb{E}[e_+(X)]| + \mathbb{E}|e_-(X) - \mathbb{E}[e_-(X)]|$$

Now with bounded variance in the error rates, suppose:

$$\mathbb{E}|e_+(X) - \mathbb{E}[e_+(X)]| \leq \epsilon_+, \quad \mathbb{E}|e_-(X) - \mathbb{E}[e_-(X)]| \leq \epsilon_-$$

Note

$$\begin{aligned}
\hat{f}_{\text{peer}}^* &:= \arg \min_f \mathbb{E}_{\tilde{\mathcal{D}}} [\mathbb{1}_{\text{PL}}(f(X), \tilde{Y})] \\
&= \arg \min_f [(1 - e_+ - e_-) \mathbb{E}_{\mathcal{D}^*}[\mathbb{1}_{\text{PL}}(f(X), Y^*) + \text{Cov}(Z_1(X), \mathbb{1}(f(X), Y^*)) + \text{Cov}(Z_2(X), \mathbb{1}(f(X), -1))] \\
&= \arg \min_f [(1 - e_+ - e_-) (\mathbb{E}_{\mathcal{D}^*}[\mathbb{1}(f(X), Y^*)] - p^* \cdot \mathbb{E}_{\mathcal{D}^*}[\mathbb{1}(f(X), +1)] - (1 - p^*) \cdot \mathbb{E}_{\mathcal{D}^*}[\mathbb{1}(f(X), -1)]) \\
&\quad + \text{Cov}(Z_1(X), \mathbb{1}(f(X), Y^*)) + \text{Cov}(Z_2(X), \mathbb{1}(f(X), -1))].
\end{aligned}$$

Then

$$\begin{aligned}
& \mathbb{E}_{\mathcal{D}^*} \left[\mathbb{1}(\tilde{f}_{\text{peer}}^*(X), Y^*) \right] + \frac{\text{Cov}(Z_1(X), \mathbb{1}(\tilde{f}_{\text{peer}}^*(X), Y^*)) + \text{Cov}(Z_2(X), \mathbb{1}(\tilde{f}_{\text{peer}}^*(X), -1))}{1 - e_+ - e_-} \\
&= \mathbb{E}_{\mathcal{D}^*} \left[\mathbb{1}(\tilde{f}_{\text{peer}}^*(X), Y^*) \right] - 0.5 \cdot \mathbb{E}_X[\mathbb{1}(\tilde{f}_{\text{peer}}^*(X), +1)] - 0.5 \cdot \mathbb{E}_X[\mathbb{1}(\tilde{f}_{\text{peer}}^*(X), -1)] + 0.5 \\
&\quad + \frac{\text{Cov}(Z_1(X), \mathbb{1}(\tilde{f}_{\text{peer}}^*(X), Y^*)) + \text{Cov}(Z_2(X), \mathbb{1}(\tilde{f}_{\text{peer}}^*(X), -1))}{1 - e_+ - e_-} \\
&\leq \mathbb{E}_{\mathcal{D}^*} \left[\mathbb{1}(\tilde{f}_{\text{peer}}^*(X), Y^*) \right] - p^* \cdot \mathbb{E}_X[\mathbb{1}(\tilde{f}_{\text{peer}}^*(X), +1)] - (1 - p^*) \cdot \mathbb{E}_X[\mathbb{1}(\tilde{f}_{\text{peer}}^*(X), -1)] + |p^* - 0.5| + 0.5 \\
&\quad + \frac{\text{Cov}(Z_1(X), \mathbb{1}(\tilde{f}_{\text{peer}}^*(X), Y^*)) + \text{Cov}(Z_2(X), \mathbb{1}(\tilde{f}_{\text{peer}}^*(X), -1))}{1 - e_+ - e_-} \\
&\leq \mathbb{E}_{\mathcal{D}^*} \left[\mathbb{1}(f^*(X), Y^*) \right] - p^* \cdot \mathbb{E}_X[\mathbb{1}(f^*(X), +1)] - (1 - p^*) \cdot \mathbb{E}_X[\mathbb{1}(f^*(X), -1)] + |p^* - 0.5| + 0.5 \\
&\quad + \frac{\text{Cov}(Z_1(X), \mathbb{1}(f^*(X), Y^*)) + \text{Cov}(Z_2(X), \mathbb{1}(f^*(X), -1))}{1 - e_+ - e_-} \\
&\leq \mathbb{E}_{\mathcal{D}^*} \left[\mathbb{1}(f^*(X), Y^*) \right] + \frac{\text{Cov}(Z_1(X), \mathbb{1}(f^*(X), Y^*)) + \text{Cov}(Z_2(X), \mathbb{1}(f^*(X), -1))}{1 - e_+ - e_-} + 2|p^* - 0.5|.
\end{aligned}$$

Thus

$$\begin{aligned}
& \mathbb{E}_{\mathcal{D}^*} \left[\mathbb{1}(\tilde{f}_{\text{peer}}^*(X), Y^*) - \mathbb{1}(f^*(X), Y^*) \right] \\
&\leq \frac{\text{Cov}(Z_1(X), \mathbb{1}(f^*(X), Y^*) - \mathbb{1}(\tilde{f}_{\text{peer}}^*(X), Y^*)) + \text{Cov}(Z_2(X), \mathbb{1}(f^*(X), -1) - \mathbb{1}(\tilde{f}_{\text{peer}}^*(X), -1))}{1 - e_+ - e_-} + 2|p^* - 0.5| \\
&\leq 2 \frac{\mathbb{E}|e_+(X) - \mathbb{E}[e_+(X)]| + \mathbb{E}|e_-(X) - \mathbb{E}[e_-(X)]|}{1 - e_+ - e_-} + 2|p^* - 0.5| \\
&\leq \frac{2(\epsilon_+ + \epsilon_-)}{1 - e_+ - e_-} + 2|p^* - 0.5|.
\end{aligned}$$

Noting $\mathbb{1}(f^*(X), Y^*) = 0$, we finish the proof. \square

B.2. Proof for Theorem 2

Proof. The covariance $\text{Cov}(\cdot, \cdot)$ in this proof is taken over the Bayes optimal distribution \mathcal{D}^* . Recall

$$e_+(X) := \mathbb{P}(\tilde{Y} = -1 | Y^* = +1, X), e_-(X) := \mathbb{P}(\tilde{Y} = +1 | Y^* = -1, X)$$

and

$$e_+ := \mathbb{E}_X[e_+(X)], e_- := \mathbb{E}_X[e_-(X)]$$

We first have the following equality:

$$\begin{aligned}
\mathbb{E}_{\tilde{\mathcal{D}}}[\mathbb{1}_{\text{PL}}(f(X), \tilde{Y})] &= \mathbb{E}_{\mathcal{D}^*}[(1 - e_+(X) - e_-(X))\mathbb{1}(f(X), Y^*)] && \text{(Term-A)} \\
&\quad + \mathbb{E}_X[e_+(X)\mathbb{1}(f(X), -1) + e_-(X)\mathbb{1}(f(X), +1)] && \text{(Term-B)} \\
&\quad - (1 - e_+ - e_-) \cdot \mathbb{E}_{\mathcal{D}^*}[\mathbb{1}(f(X), Y_p^*)] && \text{(Term-C)} \\
&\quad - \mathbb{E}_X[e_+ \cdot \mathbb{1}(f(X), -1) + e_- \cdot \mathbb{1}(f(X), +1)] && \text{(Term-D)}
\end{aligned}$$

Term-B can be transformed to:

$$\begin{aligned}
& \mathbb{E}_X[e_+(X) \cdot \mathbb{1}(f(X), -1) + e_-(X) \cdot \mathbb{1}(f(X), +1)] \\
&= \mathbb{E}_X[e_+(X) \cdot \mathbb{1}(f(X), -1) + e_-(X) \cdot (1 - \mathbb{1}(f(X), -1))] \\
&= \mathbb{E}_X[(e_+(X) - e_-(X)) \cdot \mathbb{1}(f(X), -1) + e_-(X)].
\end{aligned}$$

Similarly, Term-D turns to

$$\mathbb{E}_X[e_+ \cdot \mathbb{1}(f(X), -1) + e_- \cdot \mathbb{1}(f(X), +1)] = (e_+ - e_-) \cdot \mathbb{E}_X[\mathbb{1}(f(X), -1)] + e_-.$$

Define two random variables

$$Z_1(X) := 1 - e_+(X) - e_-(X), \quad Z_2(X) = e_+(X) - e_-(X).$$

Then Term-A becomes

$$\begin{aligned} & \mathbb{E}_{\mathcal{D}^*}[(1 - e_+(X) - e_-(X)) \mathbb{1}(f(X), Y^*)] \\ &= \mathbb{E}[Z_1(X)] \cdot \mathbb{E}_{\mathcal{D}^*}[\mathbb{1}(f(X), Y^*)] + \text{Cov}(Z_1(X), \mathbb{1}(f(X), Y^*)) \\ &= (1 - e_+ - e_-) \cdot \mathbb{E}_{\mathcal{D}^*}[\mathbb{1}(f(X), Y^*)] + \text{Cov}(Z_1(X), \mathbb{1}(f(X), Y^*)) \end{aligned}$$

Similarly, Term-B can be further transformed to

$$\begin{aligned} & \mathbb{E}_X[(e_+(X) - e_-(X)) \cdot \mathbb{1}(f(X), -1) + e_-(X)] \\ &= \mathbb{E}[Z_2(X)] \mathbb{E}_X[\mathbb{1}(f(X), -1)] + \text{Cov}(Z_2(X), \mathbb{1}(f(X), -1)) + e_- \\ &= (e_+ - e_-) \mathbb{E}_X[\mathbb{1}(f(X), -1)] + \text{Cov}(Z_2(X), \mathbb{1}(f(X), -1)) + e_- \end{aligned}$$

Combining the above results, we have

$$\begin{aligned} \mathbb{E}_{\tilde{\mathcal{D}}}[\mathbb{1}_{\text{PL}}(f(X), \tilde{Y})] &= (1 - e_+ - e_-) \cdot \mathbb{E}_{\mathcal{D}^*}[\mathbb{1}(f(X), Y^*)] \\ &+ (e_+ - e_-) \mathbb{E}_X[\mathbb{1}(f(X), -1)] + e_- \\ &- (1 - e_+ - e_-) \cdot \mathbb{E}_{\mathcal{D}^*}[\mathbb{1}(f(X), Y_p^*)] \\ &- (e_+ - e_-) \cdot \mathbb{E}_X[\mathbb{1}(f(X), -1)] - e_- \\ &+ \text{Cov}(Z_1(X), \mathbb{1}(f(X), Y)) + \text{Cov}(Z_2(X), \mathbb{1}(f(X), -1)) \\ &= (1 - e_+ - e_-) \mathbb{E}_{\mathcal{D}^*}[\mathbb{1}_{\text{PL}}(f(X), Y^*)] \\ &+ \text{Cov}(Z_1(X), \mathbb{1}(f(X), Y^*)) + \text{Cov}(Z_2(X), \mathbb{1}(f(X), -1)) \end{aligned}$$

□

B.3. Proof for Theorem 3

Proof. From Theorem 2, we know

$$\begin{aligned} & \mathbb{E}_{\tilde{\mathcal{D}}}[\mathbb{1}_{\text{PL}}(f(X), \tilde{Y})] - \text{Cov}(Z_1(X), \mathbb{1}(f(X), Y^*)) - \text{Cov}(Z_2(X), \mathbb{1}(f(X), -1)) \\ &= (1 - e_- - e_+) \cdot \mathbb{E}_{\mathcal{D}^*}[\mathbb{1}_{\text{PL}}(f(X), Y^*)]. \end{aligned}$$

With Lemma 2, we can finish the proof. □

B.4. Proof for Theorem 4

Proof. Recall $\tau \in [0, 1]$ is the expected ratio (a.k.a. probability) of correct examples in \hat{D}^τ , i.e. $\tau = \mathbb{E}[\mathbb{1}\{(X, \hat{Y}) \in \hat{D}^\tau | (X, Y^*) \in D^*\}] = \mathbb{P}((X, \hat{Y}) \sim \hat{D}^\tau | (X, Y^*) \sim D^*)$. With \hat{D}^τ , the classifier learned by minimizing the 0-1 CAL loss is

$$\tilde{f}_{\text{CAL}-\tau}^* := \arg \min_f \mathbb{E}_{\tilde{\mathcal{D}}} \left[\mathbb{1}_{\text{PL}}(f(X), \tilde{Y})] - \text{Cov}_{\hat{D}^\tau}(Z_1(X), \mathbb{1}(f(X), \hat{Y})) - \text{Cov}_{\hat{D}^\tau}(Z_2(X), \mathbb{1}(f(X), -1)) \right].$$

Note

$$\begin{aligned} \text{Cov}_{\hat{D}^\tau}(Z_1(X), \mathbb{1}(f(X), Y)) &= \mathbb{E}_{\hat{D}^\tau} \left[(Z_1(X) - \mathbb{E}_{\hat{D}^\tau}[Z_1(X)]) (\mathbb{1}(f(X), Y) - \mathbb{E}_{\hat{D}^\tau}[\mathbb{1}(f(X), Y)]) \right] \\ &= \mathbb{E}_{\hat{D}^\tau} \left[(Z_1(X) - \mathbb{E}_{\hat{D}^\tau}[Z_1(X)]) \mathbb{1}(f(X), Y) \right] \\ &= \mathbb{P}((X, Y) \in D^* | (X, Y) \in \hat{D}^\tau) \mathbb{E}_{\hat{D}^\tau} \left[(Z_1(X) - \mathbb{E}_{\hat{D}^\tau}[Z_1(X)]) \mathbb{1}(f(X), Y) | (X, Y) \in D^* \right] \\ &+ \mathbb{P}((X, Y) \notin D^* | (X, Y) \in \hat{D}^\tau) \mathbb{E}_{\hat{D}^\tau} \left[(Z_1(X) - \mathbb{E}_{\hat{D}^\tau}[Z_1(X)]) \mathbb{1}(f(X), Y) | (X, Y) \notin D^* \right]. \end{aligned}$$

Similarly,

$$\begin{aligned}\text{Cov}_{\mathcal{D}^*}(Z_1(X), \mathbb{1}(f(X), Y)) &= \mathbb{E}_{\mathcal{D}^*} [(Z_1(X) - \mathbb{E}_{\mathcal{D}^*}[Z_1(X)]) \mathbb{1}(f(X), Y)] \\ &= \mathbb{P}((X, Y) \in \hat{D}^\tau | (X, Y) \in D^*) \mathbb{E}_{\mathcal{D}^*} \left[(Z_1(X) - \mathbb{E}_{\mathcal{D}^*}[Z_1(X)]) \mathbb{1}(f(X), Y) | (X, Y) \in \hat{D}^\tau \right] \\ &\quad + \mathbb{P}((X, Y) \notin \hat{D}^\tau | (X, Y) \in D^*) \mathbb{E}_{\mathcal{D}^*} \left[(Z_1(X) - \mathbb{E}_{\mathcal{D}^*}[Z_1(X)]) \mathbb{1}(f(X), Y) | (X, Y) \notin \hat{D}^\tau \right].\end{aligned}$$

When D^* , \hat{D}^τ and \tilde{D} have the same feature set, we have

$$\begin{aligned}\mathbb{P}((X, Y) \in D^* | (X, Y) \in \hat{D}^\tau) &= \mathbb{P}((X, Y) \in \hat{D}^\tau | (X, Y) \in D^*) = \tau, \\ \mathbb{P}((X, Y) \notin D^* | (X, Y) \in \hat{D}^\tau) &= \mathbb{P}((X, Y) \notin \hat{D}^\tau | (X, Y) \in D^*) = 1 - \tau.\end{aligned}$$

Therefore,

$$\text{Cov}_{\hat{D}^\tau}(Z_1(X), \mathbb{1}(f(X), Y)) - \text{Cov}_{\mathcal{D}^*}(Z_1(X), \mathbb{1}(f(X), Y)) \leq 2(1 - \tau)(\epsilon_+ + \epsilon_-).$$

The rest of the proof can be accomplished by following the proof of Theorem 1. \square

C. Proof for Corollaries

C.1. Proof for Corollary 1

Proof.

$$\mathbb{E}_{\tilde{D}}[\ell_{\text{PL}}(f(X), \tilde{Y})] = \mathbb{E}_{\tilde{D}}[\ell(f(X), \tilde{Y})] - \mathbb{E}_{\tilde{D}_Y} \left[\mathbb{E}_{\mathcal{D}_X}[\ell(f(X_p), \tilde{Y}_p)] \right]. \quad (5)$$

The first term in (5) is

$$\begin{aligned}\mathbb{E}_{\tilde{D}}[\ell(f(X), \tilde{Y})] &= \mathbb{E}_{\mathcal{D}^*} \left[\sum_{j \in [K]} \mathbb{P}(\tilde{Y} = j | X, Y^*) \ell(f(X), j) \right] \\ &= \sum_{j \in [K]} \sum_{i \in [K]} \mathbb{P}(Y^* = i) \mathbb{E}_{\mathcal{D}^* | Y^* = i} [T_{ij}(X) \ell(f(X), j)] \\ &= \sum_{j \in [K]} \sum_{i \in [K]} \mathbb{P}(Y^* = i) [\mathbb{T}_{ij} \mathbb{E}_{\mathcal{D}^* | Y^* = i} [\ell(f(X), j)] + \text{Cov}_{\mathcal{D}^* | Y^* = i} [T_{ij}(X), \ell(f(X), j)]] \\ &= \sum_{j \in [K]} \left[\mathbb{P}(Y^* = j) \left(1 - \sum_{i \neq j, i \in [K]} T_{ji} \right) \mathbb{E}_{\mathcal{D}^* | Y^* = j} [\ell(f(X), j)] + \sum_{i \in [K], i \neq j} \mathbb{P}(Y^* = i) T_{ij} \mathbb{E}_{\mathcal{D}^* | Y^* = i} [\ell(f(X), j)] \right] \\ &\quad + \sum_{j \in [K]} \sum_{i \in [K]} P(Y^* = i) \text{Cov}_{\mathcal{D}^* | Y^* = i} [T_{ij}(X), \ell(f(X), j)] \\ &= \sum_{j \in [K]} \left[\mathbb{P}(Y^* = j) \left(1 - \sum_{i \neq j, i \in [K]} e_i \right) \mathbb{E}_{\mathcal{D}^* | Y^* = j} [\ell(f(X), j)] + \sum_{i \in [K], i \neq j} \mathbb{P}(Y^* = i) e_j \mathbb{E}_{\mathcal{D}^* | Y^* = i} [\ell(f(X), j)] \right] \\ &\quad + \sum_{j \in [K]} \sum_{i \in [K]} P(Y^* = i) \text{Cov}_{\mathcal{D}^* | Y^* = i} [T_{ij}(X), \ell(f(X), j)] \\ &= \left(1 - \sum_{i \in [K]} e_i \right) \mathbb{E}_{\mathcal{D}^*} [\ell(f(X), Y^*)] + \sum_{j \in [K]} \sum_{i \in [K]} \mathbb{P}(Y^* = i) e_j \mathbb{E}_{\mathcal{D}^* | Y^* = i} [\ell(f(X), j)] \\ &\quad + \sum_{j \in [K]} \sum_{i \in [K]} P(Y^* = i) \text{Cov}_{\mathcal{D}^* | Y^* = i} [T_{ij}(X), \ell(f(X), j)]\end{aligned}$$

The rest of proofs can be done following standard multi-class peer loss derivations [24]. \square

D. More Discussions

D.1. Setting Thresholds L_{\min} and L_{\max}

In a high level, there are two strategies for setting L_{\min} and L_{\max} : 1) $L_{\min} < L_{\max}$ and 2) $L_{\min} = L_{\max}$.

Strategy-1: $L_{\min} < L_{\max}$: This strategy may provide a higher ratio of true Bayes optimal labels among feasible examples in \hat{D} since some ambiguous examples are dropped. However, dropping examples changes the distribution of X (as well as the distribution of the unobservable Y^*), a.k.a. covariate shift [14, 6]. Importance re-weighting with weight $\gamma(X)$ is necessary for correcting the covariate shift, i.e. the weight of each feasible example $(x, \hat{y}) \in \hat{D}$ should be changed from 1 to $\gamma(x)$. Let \mathcal{D}_X and $\hat{\mathcal{D}}_X$ be the marginal distributions of \mathcal{D} and \hat{D} on X . With a particular kernel $\Phi(X)$, the optimization problem is:

$$\begin{aligned} \min_{\gamma(X)} \quad & \|\mathbb{E}_{\mathcal{D}_X}[\Phi(X)] - \mathbb{E}_{\hat{\mathcal{D}}_X}[\gamma(X)\Phi(X)]\| \\ \text{s.t.} \quad & \gamma(X) > 0 \text{ and } \mathbb{E}_{\hat{\mathcal{D}}_X}[\gamma(X)] = 1. \end{aligned} \quad (6)$$

The optimal solution is supposed to be $\gamma^*(X) = \frac{\mathbb{P}_{\mathcal{D}_X}(X)}{\mathbb{P}_{\hat{\mathcal{D}}_X}(X)}$. Note the selection of kernel $\Phi(\cdot)$ is non-trivial, especially for complicated features [7] in DNN solutions. Using this strategy, with appropriate L_{\min} and L_{\max} such that all the examples in \hat{D} are Bayes optimal, the covariance could be guaranteed to be optimal when each example in \hat{D} is re-weighted by $\gamma^*(X)$.

Strategy-2: $L_{\min} = L_{\max}$: Compared with Strategy-1, we effectively lose one degree of freedom for getting a better \hat{D} . However, this is not entirely harmful since \hat{D} and D^* have the same feature set, indicating estimating $\gamma(X)$ is no longer necessary and $\gamma(X) = 1$ is an optimal solution for (6) with this strategy.

Strategy selection When we can get a high-quality \hat{D} by fine-tuning L_{\min} and L_{\max} or \hat{D} is already provided from other sources, we may solve the optimization problem in (6) to find the optimal weight $\gamma(X)$. However, considering the fact that estimating $\gamma(X)$ introduces extra computation and potentially extra errors, we focus on Strategy-2 in this paper. Using Strategy-2 also reduces the effort on tuning hyperparameters. Besides, the proposed CAL loss is tolerant of an imperfect \hat{D} (shown theoretically in Section 4.3).

D.2. Generation of Instance-Dependent Label Noise

Pseudo codes for generate instance-based label noise are provided in Algorithm 2. This algorithm follows the state-of-the-art method [40]. Define the overall noise rate as η .

Algorithm 2: Generating Instance-Dependent Label Noise

Input: Clean examples $(x_n, y_n)_{n=1}^N$; Noise rate: η ; Number of classes: K ; Shape of each feature $x_n: S \times 1$.

- 1 Sample instance flip rates q_n from the truncated normal distribution $\mathcal{N}(\eta, 0.1^2, [0, 1])$; *// mean η , variance 0.1^2 , range $[0, 1]$*
- 2 Sample $W \in \mathcal{R}^{S \times K}$ from the standard normal distribution $\mathcal{N}(0, 1^2)$;
- 3 **for** $n \in [N]$ **do**
- 4 $p = x_n^\top W$ *// Generate instance dependent flip rates. The size of p is $1 \times K$.*
- 5 $p_{y_n} = -\infty$ *// Only consider entries that are different from the true label*
- 6 $p = q_n \cdot \text{softmax}(p)$ *// Let q_n be the probability of getting a wrong label*
- 7 $p_{y_n} = 1 - q_n$ *// Keep clean w.p. $1 - q_n$*
- 8 Randomly choose a label from the label space as noisy label \tilde{y}_n according to p ;
- 9 **end**

Output: Noisy examples $\{(x_i, \tilde{y}_n), n \in [N]\}$.

Note Algorithm 2 cannot ensure $T_{ii}(X) > T_{ij}(X)$ when $\eta > 0.5$. To generate an informative dataset, we set $0.9 \cdot T_{ii}(X)$ as the upper bound of $T_{ij}(X)$ and distribute the remaining probability to other classes.

D.3. Performance without Data Augmentations

For a fair comparison with the recent work on instance-dependent label noise [40], we adopt the same data augmentations as [40] and re-produce their results using the same noise file as we employed in Table 1. Each noise rate is tested 5 times with a different generation matrix W (defined in Algorithm 2). Table 4 shows the advantages of our second-order approach.

Table 4. Performance comparisons without data augmentations

Method	$\eta = 0.2$	$\eta = 0.4$
PTD-R-V[40]	69.62 ± 3.35	64.73 ± 3.64
CAL	75.52 ± 3.94	70.30 ± 2.96

D.4. More Implementation Details on Clothing1M

Construct \hat{D} We first train the network for 120 epochs on 1 million noisy training images using the method in [5]. The batch-size is set to 32. The initial learning rate is set as 0.01 and reduced by a factor of 10 at 30, 60, 90 epochs. We sample 1000 mini-batches from the training data for each epoch while ensuring the (noisy) labels are balanced. Mixup [48] is adopted for data augmentations. Hyperparameter β is set to 0 at first 80 epochs, and linearly increased to 0.4 for next 20 epochs and kept as 0.4 for the rest of the epochs. We construct \hat{D} with the best model.

Train with CAL We change the loss to the CAL loss after getting \hat{D} and continue training the model (without mixup) with an initial learning rate of 10^{-5} for 120 epochs (reduced by a factor of 10 at 30, 60, 90 epochs). We also tested re-train the model with \hat{D} and get an accuracy of 73.56. A randomly-collected balanced dataset with 18,976 noisy examples in each class is employed in training with CAL. Examples that are not in this balanced dataset are removed from \hat{D} for ease of implementation.