Appendix

A. Proof for Lemmas
A.l. Proof for Lemma 1

Proof. We try to build the connection between noisy distribution D and the underlying Bayes optimal distribution D* by the
noise rates e and e_. The primary difference from the proof of Lemma 2 in [24] is the usage of D*. Note:

Eﬁ[f(_f(X)f)]
=Ep- | D, P(Y =jIX.Y)(f(X).])
Lie{-1,+1}

=Ep- | Y P =j[Y)(f(X),))

_je{71#+1}

= > P =i)Epy-[P(Y = +1Y" =) ((f(X),+1) + P(Y = —1|Y* = i)((f(X), -1)]
ie{—-1,+1}

=P(Y" = +1D)Ep+|y-—11[(1 — e J{(f(X), +1) + e £(f(X), =1)]
+P(Y* = —1)Epejy-—1[(1 = e JU(F(X), =1) + e £(f(X),+1)].

Similarly, following the proof of Lemma 2 in [24], we can prove this lemma. O

A.2. Proof for Lemma 2

Peer Loss on the Bayes Optimal Distribution Recall our goal is to learn a classifier f from the noisy distribution D
which also minimizes the loss on the corresponding Bayes optimal distribution D*, i.e. E[1(f(X),Y™*)],(X,Y™*) ~ D*.
Before considering the case with label noise, we need to prove peer loss functions induce the Bayes optimal classifier when
minimizing the 0-1 loss on D* as in Lemma 2.

Lemma 2. Given the Bayes optimal distribution D*, the optimal peer classifier defined below:

f;eer = arg;nin Ep«[1p(f(X),Y™)]

also minimizes Ep« [L(f(X),Y™*)].

See the proof below. It has been shown in [24] that Lemma 2 holds for the clean distribution D when the clean dataset is
class-balanced, i.e. P(Y = —1) = P(Y = +1) = 0.5. For the Bayes optimal distribution D*, as shown in Lemma 2, there
is no requirement for the prior p* := P(Y* = +1).

Proof. Recall Y* is the Bayes optimal label defined as
Y*|X :=argmax P(Y|X),(X,Y) ~D.
Y
We need to prove that the “optimal peer classifier" defined below:

f;eer = arg;nin Ep- []lPL(f(X)7 Y*)]

is the same as the Bayes optimal classifier f*. To see this, suppose the claim is wrong. Denote by (notations ¢ and e_ are
defined only for this proof):

€4 1= Pfeer(X) = =1 (X) = +1), e = P(fpea(X) = +1[/7(X) = =1)

and denote by p* := P(f*(X) = +1). Then

Ep- [Lp(fpeer(X), Y]
—IF’(Joeer(X) #Y7) =" Pfpeer(X) # +1) = (1 = %) - P(fpeer (X) # —1)
e+ (1=p) e —p" - Plfpeer(X) # +1) = (1 = ") - P(fpeer(X) # —1)

zp*-e++(1— p*) e

=17 (P(fpeer(X) # +1f(X) # +DP(f7(X) # +1) + P(fpeer(X) # +1f7(X) # —DP(f*(X) # —1))

— (1= p") + (P(fpeer(X) # —1f"(X) # +DP(f*(X) # +1) + P(feer(X) # =1/ f*(X) # —1)P(f*(X) # 1))

=p" ey +(1—p*)-e

—pB(X) £ D)L= e) —pt P(F(X) £ —1) ey

— (1= p) PP (X) # —1)(1 =€) = (1= p*) - P(F*(X) # +1) - e

=0—p"-P(f"(X) #+1) = (1 =p") - P(f*(X) # —1)

+p (er +P(f7(X) # +1)e = P(f7(X) # —1)ey)

+ (1 =p)(e- +P(f7(X) # —Deg = P(f7(X) # +1)e)

>0-p"-P(fH(X) # +1) = (1 —p") - P(f*(X) # =1)

= Ep-[Lp(f*(X),Y7)]
contradicting the optimality of f*

peer- Lhus our claim is proved. O

B. Proof for Theorems
B.1. Proof for Theorem 1

Proof. The covariance Cov(-, -) in this proof is taken over the Bayes optimal distribution D*. The following proof is built on
the result of Theorem 2, i.e. Eq. (2). First note

Cov(Z1(X), L(f1(X),Y") = 1(fo(X),Y7)) = E[(Z1(X) — E[Z1(X)]) - (L(/1(X),Y™) = 1(f2(X),Y7))]
<E[(Z () — E[Z:(X)]l]
< Eley (X) — Eleq (X)]] + Ele— (X) — Ele—(X)]|

Similarly, one can show that
Cov(Z2(X), 1(f1(X), 1) = L(f2(X), —1)) < Ele(X) — E[e4 (X)]| + Ele—(X) — E[e— (X)]|
Now with bounded variance in the error rates, suppose:

Ele+(X) = Ele+ (X))l < e4, Ele_(X) —Efe- (X))l < e

Note

f;eer = argfmin Ex []lpL(f(X), Y)}

= argmin (1~ e, e)Ep- [(f(X),) + Cov(Z (X), H((X),¥)) + Cov(Z(X), 1 (X), ~1))]

=arg;nin [(1—eq —e—) (BEp+ [1(f(X),Y™) = p" - Ep- [1(f(X), +1)] — (1 = p*) - Ep-[L(f(X), ~1)])

+ COV(ZI(X)vﬂ(f(X),Y*)) + COV(ZQ(X)’]l(f(X)v _1))]'

Then

Ep- {ﬂ(f;eer(X)u Y*)} n Cov(Z1(X), 1 fpeer(X), Y*)) 4 Cov(Z2(X), 1(freer(X), —1))

l—ey —e_
=Ep- {]l(f;eer(x)a Y*)} —0.5- EX[]l(f;eer(X)a +1)] —0.5-Ex []l(f;eer(X)v _1)] +0.5
N Cov(Z1(X), L fyeer(X), Y)) + CoV(Z2(X), L firer(X), —1))

l1—ey —e_
<Ep- {ﬂ(f;eer(X)vl/*)} _p* 'EX[]I(f;eer(X)ﬂ +1)] - (1 _p*) ‘Ex []l(f;eer(X)7 _1)} + |p* - 05| +0.5
+ COV(Zl(X)7]l(f;eer(X)7Y*)) +COV(ZQ(X)3 l(f;eer(X)’ _1))
l1—ey —e_
<Ep- [L(f*(X),Y)] = p" - Ex[1(f*(X), +1)] = (1 = p*) - Ex[L(f*(X), =1)] + [p* = 0.5[+ 0.5
4 Cov(Z1(X), L(f*(X), Y™)) + Cov(Z(X), L(f*(X), ~1))
l1—ey —e_
4 Cov(Z1(X), L(f7(X), Y™)) + Cov(Z(X), L(f*(X), ~1))
l1—eq —e_

<Ep- [1(f*(X),Y)]

+2[p* — 0.5].

Thus

Ep- |1(fa(X),Y*) = 2(f7(X), ¥7)
_COVZ1(X), L (X),Y*) = D Fpear(X), Y*)) 4+ COV(Za(X), 1(F*(X), 1) = 1 (e X), ~1)

+2|p* — 0.5
1—€+—€_
E X)—E X Ele_(X)—Ele_(X
<o Bles () ~Bley (X))l +Ble_(X) ~Ble_ (X))l _p . 0
1—6+—€_

2 _
<Herte) Lo g5,

1—€+—€_

Noting 1(f*(X),Y™) = 0, we finish the proof.

B.2. Proof for Theorem 2
Proof. The covariance Cov(-, -) in this proof is taken over the Bayes optimal distribution D*. Recall
er(X):=P(Y = —1|Y* =41, X),e_(X) :==P(Y = +1]Y* = -1, X)

and
es == Ex[es(X)], e_ = Ex[e_(X)]

We first have the following equality:

E[Le(f(X), V)] = Ep-[(1 - ex (X) — e (X))L(F(X),Y™))] (Term-A)
+ Ex e (COL(F(X), —1) + e~ COL(F(X),+1)] (Term-B)
—(1—es —e) - Ep-[L(f(X), ;)] (Term-C)
—Exles - 1(f(X), 1) + e— - L(f(X), +1)] (Term-D)

Term-B can be transformed to:
Ex[et(X) - L(f(X),—1) +e—(X) - L(f(X),+1)]

)
— Ex[es(X) - L(f(X), =1) 4+ e—(X) - (1 - 1(f(X), ~1))]
= Ex|(ex(X) — e_ (X)) - 1(f(X), ~1) + e_(X)].

Similarly, Term-D turns to
Ex[eq L(f(X),=1) +e— - L(f(X), +1)] = (e4 —e-) - Ex[L(f(X),-1)] +e_.
Define two random variables
Z1(X) =1 - ey (X) — e_(X), Zo(X) = e4(X) — e_(X).

Then Term-A becomes

Ep-[(1 - e4 (X) — e (X)L(f(X),Y7))]
= E[Z1(X)] - Ep-[L(f(X), Y™))] + Cov(Z1(X), 1(f(X),Y™))
= (1 —ep —e) - Ep-[1(f(X),Y7))] + Cov(Z1(X), L(f(X),Y7))

Similarly, Term-B can be further transformed to

Ex[(e4(X) — e (X)) - L(f(X), =1) + e (X)]
= E[Z2(X)Ex[1(f(X), =1)] + Cov(Z2(X), 1(f(X), 1)) + e~
= (e — e)Ex[1(f(X), =1)] + Cov(Z2(X), L(f(X), 1)) + e

Combining the above results, we have

Eslle(f(X),Y)] = (1 — et —e-) - Ep-[L(f(X),Y™))]
+ (e —e_)EX[]l(f(X ,—1D)]+e_
—(1—ey —e_

B.3. Proof for Theorem 3
Proof. From Theorem 2, we know
Eg[LpL(f(X),Y)] = Cov(Z1(X), 1(f(X),Y™)) — Cov(Za(X), L(f(X),-1))

=(1—e- —eq) Ep-[Lp(f(X),Y7)].
With Lemma 2, we can finish the proof. O
B.4. Proof for Theorem 4

Proof. Recall 7 € [0,1] is the expected ratio (a.k.a. probability) of correct examples in D7, ie. 7 = BI{(X,Y) €
DT|(X,Y*) e D*}] =P((X,Y) ~ D7|(X,Y™*) ~ D*). With D7, the classifier learned by minimizing the 0-1 CAL loss is

fearr = argfmin Eg |LeL(f(X),Y)] = Covp, (Z1(X), L(f(X),Y) = Covp. (Z2(X), L(f(X),~1))|.

Note

Similarly,
Covp+(Z1(X), L(f(X),Y)) = Ep~ [(Z1(X) — Ep+[Z1(X)]) 1(f(X),Y)]
= B((X,Y) € D"|(X,Y) € D*)Ep- [(Z1(X) — Ep- [Z: (X)) L(f(X), Y)|(X,Y) € DT

FE((X,Y) ¢ D|(X,Y) € D)Ep- [(Z1(X) ~ Ep-[Z2(X)]) L(/(X), V)|(X,Y) ¢ D7].

When D*, D7 and D have the same feature set, we have
P((X,Y) € D*|(X,Y) e D7) =P((X,Y) € D7|(X,Y) € D*) =1,
P(X,Y) ¢ D*|(X,Y) € DT) =P(X,Y) ¢ ﬁ7|(X,Y) eD)=1-r.
Therefore,
Covp. (Z1(X), 1(f(X),Y)) = Covp- (Z1(X), L(f(X),Y)) <2(1 — 7)(e4 +€-).
The rest of the proof can be accomplished by following the proof of Theorem 1. [

C. Proof for Corollaries
C.1. Proof for Corollary 1
Proof.

Elt(f(X), V)] = E5lt(f(X), V)] - E, [Eny[(((X,), T3] -)

The first term in (5) is

E56(f(X),Y)]

—Ep. [Z B(Y = jIX.Y)Uf(X).)

j€[K]

= Z Z Y —ZED |y Z[T”(X)f(f(X),j)}

JE[K] i€[K]

= Z Z TyiEpe)y -=ill(f(X),4)] + Covp- |y« =i[Ti; (X), £(f(X),)]

JE[K] i€[K]

=) |PY* =) (1 - > sz‘) Epepys—; L(F(X),)]+ D, P =i)T;Epey-e; [é(f(X)vj)]]

JE[K] i#j,1€[K] i€[K],i#]

+ Z Z P —7, COVD |y 1[Tij(X)a£(f(X)aj)]

JE[K]i€[K]

= Z PY™ =) (1 - Z €i> Ep«jy«=; [((f(X),7)] + Z PY™ =i)e;Ep«y-=; [é(f(X),j)]]

jelk] | i#5,i€ K] i€[K] i)

+ > Y P =i)Covpeyei [Ty (X), £(f(X),)]

jelK]i€[K]

= (1 - > ei) Ep- [((f(X), Y)]+ D D P =i)e;Epe v [L(f(X),)]
)

i€[K JEIK]i€[K]
+ Z Z =1 COV'D *|y* 7,[1_‘1_7(X)7€(f(X)5.])]
Je[K]ielK]

The rest of proofs can be done following standard multi-class peer loss derivations [24].

D. More Discussions
D.1. Setting Thresholds L,.;, and L.

In a high level, there are two strategies for setting Lyin and Linax: 1) Liin < Lmax and 2) Ly = Lypax-

Strategy-1: Lin < Lmax: This strategy may provide a higher ratio of true Bayes optimal labels among feasible examples
in D since some ambiguous examples are dropped. However, dropping examples changes the distribution of X (as well as the
distribution of the unobservable Y*), a.k.a. covariate shift [14, 6]. Importance re-weighting with weight ~(X) is necessary
for correcting the covariate shift, i.e. the weight of each feasible example (z,9) € D should be changed from 1 to ~(x). Let
Dx and Dy be the marginal distributions of D and Don X. Witha particular kernel ®(X), the optimization problem is:

min [[Epy [®(X)] - Ep [y(X)(X)]]|
7(X) (6)

s.t. ¥(X) >0 and Ep [y(X)] = 1.

The optimal solution is supposed to be v*(X) = izx g; Note the selection of kernel ®(-) is non-trivial, especially for
X

con}plicated features [7] in DNN solutions. Using this strategy, with appropriate L, and LmaXA such that all the examples
in D are Bayes optimal, the covariance could be guaranteed to be optimal when each example in D is re-weighted by ~* (X).

Strategy-2: Lin = Lmax: Compared with Strategy-1, we effectively lose one degree of freedom for getting a better D.
However, this is not entirely harmful since D and D* have the same feature set, indicating estimating y(X') is no longer
necessary and (X)) = 1 is an optimal solution for (6) with this strategy.

Strategy selection When we can get a high-quality D by fine-tuning L,y and Ly,ax OF Dis already provided from other
sources, we may solve the optimization problem in (6) to find the optimal weight v(X). However, considering the fact
that estimating (X) introduces extra computation and potentially extra errors, we focus on Strategy-2 in this paper. Using
Strategy-2 also reduces the effort on tuning hyperparameters. Besides, the proposed CAL loss is tolerant of an imperfect D
(shown theoretically in Section 4.3).

D.2. Generation of Instance-Dependent Label Noise

Pseudo codes for generate instance-based label noise are provided in Algorithm 2. This algorithm follows the state-of-
the-art method [40]. Define the overall noise rate as 7.

Algorithm 2: Generating Instance-Dependent Label Noise

Input: Clean examples (x,, yn)n 1> Noise rate: 7; Number of classes: K; Shape of each feature x,,: S x 1.

1 Sample instance flip rates ¢,, from the truncated normal distribution A/ (1, 0.12, [0, 1]); /# meann, variance 0.12, range [0, 1]
2 Sample W € R5*K from the standard normal distribution A/(0, 12);

3 forn € [N] do

4 p= IJW // Generate instance dependent flip rates. The size of pis 1 X K.
5 Py, = —00 // Only consider entries that are different from the true label
6 P=dqn- softmax(p) // Let qr, be the probability of getting a wrong label
7 Dy, = 1—gqn, // Keep clean w.p. 1 — qn,
8 Randomly choose a label from the label space as noisy label ¥,, according to p;

9 end

Output: Noisy examples {(z;, 7,),n € [N]}.

Note Algorithm 2 cannot ensure T3;(X) > T;;(X) when n > 0.5. To generate an informative dataset, we set 0.9 - T;; (X)
as the upper bound of T;;(X) and distribute the remaining probability to other classes.

D.3. Performance without Data Augmentations

For a fair comparison with the recent work on instance-dependent label noise [40], we adopt the same data augmentations
as [40] and re-produce their results using the same noise file as we employed in Table 1. Each noise rate is tested 5 times
with a different generation matrix W (defined in Algorithm 2). Table 4 shows the advantages of our second-order approach.

Table 4. Performance comparisons without data augmentations

Method | =02 n=0.4
PTD-R-V[40] | 69.62+3.35 64.73 & 3.64
CAL 75.52 +3.94 70.30 & 2.96

D.4. More Implementation Details on ClothinglM

Construct D We first train the network for 120 epochs on 1 million noisy training images using the method in [5]. The
batch-size is set to 32. The initial learning rate is set as 0.01 and reduced by a factor of 10 at 30, 60, 90 epochs. We sample
1000 mini-batches from the training data for each epoch while ensuring the (noisy) labels are balanced. Mixup [48] is adopted
for data augmentations. Hyperparameter [is set to O at first 80 epochs, and linearly increased to 0.4 for next 20 epochs and
kept as 0.4 for the rest of the epochs. We construct D with the best model.

Train with CAL We change the loss to the CAL loss after getting D and continue training the model (without mixup) with
an initial learning rate of 10~ for 120 epochs (reduced by a factor of 10 at 30, 60, 90 epochs). We also tested re-train the
model with D and get an accuracy of 73.56. A randomly-collected balanced dataset with 18,976 noisy examples in each
class is employed in training with CAL. Examples that are not in this balanced dataset are removed from D for ease of
implementation.

