Supplementary Material for
Learning Neural Representation of Camera Pose with Matrix Representation of
Pose Shift via View Synthesis

1. Training details

In this section, we describe the details about the struc-
ture of our neural networks and the hyperparameters we use
in the experiments. The main differences among the net-
work structures we use on different datasets depend on: (i)
the size of the image we are dealing with: the larger image
needs more blocks; (ii) the complexity of the scenes. For
7Scenes and Gibson rooms dataset, the scenes are highly
complex. Therefore we apply instance normalization to
multiple layers, which is dependent on scenes, besides the
vector representation of the scene at the top layer. For
the GQN rooms dataset, which includes a huge amount of
scenes, we employ an encoder to calculate the scene repre-
sentations online. We use Adam([5] as optimizer for all the
experiments with 5, = 0.9 and 8y = 0.999. The learning
rate for each setting is introduced in each later section.

1.1. GQN rooms dataset

Generative experiment. Since this dataset contains a
huge amount of scenes, and each scene only has few im-
ages, we encode the scene representations online instead of
learning an individual vector representation for each scene.
The encoder structure is shown in Figure 4a. Specifically,
the encoder encodes the scenes as a scene vector that is fed
to the top layer of the decoder, and it also encodes the pa-
rameters of instance normalization [3] that is applied to the
multiple layers of the generator. Following [2], to summa-
rize information across multiple images of the same scene,
we sum up the encoded vectors and parameters of these im-
ages. The decoder structure is shown in Figure 4b. We
discretize the square space into 20 x 20 grids and learn a
position vector at each grid. Similarly, we discretize the
orientation into 36 grids (10° per grid) and learn an orienta-
tion vector at each grid. The training takes about four days
on a single Titan RTX GPU.

We train the model for one million iterations. At each
iteration, we randomly sample 30 scenes, each containing
ten images. We use the first six images of each scene to
encode the scene representation and concatenate it with the
other three images’ pose representations. We use the con-

catenated representations to reconstruct the three images.
We leave the last image for testing. For the rotation loss, we
randomly sample 4000 pairs of poses for each iteration. The
learning rate of the pose representations and matrix repre-
sentations of camera movements is 0.01, and the learning
rate for the encoder, decoder, and scene representations is
0.0001. Here, we update all the learnable parameters to-
gether. We set A1 as 0.05, A2, A3 as 100 and A4 as 0.8.

For the baseline GQN network, we also train the model
for one million steps. At each step, we feed in a batch of
64 scenes. The other parameters follow the original imple-
mentation.

Inference experiment. We show the inference model
structure in Figure 4c. Like the generative experiment, we
use an encoder to encode the scene and the parameters of
instance normalization online. The encoder structure is the
same as the encoder used in the generation task, except
that we do not encode a vector representation at the top
layer but encode another set of instance norm parameters
(74, 84). We set the learning rate as 0.0001 for all the pa-
rameters. We train the inference model for 100,000 steps.
At each iteration, we feed in 30 scenes. For this dataset,
we use the homoscedastic uncertainty method proposed in
[4] to automatically tune the weight between pose predic-
tion loss of position and orientation. We set the initial guess

for logarithmic weight of position loss as Spos = —log 20
and the initial guess for logarithmic weight of orientation
loss as Sori = —logh5 (so that exp(—Spos) = 20 and

exp(—Seori) = 5). We use the same inference model struc-
ture for baseline models, except that we add another fully-
connected (FC) layer with size 196 to these models to make
sure that they have approximately the same amount of pa-
rameters as the model trained on our representations. We
also train these models for 100,000 iterations with the same
batch size. We tune the learning rate for each baseline
model to make a fair comparison and use the same automat-
ically weight tuning method for the two quaternions-related
baselines. The initial guess for the logarithm weight of po-
sition loss is set to 0.0, and the one of orientation loss is set
to -3.0 as suggested by [4]. For our model and each of the
baseline models, the training takes about 5 hours on a single



Titan RTX GPU.

1.2. ShapeNet car

Generative experiment. This dataset contains 2151 dif-
ferent cars. The heads of the cars are aligned to the same
orientation, and the background is blank. Given the sim-
plicity of this dataset, we do not use instance normalization.
The vector representation of scenes is of 128 dimensions,
and we learn a separate vector representation for each scene
instead of obtaining by an encoder. The structure of the
generator model is shown in Figure 5a. For our pose rep-
resentation system, we discretize the orientation for 0° to
360° into 36 grids and learn individual orientation vectors
at each grid.

For each scene, we randomly sample 50 pairs of images
for each scene as the training set and leave the others as the
test set. The camera poses of the two images in each pair is
close to each other, so that the change from one to another
can be approximated by Taylor expansion of the matrix Lie
groups as discussed in section 3.3, which means that we can
apply the camera poses of the two images to the rotation
loss. We train our model for 160,000 iterations, i.e., 1500
epochs. We randomly sample 20 scenes at each iteration,
and for each instance, we sample 10 images (5 pairs). For
the rotation loss, we randomly sample additional 200 pairs
of camera poses to compute the loss. The learning rate is
set to 0.0001. We set A\; as 0.05 and A as 50. We itera-
tively update the decoder for one time and pose representa-
tion system for three times at each iteration. The training
takes about four days on a single Titan RTX GPU.

For the baseline GQN model, we trained the model for
500,000 steps. At each step, we randomly sample a batch of
36 scenes. We randomly sample 15 images for each scene
to infer the scene representation and another image as the
reconstruction target. We use the same train-test split as our
model for each scene here.

Inference experiment Since the head direction for each
car is aligned to the same direction, the pose regression task
should follow the same rule across different scenes. Thus,
we do not include scene-related parameters in our inference
model. The structure of our inference model is shown in
Figure 5b. For each scene, we randomly sample 250 images
as the training set and the rest 250 images as the test set. We
train our model and all the baseline models for 500 epochs.
At each iteration, we use 10 scenes, and we randomly sam-
ple 20 images from each scene. The learning rate is set to
0.001. We simply set the weights of prediction losses of the
two rotation vectors as 1.0 without further automatic tuning.
For each baseline representation, we use the same inference
model structure and add another fully-connected (FC) layer
with size 256. We tune the learning rate carefully to make
a fair comparison, and we use the automatic weight tuning
method for the two quaternions-related baseline methods.

The initial guess for the logarithmic weight of orientation
loss is set to -3.0 as suggested by [4]. The training for our
model and each of the baseline models takes about 8 hours
on a single Titan RTX GPU.

1.3. Gibson rooms dataset

Generative experiment. This dataset contains complex
scenes. We apply instance normalization at multiple layers,
which is dependent on the scene. The structure is shown
in Figure 6a. The scene vector representation is of 768 di-
mensions, and the dimensions of instance normalizations
are summarized in Figure 6a. We discretize the 2m x 2m
square space into 40 x 40 grids. We discretize the two ori-
entation angles into grids so that each grid is 10°.

For each scene, we randomly sample half of the data
as the training set and the rest as the test set. We train
our model for 500k steps. At each iteration, we randomly
choose four scenes. For each scene, we randomly sample
50 images. For the rotation loss, we randomly sample an-
other 3000 pairs of poses. We use a learning rate of 0.0001
for training the generator and a learning rate of 0.01 for the
pose representation. We iteratively update the generator pa-
rameters for one time and update the pose representation
two times at each iteration. We set A1 as 0.01, Ao, A3 as 100
and )4 as 0.8. The training takes about five days on a single
Titan RTX GPU.

For the baseline GQN model, we train the model for
500k steps. At each iteration, we randomly sample and pre-
dict 36 images. To predict each image, we randomly pick
15 images from the same scene to infer the scene represen-
tations.

Inference experiment. The inference structure is shown
in Figure 6b. We trained the inference model for 25000
steps for both our representation and the baseline represen-
tations. At each step, we randomly sample 4 scenes with
50 images from each scene. The learning rate for the model
with our representation is 0.001. For this dataset, we find
that simply set the weight of position prediction loss as 20
and set the weight of orientation prediction loss as 10 is
good enough. So we do not employ the automatic weight
tuning mechanism here. We tuned the learning rate for each
baseline model, and we applied the homoscedastic uncer-
tainty method to tune the weight for the quaternions-related
representations automatically. The initial guess for the log-
arithm weight of position loss is set to 0.0, and the one of
orientation loss is set to -3.0. For each baseline represen-
tation, we use the same inference model structure and add
another fully-connected (FC) layer with size 192.The initial
guess follows [4]. For our model and each of the baseline
models, the training takes about 5.5 hours on a single Titan
RTX GPU.



1.4. 7Scenes

Generative experiment. For this dataset, we use the
same generator structure as for the Gibson Room dataset
(see Figure 6a). Since this dataset contains less data than
the Gibson Room dataset, we set the dimension of the scene
vector representation to 96. We discretize the whole region
(4m x 1.5m x 3m) into grids so that each grid is of 0.1m
x 0.Im x 0.1m. The orientation is discretized into grids so
that each grid is of 10°.

We update the model for 100,000 steps. At each step, we
randomly sample 16 pairs of images from each scene, and
we randomly sample 3000 extra pairs of poses to estimate
the rotation loss. We use the learning rate 0.0001 for the
generator and 0.001 for the pose representation system. We
iteratively update the generator for one time and pose repre-
sentation system for two times at each iteration. We set Ay
as 0.009 and A2 as 50. The training takes about one day on
a single Titan RTX GPU.

Inference experiment. For the inference model, we use
the same structure proposed in [ 1], i.e., we use a pre-trained
ResNet34 as the basic feature extractor. We learn a separate
module containing several FC layers on the top of the ex-
tracted features to predict each pose vectors. Following [ 1],
we train an individual inference model for each scene. We
use learning rate 0.00005 and train the model of each scene
for 60 epochs. To isolate the effect of different representa-
tions, we use PoseNet as the model for all the representa-
tions, without other techniques such as adding pair losses
or unlabeled data. We consider these techniques to be or-
thogonal to the improvement in pose representation. We
employ the automatic weight tuning method as [1] to tune
the weight between the three position vectors and three ori-
entation vectors. We set the initial guess for the logarithm
weight of three position vectors’ losses the initial guess for
logarithm weight of three orientation vectors’ losses as -
3.0. We employ 0.7 color jitter as data augmentation and
remove the dropout in the final FC layer. Our model takes
about 3.7 hours for training all the 7 scenes on a single Ti-
tan RTX GPU. For the baseline model, we use the released
code of [1] and we use the default setting with python 3.6
and torch 1.2.0, which trains the models on each scene for
300 epochs with a learning rate of 0.0001. It takes about 13
hours to train the baseline models on the entire 7 scenes on
a single Titan RTX GPU.

2. Additional training results
2.1. Generative results

We show more novel view synthesis results for GQN
rooms, ShapeNet car and Gibson rooms in Figures 7, 8, 9.

2.2. Reconstructed image under different noise
magnitude

In Figure 1, we show the reconstructed images at differ-
ent noise levels using our model with learned camera pose
representation and GQN (which uses predefined low dimen-
sional sinusoidal function to represent rotation). We can
see that our model can reconstruct image with correct pose
even with high noise while the poses in the reconstructed
images of GQN model change a lot as noise increases. This
agrees with our observations from the psnr curves and fur-
ther prove that our learned camera pose representation is
more robust to noise.

2.3. Learning the camera pose representation by a
fully connected neural network

As a comparison, we replace our proposed camera pose
representation by a fully connected neural network on
ShapeNet car dataset. Specifically, we encode each angle by
a 2-layer fully-connected neural network. The first layer has
a length of 128 the second layer has a length of 96 (which
is same to our embedding). We use leaky relu as the acti-
vation function. As shown in Figure 2, this embedding is
also a high-dimensional one but it doesn’t has the transla-
tion invariance [0] as in our learned representation. Figure
3 shows the PSNR over the magnitude of noise added to
representations. The representation using a fully connected
neural network works better than the plain low dimension
embedding used in GQN in terms of robustness to noise.
But it still performs worse than our design, which is regu-
lated by the rotation loss. As for the camera pose estima-
tion, using the representation from a fully connected neural
network gives a testing error of 3.63°, which is lower than
the results of all the other hand designed representations but
still higher than the result of our design (with testing error
2.85°). The results show that learning a high-dimenstional
representation is better than the low-dimensional hand de-
signed ones and enforcing the translation invariance using
rotation loss can further improve the results.
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camera pose representation.
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Figure 4: Network structures for GQN rooms dataset. v and 3 denote the parameters of instance normalization.
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shares the same decoder structure with Gibson room dataset while its inference model is the same as [1].
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Figure 7: Additional novel view synthesis results on GQN rooms dataset.
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Figure 8: Additional novel view synthesis results on ShapeNet v2 car dataset.
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Figure 9: Additional novel view synthesis results on Gibson rooms dataset.



