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In this supplementary material, we provide more details
about our implementation details, synthetic data generation,
network architectures, and additional results on synthetic
data and real images in the wild.

A. Implementation Details
To train SOLID-Net, we use SOLID-Img augmented

with random flip and crop. Our framework is implemented
in PyTorch [3] and Adam [2] optimizer is used with default
parameters. We first train I-Net using a batch size of 8 for
20 epochs until convergence, and then train P-Net with a
batch size of 4 for 60 epochs on an RTX2080 GPU. We find
that an end-to-end fine-tuning does not improve the perfor-
mance. The learning rate is initially set to 5 × 10−4 and
halved every 5 epochs for both networks. Training conver-
gence takes roughly 24 hours.

B. Additional Details in Data Generation
The data generation pipeline for SOLID-Img dataset has

been introduced in Section 3.1 of the main paper. Here, we
introduce additional details about the camera setting step.

For each road block, we select a set of cameras with
diverse views seeing most objects in the context, to pro-
vide comprehensive information for lighting estimation, as
shown in Figure 2(a) of the main paper. Our process starts
by selecting the “best” camera [6] for each of the six hori-
zontal view direction sectors in every road block. For each
horizontal view direction, we sample a dense set of cameras
on a 2D grid with 1m solution, choosing a random cam-
era viewpoint within each grid cell, a random horizontal
view direction within the 60◦ sector, a random height of
1.55 ± 0.05m above the floor uniformly, and a pitch angle
within 10◦ around horizontal direction. Then for each cam-
era, we render an item buffer and count the number of visi-
ble pixels according to Z-buffer and the number of objects.
For each horizontal view direction in each road block, we
select the view with the highest percentage pixel coverage,
as long as it has more than three object categories.

Table A: Numerical results and MAE errors on estimated
sky environment map.

Methods ξazimuth ξelevation ξHDR

LENetreg 37.0◦ 16.2◦ 0.508
LENetae [5] 34.0◦ 16.0◦ 0.542
LENetsky [1] 22.3◦ 11.0◦ 0.609
Ours (w/o Ldif ) 19.1◦ 11.4◦ 0.491
Ours 12.6◦ 8.5◦ 0.478

C. Details about Network Architectures

In this section, we introduce the detailed network archi-
tectures of baseline models as shown in Figure A.

The first baseline model, denoted as LENetreg, is a re-
gression model that directly regresses the global sky en-
vironment map from the input limited-FOV image. The
second baseline model, denoted as LENetae, is a two-
stream convolution network used to estimate sun position
and normalized HDR panorama from a LDR panorama [5];
we modify the input as a single limited-FOV LDR image
to adapt our task. The last baseline model, denoted as
LENetsky, learns to estimate both the sun azimuth and
the sky parameters from two image encoders and uses an
autoencoder to learn the space of outdoor lighting by com-
pressing an HDR sky image to a 64-dimensional latent vec-
tor and reconstructing it to a HDR sky environment map [1].
In particular, LENetae learns azimuth estimation as a re-
gression task, while LENetsky treats it as a classification
task.

Numerical results about these baseline models compared
with ours are shown in Table A (ξazimuth is the sun az-
imuth angular error, ξelevation is the sun elevation angular
error, and ξHDR is the MAE error of normalized sky envi-
ronment map). Training a single model to estimate a sky
environment map with azimuth rotation is proved to be dif-
ficult (see Row 1 in Table A). By separating this task into
the estimation of a normalized sky environment map (sun
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Figure A: Structures of baseline models.

in the middle position along the horizontal direction) and
sun azimuth angle, the results of single model lighting esti-
mation get improved (see Row 2 in Table A). Further using
three sub models to solve the whole problem results in more
accurate estimation than using single models (see Row 3
in Table A). But the sun position and sky environment map
are closely related, we prove that the estimation accuracy
to both could be improved by our jointly training with in-
trinsic constraints being integrated in deep models (see Row
4-5 in Table A).

D. Qualitative Results on Synthetic Data
More results of image decomposition and lighting es-

timation using SOLID-Img test dataset are shown in Fig-
ure B, Figure C, and Figure D. Given an input image, our es-
timated albedo, normal, plane distance, shadow, and shad-
ing show close appearance to the ground truth (shown as
insets) as shown in Figure B. In Figure C, we can see that
global lighting estimation resuls of SOILD-Net are closer
to ground truth than three baseline models (we rotate the
lighting of LENetae and LENetsky according to the sun
azimuth for better comparison). In addition, the relighted
bunnies using our estimated lighting display accurate cast
shadows, while other models fail to render.

As shown in Figure D, our method can recover more ac-
curate local lighting than NeurIllum [4] even for the reflec-
tion of the ground and some unseen parts (typical examples
could be found in local lighting 1 in row 1, local lighting 3
in row 4, and local lighting 4 in row 5). We conjecture this is
because our multi-input (global lighting for lighting infor-
mation, shadow for occlusion information) module provides
more useful information.

E. Qualitative Results on Real Data
More results of local lighting estimation on real dataset

are shown in Figure E. Compared with NeurIllum [4], the
lighting estimation results of our method are more similar
to the ground truth in terms of overall structure, and our

relighted bunnies show more realistic rendering apperances.
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Figure B: Intrinsic decomposition results and ground truth (shown as insets) on SOLID-Img test dataset.
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Figure C: Global lighting estimation and relighting results on SOLID-Img test dataset.
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Figure D: Local lighting estimation and relighting results on SOLID-Img test dataset.

5



1 2

1 2

1
2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

Input Image + Loca�ons

Local ligh�ng Relit. Local ligh�ng Relit.Local ligh�ng

Ours NeurIllumGT

Figure E: Spatially-varying lighting estimation and relighting results on real dataset.
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