
Supplementary Material: Part-aware Panoptic Segmentation

Daan de Geus1* Panagiotis Meletis1* Chenyang Lu1 Xiaoxiao Wen2 Gijs Dubbelman1

1Eindhoven University of Technology 2University of Amsterdam
{d.c.d.geus, p.c.meletis} @tue.nl

We provide the following information in addition to the
paper:

1. Elaborate implementation details for the methods on
the subtasks used for generating the baselines on part-
aware panoptic segmentation, in Section 1.

2. Detailed per-class results of the state-of-the-art base-
lines, in Section 2.

3. Details about the annotation procedure for Cityscapes
Panoptic Parts, in Section 3.

4. Additional qualitative examples of annotations of the
presented datasets, and predictions of the baselines, in
Section 4.

Code and data: https://github.com/tue-mps/
panoptic_parts.

1. Implementation details baselines
For reproducibility, we provide more information about

the implementation details of the methods used to generate
baselines for part-level panoptic segmentation (PPS).

To guarantee the state-of-the-art performance of the used
methods, we use existing trained models when possible.
If there is no trained model available, we train a network
ourselves.

1.1. Citycapes Panoptic Parts

The baseline results for Cityscapes Panoptic Parts (CPP),
as presented in Section 5.1.2 and Table 2 of the main paper,
are generated by merging results from existing methods.
Below, we describe, for each method in Table 2, how we
acquire the results of these methods.

For CPP, all models are trained only on the images in the
Cityscapes train split [7], unless otherwise indicated.

1.1.1 Panoptic segmentation

For panoptic segmentation results on Cityscapes Pascal Parts,
we use both single-network panoptic segmentation methods,
and results generated by merging semantic and instance
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segmentation methods following the heuristics presented
in [11].

EfficientPS. For state-of-the-art panoptic segmentation
method EfficientPS [14], the predictions for the Cityscapes
val were generously provided to us by the authors of the
work. During inference, multi-scale testing is applied.

UPSNet. The results for UPSNet [19] were generated us-
ing the official code repository. Specifically, we run in-
ference using the trained model with a ResNet-50 back-
bone [10].

HRNet-OCR & PolyTransform. To get further state-of-
the-art panoptic segmentation results, we fuse the state-of-
the-art semantic segmentation and instance segmentation
results from HRNet-OCR [20] and PolyTransform [12], re-
spectively.

The HRNet-OCR [20] results are generated using a
trained model from the official code repository. Specifically,
we pick the model with a HRNetv2-W48 [18] backbone,
without using test-time augmentations.

For PolyTransform [12], the results on the Cityscapes
val split were generously provided to us by the authors of
the paper. We note that this instance segmentation model is
pre-trained on the COCO dataset [13].

DeepLabv3+ & Mask R-CNN. The results for both
DeepLabv3+ [4] and Mask R-CNN [10] are generated using
existing trained models from official code repositories.

For DeepLabv3+ [4], we select a model with an Xception-
65 backbone [6], and we do not use test-time augmentations.

For Mask R-CNN [9], we generate the results using a
trained model with a ResNet-50 backbone [10], pre-trained
on the COCO dataset [13].

1.1.2 Part segmentation

To generate the part-level segmentation predictions, which
are required to generate the PPS predictions, we use two net-
works to perform the part segmentation task: state-of-the-art
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BSANet [23] and commonly used DeepLabv3+ [4]. Since
the part-level annotations of Cityscapes dataset [7] are newly
proposed by us, there are no trained models available, so we
train two networks with settings similar to those proposed
in [23, 4].

BSANet. We use the official repository provided by the
authors of BSANet [23] and keep most of the training set-
tings same as in the official version. We change the crop size
for training to 512×1024 and the number of output classes
according to our part label definition. During the training,
an SGD optimizer is applied with polynomial learning rate
decay. We set base learning rate to 0.01, decay power to
0.9, and weight decay to 4e-5. We train the network for 100
epochs with batch size of 3.

DeepLabv3+. We use the popular mmsegmentation [16]
respository to train a DeepLabv3+ [4] model. We use one
of default configurations provided by the repository, with
a ResNet-50 backbone [10]. The crop size during training
is set to 769×769. Again, we use an SGD optimizer with
polynomial learning rate decay. The base learning rate, de-
cay power, and weight decay are set to 0.01, 0.9, and 5e-4,
respectively. We train the network for 40k iterations with
batch size of 4.

1.2. Pascal Panoptic Parts

For the baselines results for Pascal Panoptic Parts (PPP),
as presented in Section 5.1.3 and Table 3 of the main paper,
we also provide further implementation details.

Again, to guarantee state-of-the-art performance perfor-
mance on the subtasks, and to facilitate reproducibility, we
use publicly available trained models when possible. Meth-
ods for semantic segmentation are trained on 59 classes
of Pascal-Context [15]; part segmentation is trained on 58
part-level classes from Pascal-Parts [5], as defined in [23].
We train the instance segmentation models on the 20 things
classes from our PPP dataset. We evaluate all methods on
our annotations for the PPP validation set, using the
same class definition as for training.

As explained in the main manuscript, there are discrepan-
cies between the various different annotation sets for Pascal
VOC 2010 [8]. In our Pascal Panoptic Part dataset, we re-
solve such conflicts, and generate consistent annotations for
multiple levels of abstraction. As a result, the absolute scores
on the other annotation sets for Pascal VOC 2010 are not
directly comparable with results on our PPP.

1.2.1 Panoptic segmentation

Panoptic segmentation results for PPP are generated by fus-
ing semantic segmentation and instance segmentation results
using the heuristics described in [11].

DeepLabv3-ResNeSt269 & DetectoRS. State-of-the-art
results for semantic segmentation are generated using a
DeepLabv3 model [3] with a ResNeSt-269 backbone [22].
For this, we use a trained model from the PyTorch-Encoding
repository [21], which is the official semantic segmentation
repository for the paper introducing ResNeSt [22].

For instance segmentation, there is no trained model
available, so we train a model using the commonly used
mmdetection repository [2]. Specifically, to generate state-
of-the-art results, we train a DetectoRS [17] model with a
HTC-ResNet-50 backbone [1, 10]. We do not use auxiliary
semantic labels for training. For training, we use a batch size
of 4, a learning rate of 0.0025 and weight decay of 1e-4. We
train for 24 epochs and decrease the learning rate by a factor
of 10 after 18 epochs.

DeepLabv3 & Mask R-CNN. To set another reference
for semantic segmentation, we also train a DeepLabv3 [3]
model with a ResNet-50 backbone [10]. Again, we use the
PyTorch-Encoding repository [21]. This model is trained
for 80 epochs, with a batch size of 16, a weight decay of
1e-4, and a polynomial learning rate schedule with an initial
learning rate of 0.001 and a decay of 0.9.

For instance segmentation results on Mask R-CNN [9],
we train another model using the mmdetection repository [2].
Specifically, we train Mask R-CNN with a ResNet-50 back-
bone [10]. Again, we use a batch size of 4, a learning rate of
0.0025 and weight decay of 1e-4. We train for 24 epochs and
reduce the learning rate by a factor of 10 after 18 epochs.

1.2.2 Part segmentation

To generate part segmentation results for PPP, we use the
same two networks as for CPP (See Section 1.1).

BSANet. The validation set prediction samples of
[23] are made publicly available by the authors. Therefore,
we directly use their predictions in our experiments.

DeepLabv3+. To generate DeepLabv3+ [4] predictions
for PPP, we also train a network using the mmsegmentation
repository [16]. As in Section 1.1, we use one of the default
configurations provided by mmsegmentation, with a ResNet-
50 backbone [10]. Again, we use an SGD optimizer with
polynomial learning rate decay. The base learning rate, decay
power, and weight decay are set to 0.004, 0.9, and 1e-4,
respectively. We train the network for 40k iterations with
batch size of 8.

2. Detailed results
In this section, we provide detailed per-class results for

the highest scoring baselines on the PPS task, for both the



Class PQ SQ RQ PartPQ PartSQ PartRQ
road 98.3 98.4 99.9 98.3 98.4 99.9
sidewalk 80.4 86.6 92.7 80.4 86.6 92.7
building 90.3 91.0 99.3 90.3 91.0 99.3
wall 37.7 76.8 49.2 37.7 76.8 49.2
fence 44.0 76.0 57.9 44.0 76.0 57.9
pole 63.4 71.0 89.3 63.4 71.0 89.3
traffic light 58.5 73.3 79.8 58.5 73.3 79.8
traffic sign 74.5 80.9 92.1 74.5 80.9 92.1
vegetation 90.9 91.6 99.2 90.9 91.6 99.2
terrain 41.1 77.0 53.4 41.1 77.0 53.4
sky 88.8 92.6 95.9 88.8 92.6 95.9
person*† 60.8 79.3 76.6 44.1 57.8 76.2
rider*† 58.0 75.6 76.8 45.3 59.6 76.0
car*† 71.8 85.5 84.0 53.3 63.5 84.0
truck*† 57.1 89.0 64.2 36.4 56.7 64.2
bus*† 73.5 91.1 80.7 49.7 61.6 80.7
train* 67.9 85.9 79.1 67.9 85.9 79.1
motorcycle* 50.2 77.0 65.2 50.2 77.0 65.2
bicycle* 51.6 74.4 69.3 51.6 74.4 69.3
Things 61.3 82.2 74.5 49.8 67.1 74.3
Stuff 69.8 83.2 82.6 69.8 83.2 82.6
Parts 64.2 84.1 76.4 45.8 59.9 76.2
No Parts 67.0 82.3 80.2 67.0 82.3 80.2
All 66.2 82.8 79.2 61.4 76.4 79.1

Table 1. Detailed results for the highest scoring baseline on the
Cityscapes Panoptic Parts dataset (HRNet-OCR & PolyTransform
& BSANet [20, 12, 23]). We report both scores for PQ and PartPQ,
for the panoptic segmentation and part-level panoptic segmentation
task, respectively. * Indicates things classes; † indicates classes
with parts.

Cityscapes Panoptic Part and Pascal Panoptic Part datasets.
Similarly to the original Panoptic Quality [11], the Part-
aware Panoptic Quality (PartPQ) can be split into two parts,
the Segmentation Quality (PartSQ) and the Recognition
Quality (PartRQ). Spefically

PartPQ = PartSQ× PartRQ, (1)

where

PartSQ =

∑
(p,g)∈TP IOUp(p, g)

|TP|
; (2)

PartRQ =
|TP|

|TP|+ 1
2 |FP|+ 1

2 |FN|
. (3)

In Table 1, we show the per-class results of the high-
est scoring baseline on Cityscapes Panoptic Parts, for both
panoptic segmentation and part-level panoptic segmentation.
The Pascal Panoptic Parts results are provided in Table 2.
A few things can be noted. 1) First of all, the performance
for scene-level classes without parts is identical for PQ and
PartPQ. This is as expected, as the task definition is the same
for those classes, i.e., if no part classes are defined, we just
predict the scene-level segment. 2) Secondly, for the classes
with parts, the scores for PartPQ are consistently lower than
for PQ. This is also explainable, as these segments have to

Class PQ SQ RQ PartPQ PartSQ PartRQ
aeroplane*† 69.4 82.5 84.1 45.4 53.5 85.0
bag 24.4 73.6 33.1 24.4 73.6 33.1
bed 4.1 62.1 6.5 4.1 62.1 6.5
bedclothes 21.6 81.6 26.5 21.6 81.6 26.5
bench 7.5 61.6 12.2 7.5 61.6 12.2
bicycle*† 59.1 75.9 77.9 54.8 70.4 77.9
bird*† 68.2 84.4 80.8 44.6 54.6 81.7
boat* 50.8 77.7 65.3 50.8 77.7 65.3
book 26.9 70.7 38.1 26.9 70.7 38.1
bottle*† 56.2 85.6 65.7 42.7 64.8 65.8
building 47.9 78.6 60.9 47.9 78.6 60.9
bus*† 79.5 92.5 85.9 64.2 73.9 86.9
cabinet 26.7 76.5 34.9 26.7 76.5 34.9
car*† 69.0 86.7 79.5 45.5 56.9 80.1
cat*† 79.9 89.4 89.4 60.6 67.8 89.4
ceiling 48.3 80.1 60.4 48.3 80.1 60.4
chair* 38.3 77.5 49.4 38.3 77.5 49.4
cloth 9.3 71.9 12.9 9.3 71.9 12.9
computer 25.1 69.9 35.8 25.1 69.9 35.8
cow*† 59.0 84.4 69.9 45.6 65.2 70.0
cup 21.6 73.2 29.5 21.6 73.2 29.5
curtain 38.9 78.2 49.8 38.9 78.2 49.8
dog*† 75.1 87.2 86.1 56.3 65.3 86.3
door 15.4 72.4 21.2 15.4 72.4 21.2
fence 25.1 70.1 35.8 25.1 70.1 35.8
floor 51.7 82.9 62.4 51.7 82.9 62.4
flower 11.4 69.0 16.5 11.4 69.0 16.5
food 20.8 73.0 28.4 20.8 73.0 28.4
grass 61.2 84.0 72.8 61.2 84.0 72.8
ground 40.5 80.0 50.7 40.5 80.0 50.7
horse*† 62.9 80.1 78.5 51.3 65.0 78.9
keyboard 34.1 68.8 49.5 34.1 68.8 49.5
light 26.4 70.7 37.4 26.4 70.7 37.4
motorbike*† 67.5 81.2 83.2 63.7 76.6 83.2
mountain 39.3 76.8 51.2 39.3 76.8 51.2
mouse 16.3 74.5 21.9 16.3 74.5 21.9
person*† 65.5 80.8 81.0 46.6 57.5 81.1
plate 7.5 73.0 10.3 7.5 73.0 10.3
platform 35.1 82.7 42.4 35.1 82.7 42.4
pottedplant*† 45.5 77.8 58.5 38.9 66.5 58.5
road 44.9 85.9 52.3 44.9 85.9 52.3
rock 29.0 76.2 38.1 29.0 76.2 38.1
sheep*† 68.1 85.2 79.9 56.8 69.7 81.4
shelves 11.1 66.8 16.6 11.1 66.8 16.6
sidewalk 15.9 70.4 22.5 15.9 70.4 22.5
sign 24.9 79.6 31.3 24.9 79.6 31.3
sky 82.9 92.6 89.5 82.9 92.6 89.5
snow 53.8 81.1 66.3 53.8 81.1 66.3
sofa* 47.0 82.3 57.1 47.0 82.3 57.1
table* 35.3 73.0 48.4 35.3 73.0 48.4
track 50.2 71.4 70.3 50.2 71.4 70.3
train* 76.3 88.4 86.3 76.3 88.4 86.3
tree 63.1 82.2 76.8 63.1 82.2 76.8
truck 9.9 77.2 12.8 9.9 77.2 12.8
tvmonitor*† 65.3 86.2 75.8 57.6 76.0 75.8
wall 55.4 80.6 68.7 55.4 80.6 68.7
water 72.2 89.9 80.3 72.2 89.9 80.3
window 28.1 73.8 38.1 28.1 73.8 38.1
wood 9.8 74.5 13.2 9.8 74.5 13.2
Things 61.9 82.9 74.1 51.1 69.1 74.4
Stuff 31.7 75.8 40.5 31.7 75.8 40.5
Parts 66.0 84.0 78.4 51.6 65.6 78.8
No Parts 33.8 76.3 42.8 33.8 76.3 42.8
All 42.0 78.3 51.9 38.3 73.6 52.0

Table 2. Detailed results for the highest scoring baseline on the
Pascal Panoptic Parts dataset (DeepLabv3-ResNeSt269 & Detec-
toRS & BSANet [3, 22, 17, 23]). We report both scores for PQ and
PartPQ, for the panoptic segmentation and part-level panoptic seg-
mentation task, respectively. * Indicates things classes; † indicates
classes with parts.



Part class Definition

Window Windows, wind shields and other glass surfaces on vehicles.
Wheel All wheels and tires under vehicles (excluding spare tires on the back of vehicles).
Light Light source present on vehicles, including taxi sign.
License plate License plate on front/back of vehicles.
Chassis Part of vehicle body not belonging to above classes.
Unlabeled Ambiguous or not clearly visible regions.

Table 3. Vehicle part classes for Cityscapes Panoptic Parts.

Part class Definition

Torso Core of human body, excluding limbs and head.
Head Human head.
Arm Arms, from shoulders to hands.
Leg Legs, from hips to feet.
Unlabeled Ambiguous or not clearly visible regions.

Table 4. Human part classes Cityscapes Panoptic Parts.

be segmented further into parts, and are evaluated on multi-
class IOU instead of instance-level IOU. 3) Thirdly, note
that, although we expect a change in PartSQ for scene-level
classes with parts, we do not expect the PartRQ to change,
as the TP, FP and FN are evaluated on scene-level segments,
as in the original PQ. However, in both datasets, there are
ground-truth segments that are labeled on instance-level, but
not on part-level, due to ambiguity or because the instances
are so small that parts could not be distinguished. In these
rare cases, these segments are ignored during evaluation,
causing the PartRQ to differ slightly from the RQ (e.g. for
person, in Table 1).

3. Cityscapes Panoptic Parts annotations

3.1. Part definitions

The Cityscapes dataset [7] focuses on urban scene under-
standing and automated driving. Adhering to that direction,
we choose to annotate three important vehicle classes, i.e.
car, truck, bus, and all human classes, i.e. person, rider.
Vehicle and human categories describe semantic classes with
similar parts, thus we define the same semantic parts for
each of the classes in these categories. The part classes are
defined in Tables 3 and 4.

3.2. Manual labeling protocol

The annotators of Cityscapes Panoptic Parts were asked
to start annotation from background to foreground objects,
and to annotate each object with part labels in the order
they appear in Tables 3 and 4. The regions to be annotated
were extracted using the instance masks from the original
Cityscapes dataset. This way, we maintain consistency with
the original dataset. Very small instances, ambiguous re-
gions, or indistinguishable parts are not annotated with part
labels, so they stay annotated on scene-level only. Moreover,

it is not necessary for object instances to contain all part
classes. These aspects are taken into consideration by the
PartPQ metric.

More details on the annotation procedure and the protocol
can be found on https://github.com/tue-mps/
panoptic_parts.

4. Qualitative examples
We provide more qualitative examples of the highest scor-

ing baselines on CPP and PPP in Figure 1 and 2, respectively.
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