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6. GAN and InfoGAN

The Generative Adversarial Network [16] is a generative
model trained via a minimax game performed between a
generator G and a discriminator D:

min
G

max
D

V (G,D) = Ex⇠pdata [logD(x)]

+ Ez⇠pnoise [log (1�D(G(z)))], (13)

where z is a noise variable sampled from a prior distribu-
tion pnoise(z), the generator G maps z to the pixel space to
synthesize images, and the discriminator D predictes if an
images is sampled from the real distribution or not. After
convergence, the G should be able to synthesize realistic
images and the D cannot tell if an image is fake or not.

The InfoGAN [8] augments the GAN loss (Eq. 13) with
a regularization term:

min
G,Q

max
D

VINFO(G,D) = V (G,D)� �I(c;G(c, z)),

(14)

where I(c;G(c, z)) is the mutual information between a
subset of latent codes c 2 Rd and the generated samples
G(c, z). By maximizing the mutual information, the latent
codes c are able to represent a set of interpretable salient
variations in data. In practice, the mutual information is
approximated by a variational lower bound and is imple-
mented with an auxiliary network Q, trained together with
G by regression loss for predicting the latent codes c.

7. Datasets Introduction

CelebA This is a dataset of 202,599 images of cropped
real-world human faces, containing various poses, back-
grounds and facial expressions. We use the cropped center
128⇥ 128 area in this paper.

Shoes+Edges This dataset contains the commonly used
image-to-image translation datasets Shoes and Edges, but
mixes the 50,000 Shoes images and 50,000 Edges images
together to form a 100,000-image dataset in 128⇥128.

Clevr-Simple This dataset is a variant of the Clevr
dataset, which contains an object featuring four factors of
variation: object color, shape, and location (both horizontal
and vertical). It contains 10,000 256⇥256 images.

Clevr-Complex This dataset retains all variations from
Clevr-Simple but adds a second object and multiple sizes
for a total of 10 factors of variation (5 per object). It con-
tains 10,000 256⇥256 images.

Shape vs Orientation

Figure 11. Shape vs Orientation.

Shape vs Obj-Color

Figure 12. Shape vs Obj-Color.

FFHQ This is a dataset of aligned images of human faces
crawled from Flickr (70,000 in tatal). We use the 512⇥512
version in our paper. Link: https://github.com/NVlabs/ffhq-
dataset.

DSprites This is a dataset of 2D shapes generated from
5 independent factors, which are shape (3 values), scale
(6 values), orientation (40 values), x position (32 values),
and y position (32 values). All combinations are present
exactly once, with the total number of binary 64 ⇥ 64 im-
ages 737,280. Link: https://github.com/deepmind/dsprites-
dataset.

3DShapes This is a dataset of 3D shapes generated from 6
independent factors, which are floor color (10 values), wall
color (10 values), object color (10 values), scale (8 values),
shape (4 values), orientation (15 values). All combinations
are present exactly once, with the total number of 64 ⇥ 64
images 480,000. Link: https://github.com/deepmind/3d-
shapes.

8. More Experiments of Rotating Latent Space

The plot for different semantic-pairs on 3DShapes are
shown in Fig. 11 - 25. Similar results for CelebA are shown
in Fig. 26 - 46. For most semantic-pairs, the correspond-
ing ↵ rotation plots agree with the assumption of Perceptual



Shape vs Floor-Color

Figure 13. Shape vs Floor-Color.

Shape vs Size

Figure 14. Shape vs Size.

Shape vs Wall-Color

Figure 15. Shape vs Wall-Color.

Orientation vs Obj-Color

Figure 16. Orientation vs Obj-Color.

Orientation vs Floor-Color

Figure 17. Orientation vs Floor-Color.

Orientation vs Size

Figure 18. Orientation vs Size.

Orientation vs Wall-Color

Figure 19. Orientation vs Wall-Color.

Obj-Color vs Floor-Color

Figure 20. Obj-Color vs Floor-Color.



Obj-Color vs Size

Figure 21. Obj-Color vs Size.

Obj-Color vs Wall-Color

Figure 22. Obj-Color vs Wall-Color.

Floor-Color vs size

Figure 23. Floor-Color vs Size.

Floor-Color vs Wall-Color

Figure 24. Floor-Color vs Wall-Color.

Size vs Wall-Color

Figure 25. Size vs Wall-Color.

Gender vs Smile

Figure 26. Gender vs Smile.

Gender vs Azimuth

Figure 27. Gender vs Azimuth.

Gender vs Elevation

Figure 28. Gender vs Elevation.



Gender vs Fringe

Figure 29. Gender vs Fringe.

Gender vs Background

Figure 30. Gender vs Background.

Gender vs Hair-Color

Figure 31. Gender vs Hair-Color.

Smile vs Azimuth

Figure 32. Smile vs Azimuth.

Smile vs Elevation

Figure 33. Smile vs Elevation.

Smile vs Fringe

Figure 34. Smile vs Fringe.

Smile vs Background

Figure 35. Smile vs Background.

Smile vs Hair-Color

Figure 36. Smile vs Hair-Color.



Azimuth vs Elevation

Figure 37. Azimuth vs Elevation.

Azimuth vs Fringe

Figure 38. Azimuth vs Fringe.

Azimuth vs Background

Figure 39. Azimuth vs Background.

Azimuth vs Hair-Color

Figure 40. Azimuth vs Hair-Color.

Elevation vs Fringe

Figure 41. Elevation vs Fringe.

Elevation vs Background

Figure 42. Elevation vs Background.

Elevation vs Hair-Color

Figure 43. Elevation vs Hair-Color.

Fringe vs Background

Figure 44. Fringe vs Background.



Fringe vs Hair-Color

Figure 45. Fringe vs Hair-Color.

Background vs Hair-Color

Figure 46. Background vs Hair-Color.

Simplicity, i.e. the accumulated perceptual distance scores
become local minima when the accumulation directions are
aligned with the latent axes (↵ = �180,�90, 0, 90, 180).
However, there exist still some exceptions, such as Shape
vs Size, and some attributes plotted against Azimuth, etc.
These are (1) sometimes due to the imperfectly learned rep-
resentations which are not fully disentangled, and (2) some-
times due to the domination of variations encoded by one
dimension over another (e.g. Azimuth), leading the Percep-
tual Simplicity phenomenon not obvious. But in general,
the assumption holds for most semantic-pairs.

9. TPL Pros and Cons

Pros: 1) Unlike [12], the TPL computation does not rely
on pair-wise comparisons among a herd of models (trained
with different hyper-parameters and seeds) to assign a score
to a single model. This ensures the TPL is a more efficient
method for model selection, and also enables its ability to
work as a rough unsupervised metric to evaluate disentan-
glement quality. 2) Unlike [60], the TPL does not need to
train an extra classifier to assign a score to a model, indi-
cating it is a more general and efficient approach. 3) Unlike
[25], the TPL leverage the perceptual anisotropy in a disen-
tangled representation, which can select more interpretable
ones than the PPL proposed in [25] which only assign a
score to a model by only evaluating the perceptual smooth-

Figure 47. TPL (act>0) vs MIG. Ranked by TPL scores.

ness in the latent space.
Cons: 1) The TPL scores can be biased by the genera-

tive ability of the generator, e.g. it usually ranks a blurred-
image generator higher than a more-detailed-image gener-
ator even their disentanglement levels are similar. To al-
leviate this problem, we recommend using TPL together
with some generative quality metrics (e.g. FID, IS) to fil-
ter out the cheating models that achieve disentanglement at
the severe cost of generative quality. 2) The TPL is based
on the assumption that disentangled representations contain
perceptually simple variations along their latent axes. This
assumption may not hold for every dataset or for every con-
cept. In those case, supervised disentanglement learning
methods may be more preferable.

10. More Results of TPL Experiments

Here we show more correlation plots for more metrics
and the dimensions using the pretrained checkpoints. The
correlation coefficients for each setting are shown in the
plots. In Fig. 47, 48, 49, and 50, we show the plots with all
dimensions of activation (act>0) taken into account. There
are descending trends shown in each figure, but the reason
that the correlation scores are low is due to the left most
samples (around <250) shown in each plot. These sam-
ples are strangely positioned at the top of the whole rank by
TPL, but are generally not scored high by supervised met-
rics. This is because these samples encode only a subset of
factors in the dataset (3 out of 5), and some of them are de-
tected by the supervised metrics and are assigned with low
scores. In Fig. 51, 52, 53, 54, 55, 56, 57 and 58, we show
the plots of samples with active dimensions larger than 3
and 4. In these figures, the TPL ranks these models much
better, and the correlation coefficients also agree with the
descending trends better in these plots.



Figure 48. TPL (act>0) vs FVM. Ranked by TPL scores.

Figure 49. TPL (act>0) vs DCI. Ranked by TPL scores.

11. Ablation Study on the Number of Rectan-

gles J

We show the impact of the number of rectangles used in
our SC modules on the CelebA dataset. We vary J from 1
to 9 while keeping all other factors unchanged. The results
are shown in Table 6. We can see using too few rectangles
harms FID (variation controlled by each code is too sim-
ple) while using too many harms TPL (each code controls
entangled variations). A balanced J is about 3⇠6.

12. More Qualitative Results

More traversals are shown in Fig. 59 - Fig. 70. For
Clevr-Complex, we can see our model learns the position
concepts for both objects, but other concepts like size and
shape of objects are still entangled. This indicates the multi-
object disentangled representation learning is still a hard

Figure 50. TPL (act>0) vs BVM. Ranked by TPL scores.

Figure 51. TPL (act>3) vs MIG. Ranked by TPL scores.

J TPL PPL FID
1 5.4 29.2 9.0
3 7.0 35.8 7.7
4 7.1 38.4 5.9

6 8.1 38.9 6.0
9 8.2 40.0 6.2

Table 6. Ablation on J on CelebA dataset.

and unsolved problem.

13. More Image Editing

More image editing experiments (similar to Fig. 10) are
shown in Fig. 71 and Fig. 72. We can see the attributes of
background, azimuth, smile, hat, fringe, skin color are suc-
cessfully disentangled in the learned representation. How-
ever, there are still some flaws, such as the transfer of hat in



Figure 52. TPL (act>3) vs FVM. Ranked by TPL scores.

Figure 53. TPL (act>3) vs DCI. Ranked by TPL scores.

the last row of Fig. 72 changes the style and color of hats
in the resulting images. This problem may be caused by the
lack of data of various hats during training, but may also be
alleviated by better models.

14. Implementations

The network architectures are shown in multiple Ta-
bles: on CelebA: 7, 8, 9; on Shoes+Edges: 10, 11,
12; on Clevr-Simple and Clevr-Complex: 13, 14, 15; on
FFHQ: 16, 17, 18; on DSprites: 19, 20, 21; on 3DShapes:
22, 23, 24; All models are trained with the Adam opti-
mizer. For both generator and discriminator optimizers,
�1 = 0, �2 = 0.99, initial learning rate is 0.002, ex-
cept for 3DShapes we set 0.005. Note that the Q net-
work is trained together with the generator. The � for
Shoes+Edges, Clevr-Complex, CelebA, FFHQ is 0.01, for

Figure 54. TPL (act>3) vs BVM. Ranked by TPL scores.

Figure 55. TPL (act>4) vs MIG. Ranked by TPL scores.

Clevr-Simple is 0.05, for DSprites and 3DShapes is 0.001.
The pvar is 0.2 for DSprites and 3DShapes, and is 1 for other
datasets. For CelebA dataset, models are trained for 4,000k
images (around 19 epochs). For FFHQ dataset, models
are trained until FID starts to saturate (around 28 epochs).
For DSprites dataset, models are trained for 15,000k im-
ages (around 20 epochs). For 3DShapes dataset, models are
trained for 8,000k images (around 18 epochs). For DSprites
and 3DShapes, instead of randomly sampling the perturbed
dimension k in the PC loss every iteration, we loop the k
sequentially for each dimension every 1k images to achieve
a stabler convergence.



Figure 56. TPL (act>4) vs FVM. Ranked by TPL scores.

Figure 57. TPL (act>4) vs DCI. Ranked by TPL scores.

Figure 58. TPL (act>4) vs BVM. Ranked by TPL scores.
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Figure 59. DSprites 1.
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Figure 60. DSprites 2.
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Figure 61. DSprites 3.
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Figure 62. Clevr-Simple 1.

V
er
tic
al

H
or
iz
on
ta
l

Sh
ap
e

Co
lo
r-1

Co
lo
r-
2

Figure 63. Clevr-Simple 2.
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Figure 64. Clevr-Simple 3.
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Figure 65. Clevr-Complex 1.
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Figure 66. Clevr-Complex 2.
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Figure 67. Clevr-Complex 3.
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Figure 68. CelebA 1.
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Figure 69. CelebA 2.
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Figure 70. CelebA 3.
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Figure 71. Image editing by transferring attributes.
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Figure 72. Image editing by transferring attributes.



Layer Out Shape

Const 4x4x512

ResConv-up-1 8x8x512

SC-4-5 8x8x512

ResConv-id-1 8x8x512

Noise-2 8x8x512

ResConv-up-1 16x16x512

SC-6-5 16x16x512

ResConv-id-1 16x16x512

Noise-2 16x16x512

ResConv-up-1 32x32x512

SC-6-5 32x32x512

ResConv-id-1 32x32x512

Noise-2 32x32x256

ResConv-up-1 64x64x256

SC-6-5 64x64x256

ResConv-id-1 64x64x256

Noise-2 64x64x256

ResConv-up-1 128x128x256

SC-4-5 128x128x256

ResConv-id-1 128x128x128

Noise-2 128x128x128

ResConv-id-2 128x128x128

ResConv-id-1 128x128x3

Table 7. Generator on CelebA.

Layer Out Shape

ResConv-down-2 128x128x64

ResConv-down-2 64x64x64

ResConv-down-2 32x32x128

ResConv-down-2 16x16x256

ResConv-down-2 8x8x512

ResConv-down-2 4x4x512

Conv-id-1 4x4x512

Dense-1 1

Table 8. Discriminator on CelebA.

Layer Out Shape

ResConv-down-2 256x256x64

ResConv-down-2 128x128x64

ResConv-down-2 64x64x64

ResConv-down-2 32x32x128

ResConv-down-2 16x16x256

ResConv-down-2 8x8x512

ResConv-down-2 4x4x512

Conv-id-1 4x4x512

Dense-1 25

Table 9. Recognizer Q on CelebA.

Layer Out Shape

Const 4x4x512

ResConv-up-1 8x8x512

SC-4-3 8x8x512

ResConv-id-1 8x8x512

Noise-2 8x8x512

ResConv-up-1 16x16x512

SC-6-3 16x16x512

ResConv-id-1 16x16x256

Noise-2 16x16x256

ResConv-up-1 32x32x256

SC-6-3 32x32x256

ResConv-id-1 32x32x256

Noise-2 32x32x128

ResConv-up-1 64x64x128

SC-6-3 64x64x128

ResConv-id-1 64x64x128

Noise-2 64x64x128

ResConv-up-1 128x128x128

SC-4-3 128x128x128

ResConv-id-1 128x128x64

Noise-2 128x128x64

ResConv-id-2 128x128x64

ResConv-id-1 128x128x3

Table 10. Generator on Shoes+Edges.



Layer Out Shape

ResConv-down-2 128x128x64

ResConv-down-2 64x64x64

ResConv-down-2 32x32x64

ResConv-down-2 16x16x128

ResConv-down-2 8x8x256

ResConv-down-2 4x4x512

Conv-id-1 4x4x512

Dense-1 1

Table 11. Discriminator on Shoes+Edges.

Layer Out Shape

ResConv-down-2 128x128x64

ResConv-down-2 64x64x64

ResConv-down-2 32x32x64

ResConv-down-2 16x16x128

ResConv-down-2 8x8x256

ResConv-down-2 4x4x512

Conv-id-1 4x4x512

Dense-1 15

Table 12. Recognizer Q on Shoes+Edges.

Layer Out Shape

Const 4x4x512

ResConv-up-1 8x8x512

SC-1-2 8x8x512

Noise-1 8x8x512

ResConv-up-1 16x16x512

SC-1-2 16x16x512

Noise-1 16x16x256

ResConv-up-1 32x32x256

SC-1-2 32x32x256

Noise-1 32x32x256

ResConv-up-1 64x64x128

SC-1-2 64x64x128

Noise-1 64x64x128

ResConv-up-1 128x128x128

SC-1-2 128x128x128

Noise-1 128x128x64

ResConv-up-1 256x256x64

Noise-1 256x256x64

ResConv-id-1 256x256x3

Table 13. Generator on Clevr-Simple and -Complex.

Layer Out Shape

ResConv-down-2 256x256x64

ResConv-down-2 128x128x64

ResConv-down-2 64x64x64

ResConv-down-2 32x32x64

ResConv-down-2 16x16x128

ResConv-down-2 8x8x256

ResConv-down-2 4x4x512

Conv-id-1 4x4x512

Dense-1 1

Table 14. Discriminator on Clevr-Simple and -Complex.



Layer Out Shape

ResConv-down-2 256x256x64

ResConv-down-2 128x128x64

ResConv-down-2 64x64x64

ResConv-down-2 32x32x64

ResConv-down-2 16x16x128

ResConv-down-2 8x8x256

ResConv-down-2 4x4x512

Conv-id-1 4x4x512

Dense-1 10

Table 15. Recognizer Q on Clevr-Simple and -Complex.

Layer Out Shape

Const 4x4x512

ResConv-up-1 8x8x512

SC-4-5 8x8x512

ResConv-id-1 8x8x512

Noise-2 8x8x512

ResConv-up-1 16x16x512

SC-4-5 16x16x512

ResConv-id-1 16x16x512

Noise-2 16x16x512

ResConv-up-1 32x32x512

SC-4-5 32x32x512

ResConv-id-1 32x32x512

Noise-2 32x32x256

ResConv-up-1 64x64x256

SC-4-5 64x64x256

ResConv-id-1 64x64x256

Noise-2 64x64x256

ResConv-up-1 128x128x256

SC-4-5 128x128x256

ResConv-id-1 128x128x128

Noise-2 128x128x128

ResConv-up-1 256x256x128

SC-4-5 256x256x128

ResConv-id-1 256x256x128

Noise-2 256x256x64

ResConv-id-1 256x256x64

ResConv-up-1 512x512x64

ResConv-id-2 512x512x64

ResConv-id-1 512x512x3

Table 16. Generator on FFHQ.



Layer Out Shape

ResConv-down-2 256x256x64

ResConv-down-2 128x128x64

ResConv-down-2 64x64x64

ResConv-down-2 32x32x128

ResConv-down-2 16x16x256

ResConv-down-2 8x8x512

ResConv-down-2 4x4x512

Conv-id-1 4x4x512

Dense-1 1

Table 17. Discriminator on FFHQ.

Layer Out Shape

ResConv-down-2 256x256x64

ResConv-down-2 128x128x64

ResConv-down-2 64x64x64

ResConv-down-2 32x32x128

ResConv-down-2 16x16x256

ResConv-down-2 8x8x512

ResConv-down-2 4x4x512

Conv-id-1 4x4x512

Dense-1 30

Table 18. Recognizer Q on FFHQ.

Layer Out Shape

Const 4x4x512

AdaIN-1 4x4x128

Conv-id-1 4x4x128

AdaIN-1 4x4x128

Conv-id-1 4x4x64

AdaIN-1 4x4x64

Conv-up-1 8x8x64

AdaIN-1 8x8x64

Conv-id-1 8x8x32

AdaIN-1 8x8x32

Conv-id-1 8x8x32

AdaIN-1 8x8x32

Conv-up-1 16x16x16

AdaIN-1 16x16x16

Conv-id-1 16x16x16

AdaIN-1 16x16x16

Conv-id-1 16x16x16

AdaIN-1 16x16x16

Conv-up-1 32x32x16

Conv-id-1 32x32x16

Conv-up-1 64x64x16

Conv-id-1 64x64x1

Table 19. Generator on DSprites.

Layer Out Shape

ResConv-down-2 64x64x16

ResConv-down-2 32x32x16

ResConv-down-2 16x16x32

ResConv-down-2 8x8x64

ResConv-down-2 4x4x128

Conv-id-1 4x4x128

Dense-1 1

Table 20. Discriminator on DSprites.



Layer Out Shape

ResConv-down-2 64x64x16

ResConv-down-2 32x32x16

ResConv-down-2 16x16x16

ResConv-down-2 8x8x16

ResConv-down-2 4x4x32

Conv-id-1 4x4x32

Dense-1 9

Table 21. Recognizer Q on DSprites.



Layer Out Shape

Const 4x4x512

Conv-up-1 8x8x256

SC-3-2 8x8x256

ResConv-id-1 8x8x256

SC-4-3 8x8x256

ResConv-id-1 8x8x128

Conv-up-1 16x16x128

SC-4-3 16x16x128

ResConv-id-1 16x16x64

SC-4-3 16x16x64

ResConv-id-1 16x16x64

Conv-up-1 32x32x64

ResConv-id-1 32x32x32

Conv-up-1 64x64x32

ResConv-id-1 64x64x32

Conv-id-1 64x64x3

Table 22. Generator on 3DShapes.

Layer Out Shape

ResConv-down-2 64x64x32

ResConv-down-2 32x32x32

ResConv-down-2 16x16x32

ResConv-down-2 8x8x64

ResConv-down-2 4x4x128

Conv-id-1 4x4x128

Dense-1 1

Table 23. Discriminator on 3DShapes.

Layer Out Shape

ResConv-down-2 64x64x32

ResConv-down-2 32x32x32

ResConv-down-2 16x16x32

ResConv-down-2 8x8x64

ResConv-down-2 4x4x128

Conv-id-1 4x4x128

Dense-1 12

Table 24. Recognizer Q on 3DShapes.


