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Abstract

Anomaly detection in telemetry channels is a high pri-

ority for spacecraft, especially when considering the harsh

environment of space and the magnitude of launch and op-

eration costs. Traditional spacecraft anomaly detection

methods are limited in scope and rely on domain experts

to correctly determine abnormal behavior. However, with

thousands of distinct telemetry channels being transmitted,

the amount of data is difficult to monitor manually. Deep

learning models can be used to learn the normal behav-

ior of the telemetry channels and flag or label any devi-

ations. The problem is that we have to train a unique

model for each channel to ensure best performance. With

the large number of channels to monitor, this may not al-

ways be possible. We propose using principles of transfer

learning to quickly adapt a general pre-trained model to

any specific telemetry channel, greatly reducing the number

of unique models needed and reducing the training time for

each model. We present the results of our approach on the

NASA SMAP/MSL dataset to show that we can achieve per-

formance comparable to state-of-the-art anomaly detection

methods.

1. Introduction

The world has numerous satellite constellations in or-

bit collecting huge amounts of data, such as high-resolution

multispectral imagery, as well as internal systems monitor-

ing. These satellites are very expensive, highly complicated

systems that operate in the most extreme environment. It

is vital to monitor these satellite systems, as well as sys-

tems in other spacecraft, for abnormalities that function as

precursors to system failure to avoid catastrophic damages

and costs. A few examples of anomalous behavior can be

seen in Figure 1. Due to the nature of these systems, there

are usually thousands of telemetry channels that should be

monitored to fully capture and describe any anomalous be-

Figure 1: An example of normalized time-series anomalies

identified by experts (highlighted in various colors) in two

spacecraft telemetry channels.

havior or system failure. Current system monitoring is per-

formed in a limited scope by domain experts who observe

each channel and manually flag sequences they believe to be

anomalous [14]. The limiting factor in this scenario is the

number of available experts and the time-consuming nature

of manual observation.

With the increased interest in machine learning, in par-

ticular deep learning, work has been done to show the ef-

fectiveness of an automated approach to anomaly detec-

tion [3, 19, 22]. The effectiveness of deep learning is usu-

ally dependent on the amount of data available for train-

ing. Though the limited domain expert knowledge remains



a factor by making labeled anomalous data scarce, we can

utilize deep learning in a semi-supervised manner. An ef-

ficient semi-supervised anomaly detection approach is to

learn the normal and expected behavior of a telemetry chan-

nel, so any deviations from this behavior can be flagged in

post-processing [2]. This is done effectively by utilizing a

recurrent neural network (RNN) as a predictor and a mathe-

matical model of expected prediction errors [14, 20]. How-

ever, the large number of channels to monitor hamstrings

this strategy for any realistic application; a unique RNN

will need to be trained from scratch for every channel for

this approach to work optimally.

Thus, we investigate transfer learning, which deals with

adapting deep learning models for problems different from

their initial task. The nature of the telemetry data recorded

by the spacecraft means that there are undoubtedly similar-

ities and correlations between various signal channels, both

inter- and intra-subsystem. One way to avoid training thou-

sands of unique deep learning models from scratch would

be to use a single anomaly detector for multiple channels,

or an entire subsystem, with some finetuning for the pre-

dictor to tailor its performance for each channel. For this

to have the most impact, our goal is to have a general pre-

trained predictor model that can adapt to a specific telemetry

channel in minimal time.

In this paper, we describe a procedure for training a gen-

eral predictor model as well as an approach to finetune the

model for any specific telemetry channel. After the fine-

tuning is complete, we extract the anomalies by modeling

the prediction error using Kernel Density Estimation (KDE)

and dynamically thresholding the log-likelihood of the er-

ror sequence. We show that it is possible to use knowledge

of characteristics and patterns in one spacecraft system to

quickly learn information about another spacecraft system

and detect anomalous behavior.

2. Background

2.1. TimeSeries Prediction

A recurrent neural network (RNN) is a deep learning

model archetype first introduced by Rumelhart et al. in

1986 [25]. It contains connections between hidden layers,

allowing the model to retain information about past inputs,

enabling time-series modeling. The original model suffers

from the vanishing gradient problem, making it unable to

learn from long sequences [23]. Two modified RNN ar-

chitectures have since risen in popularity: (1) Long-Short

Term Memory (LSTM) models, proposed in [13]; and (2)

Gated Recurrent Units (GRUs), proposed in [6]. Both ap-

proaches utilize gates to filter what information is kept and

what is discarded, allowing learning on longer time-series

sequences. Many modern sequence-based processes utilize

one of these neural networks.

2.2. Transfer Learning

The standard approach in deep learning is to train for a

specific task; if the task or data changes beyond the con-

trolled parameters, the model must be rebuilt. Transfer

learning is the process of using knowledge gained from one

task to perform another, preferably related, task [32]. Neu-

ral networks have been observed to initially capture gen-

eral information about the training data before making task-

specific connections in deeper layers [30]. Therefore, mod-

els trained for similar tasks must extract similar informa-

tion from the data in the early layers. Instead of training the

model from scratch every time, we can start with weights in-

herited from an already trained model. This allows the train-

ing process to adjust task-specific weights in deeper layers

while already optimized weights need not be relearned. A

consequence of this approach is very specific tasks with lim-

ited training sets now have viable deep learning solutions, as

the large amount of data required to train a normal model is

no longer necessary. This can be seen for tasks such as plant

counting [1] and endoscopy disease detection [24]. Trans-

fer learning has found applications in temporal tasks such

as natural language processing (NLP) as well. For exam-

ple, Chen et al. [5] were able to train NLP models for low-

resource languages by using information from other related

languages.

3. Anomaly Detection

Depending on the amount of labeled data available, the

philosophy of time-series anomaly detection changes. In

the rare case where sufficient ground truth information ex-

ists, supervised anomaly detection approaches are essen-

tially classification problems. Recent work in supervised

anomaly detection has involved transfer learning to account

for the lack of labeled data. Wen and Keyes [29] show

that modified U-Nets can be used for supervised anomaly

detection after pre-training on synthetically generated nor-

mal and abnormal time-series data. The effectiveness of a

one-nearest-neighbor approach using dynamic time warp-

ing for classifying unseen data has been demonstrated by

Vecruyssen et al. [28].

For spacecraft telemetry channels, the scarcity of labeled

anomaly data makes a semi-supervised approach to time-

series anomaly detection more promising. The general idea

behind the semi-supervised approach is the time-series pre-

diction equivalent of a “one-class” approach [2, 31]. Since

anomalies can be varying in nature, an efficient detection

approach is to instead learn what the normal behavior of a

channel looks like. Then, while inferencing on the data, any

large prediction errors can be flagged as anomalous, as that

means the data has deviated from the expected value [11].

The simplest form of anomaly detection has been out-

of-limit (OOL) approaches. OOL approaches use simple



pre-defined thresholds and the values of the data samples to

identify anomalous behavior. Subsequently, more advanced

detection techniques based on nearest-neighbors and clus-

tering have been investigated [2]. They are an improve-

ment over OOL approaches, but have disadvantages relat-

ing to parameter specification, interpretability, or compu-

tational expense [14]. Recently, deep learning approaches

using RNNs, such as LSTMs or GRUs, have proven to be

very effective at detecting anomalies in time-series data.

Malhotra et al. [20] showed the utility of LSTMs for de-

tecting abnormal behavior in space shuttle data, as well as

other time-series signals like ECG data, which has been cor-

roborated by Chauhan and Vig [3]. They extended their

work by using an LSTM-based encoder-decoder structure

to work with multi-channel data [19]. Nanduri and Sherry

used both LSTMs and GRUs to detect anomalies in aircraft

data [22]. This application of RNNs has extended to space-

craft data as well. LSTMs were shown to be efficient in de-

tecting anomalies in satellite and rover data by Hundman et

al. [14], and the results were improved by an ensemble ap-

proach of LSTMs and an SVM proposed by Li et al. [18].

Deep learning approaches using generative adversarial net-

works (GANs) have been shown to be useful for time-series

anomaly detection as well. Li et al. [17] used GANs con-

sisting of LSTMs to distinguish anomalous data. Geiger

et al. [9] subsequently showed that similar GANs trained

with cycle-consistency loss could be used for unsupervised

anomaly detection.

4. Our Approach

As discussed above, deep learning time-series predictors

such as RNNs, and more specifically LSTMs, have shown

to be very useful for detecting anomalous behavior in time-

series data. Since our application scenario deals with thou-

sands of spacecraft telemetry channels to monitor, the opti-

mal structure of an LSTM model may vary for each chan-

nel. One approach to this issue is to utilize a more compli-

cated predictor model whose architecture does not neces-

sarily need to be optimized for each telemetry channel [18].

We instead investigate the possibility of training a general-

ized time-series predictor model with a fixed structure, and

then finetuning on a specific channel to learn specific infor-

mation about its normal behavior, removing the need for ar-

chitecture optimization by the user. Anomalies can then be

identified using the prediction error of the finetuned predic-

tor model during inference. Thus, our anomaly detection

approach has three stages: (1) Time-Series Prediction, (2)

Transfer Learning, and (3) Anomaly Extraction.

4.1. TimeSeries Prediction

Consider the multi-channel time-series X ∈ Xm×n that

is comprised of data from a spacecraft system or subsys-

tem, where m is the number of telemetry channels, each of

which has n time samples. If we want to predict the next

l steps of X (meaning predicting for all m channels) given

the previous p steps, one approach is to divide the problem

into m sub-problems and train a unique, optimized network

for each channel. The other approach is to treat the m chan-

nels as samples from an unknown general distribution X
that represents the behavior of the system as a whole. This

means that a single model trained on all of the data could

learn to predict the next l steps of any of the m channels

provided to it.

This problem can be formalized as follows, using

notation from the sequence-to-sequence modeling litera-

ture [21]. We denote the ith time-series of X as X(i)
and its value at time t as Xt(i). Additionally, the se-

quence (Xa(i), Xa+1(i), · · · , Xb(i)) is written in short-

hand as Xb
a(i). We want to learn a mapping function

f : X p → X l by training a predictor model, where p is

the number of previous samples provided to the model and

l is the number of future samples predicted by the model.

This means that the training set Z we use given time-series

X can be defined as:

Z = {(Xt−1
t−p(i), X

t+l−1
t (i)) : 1 ≤ i ≤ m, p ≤ t ≤ n}. (1)

Using this set of sequence pairs Z, we can train a predic-

tor model to learn and predict the time-series X. To ensure

that the more varied nature of the data is captured, we uti-

lize a more layered LSTM-based model than what has been

used in other approaches [14], as shown in Figure 2. We

use three layers of LSTMs, two with 128 units and one with

64 units, followed by three fully-connected (FC) layers that

have 32, 8, and l units. The number of units in the last FC

layer is controlled by the empirically determined best value

of l, which we have determined to be 4. We have also deter-

mined the best value of p to be 30. These values have been

determined to maximize anomaly detection performance.

Figure 2: The architecture of our predictor model.



4.2. Transfer Learning

Suppose we have trained a neural network to replicate

the mapping function f : X p → X l, given X. We could

then finetune the network on each channel X(i) in X to

learn m different mapping functions fi. However, if the

model has learned the general mapping function f , finetun-

ing it to learn a mapping fi is trivial. Let us consider another

multi-channel spacecraft telemetry time-series Y ∈ Yu×v .

We will instead investigate the efficacy of applying and

adapting the neural network to the data in Y.

In essence, we are evaluating if knowledge of character-

istics and patterns in one spacecraft system (source) can be

used effectively to quickly learn information about a dif-

ferent, independent spacecraft system (target). The impor-

tance of the source dataset has been explored for time-series

classification [8], with the conclusion being the source and

target domains needed to be similar. Now, we investigate

the feasibility of transferring between similar domains for

time-series prediction.

Ideally, the mapping function f learned from Z would be

the ideal mapping function F : Rp → R
l, meaning it could

be used to map Yp → Y l as well. However, this is usually

not the case, so we use transfer learning principles to adapt

the neural network to the data in Y. Given Y, we can, as

in Equation 1, define u different training sets, one for each

channel, to finetune the model trained on Z:

Wi = {(Y t−1
t−p (i), Y

t+l−1
t (i)) : 1 ≤ i ≤ u, p ≤ t ≤ v}. (2)

Let us look at the ith channel of Y, Y (i). As is the

nature of finetuning, we inherit the trained weights from the

original model trained on Z and update them by training on

Wi. We can control which parts of the network are updated

during this finetuning process by freezing the parameters of

certain layers at their starting values. This is usually done

on the lower, or earlier, layers of the network [30]. Thus, we

will also investigate the impact of freezing the LSTM layers

of our network on its final anomaly detection performance.

The benefit of finetuning is that, if used appropriately, the

neural network minimizes its loss function much quicker,

meaning less resources are expended to generate a usable

model, with the trade-off of a potential lower performance.

When dealing with thousands of telemetry channels to mon-

itor, the impact of lowering training time by a significant

factor cannot be overstated.

4.3. Anomaly Extraction

The final stage of our anomaly detection system is

anomaly extraction. At this point, the predictor mod-

els have been trained and finetuned on data that is as-

sumed to be normal and not anomalous. Given an in-

put sequence Y t−1
t−p (i) and our finetuned predictor model,

we can output a predicted sequence for the next l values

(Ot, Ot+1, · · · , Ot+l−1), written in shorthand as Ot+l−1
t .

The prediction error sequence in this scenario can be written

as Et+l−1
t (i) or (Et(i), Et+1(i), · · · , Et+l−1(i)), where

Ej(i) = |Oj − Yj(i)| and t ≤ j ≤ t + l − 1. Be-

cause our predictor model is based on the previous p val-

ues, abrupt changes in the input can lead to brief prediction

errors independent of anomalous behavior. To account for

this, we smooth the prediction error sequence Et+l−1
t (i) us-

ing a Gaussian filter, generating a smoothed prediction error

sequence Gt+l−1
t (i).

As shown by Li et al. [18], instead of directly threshold-

ing this smoothed error sequence Gt+l−1
t (i) to find anoma-

lies, we first estimate the prediction error distribution and

calculate the log-likelihood of each value in the prediction

error sequence. Then we threshold the log-likelihood se-

quence to determine the anomalies.

Ideally, the prediction errors would fit a Gaussian-like

probability distribution function. This is rarely true, so we

use Kernel Density Estimation (KDE) to estimate the pre-

diction error probability distribution function [26]. Let the

unknown prediction error distribution for Y (i) have a prob-

ability density function ei and the collection of all smoothed

prediction error values for Y (i) be G(i). We can then find

an estimate probability density function êi:

êhi (z) =
1

Nh

N∑

j=1

K(
z −Gj(i)

h
), (3)

where:

K is the kernel function; it needs to integrate to 1,

h is the bandwidth that affects degree of smoothing,

N is the total number of smoothed error values in G(i).

The bandwidth h has a significant impact on the KDE

process [4], and we have empirically determined 0.15 to

be the best value to maximize anomaly detection. As the

selection of the kernel function K is not as impactful, we

use the Gaussian kernel for our experiments.

After the error probability distribution function is deter-

mined, we can estimate the log-likelihood Gj(i) in G(i),
resulting in a log-likelihood sequence we will represent as

L(i). Note that, assuming our predictor model is trained

correctly, anomalous behavior results in unexpected pre-

diction error values, which meaning that the probability of

those prediction errors occuring is low. These low proba-

bilites translate to large negative log-likelihood values. This

means we can threshold L(i) to extract the anomalies. Sim-

ple thresholding across the entire sequence is not represen-

tative of local and/or contextual anomalies. Thus, we use

the Dynamic Thresholding (DT) algorithm proposed by Li

et al. [18].



Figure 3: Our anomaly detection system, where KDE is Kernel Density Estimation and DT is Dynamic Thresholding. The

weights of the general predictor model trained on X(i) are transferred to the channel-specific models finetuned on Y (i).

The main focus here is the search for the best threshold to

use. To determine the best threshold Tb, we use the scoring

function s for a given threshold T :

s(T ) =
Pvd

1 + Panom + w ·N2
anom

, (4)

where:

Pvd is the percentage decrease of the variance of

G(i) when the anomalies identified by

threshold T are removed,

Panom is the percentage of points that are anomalies

identified by threshold T ,

Nanom is the number of anomaly sequences,

w is a weight that controls the number of

anomaly sequences.

All smoothed error points Gj(i) with log-likelihoods

Lj(i) below threshold T are considered anomalous, as a

lower log-likelihood means that the associated error did not

fit well into the error probability distribution. The anomaly

sequences, counted by Nanom, are found by using a dila-

tion operation to connect anomaly points that are close to

each other. This process can sometimes lead to extract-

ing anomaly sequences of different lengths from the ground

truth. We search for Tb by steps, starting from the maxi-

mum of L(i) and ending at the minimum. The optimization

goal is to find T that minimizes s(T ). The number of steps

is a parameter that can be adjusted; we have used 25 steps

in our experiments.

After evaluating discarded error sequences whose log-

likelihood values are close to Tb, the collection of extracted

anomalous sequences in time-series Y (i) is finalized. Our

entire anomaly detection system is shown in Figure 3.

5. Experiments

The architecture of the neural network model we use in

our experiments is shown in Figure 2. First, there are three

layers of LSTMs, two with 128 units and one with 64 units.

They are followed by three FC layers that have 32, 8, and

4 neurons. The LSTMs use the hyperbolic tangent function

as their activation function, and we use the sigmoid function

for the FC layers to enforce non-linearity. Dropout [12] is

used as a regularization technique to reduce overfitting by

randomly zeroing units with a probability we set as 0.3. The

Adam optimizer [15] was used to train the model, while

mean squared error (MSE) loss was used as the loss func-

tion. We train our model for 200 epochs with an initial

learning rate 0.001 that decays linearly to zero by the final

epoch. To reduce the overall training time, an early stop-

ping was applied when the validation loss did not decrease

for more than 10 epochs. When finetuning the model, the

initial learning rate was instead 0.0005. We have also deter-

mined empirically the values for length of input sequence

p = 30 and length of output sequence l = 4.



As discussed before, in Equation 3 the kernel function K

used is the Gaussian kernel, and we empirically determined

the best value of bandwidth h = 0.15. We also determined

the best value for w = 0.5 in the threshold scoring function

s(T ), shown in Equation 4.

5.1. The MRO Experiment

We use a Mars Reconaissance Orbiter (MRO) [10]

dataset, which consists of thousands of channels that en-

compass all spacecraft subsystems. Each channel is sam-

pled only when there is a signal change, which means time

between samples is irregular. Additionally, the data is com-

pletely unlabeled as locations of anomalous behavior are

unknown. Since the data ends for each channel at a sys-

tem reboot, we make the assumption that anomalous behav-

ior occurs in proximity to the reboot. Therefore, our MRO

training and validation data consists of the first half of ev-

ery channel, split with a ratio of 4 : 1. We normalize each

channel to have values between 0 and 1 so the models are

focused on learning the patterns of the data.

Recall that our approach involves training a general time-

series predictor on one multi-channel spacecraft time-series

X and finetuning for channels Y (i) from another spacecraft

time-series Y. Since the MRO dataset consists of many un-

labeled telemetry channels, it is ideal for training and eval-

uating our general time-series predictor. Let us take a sub-

set of the MRO dataset containing m = 50 channels as

X. These channels were expertly identified as containing

variability in amplitude, phase, and other signal character-

istics to help generate a representative time-series dataset

that a general predictor model could learn from. We train

a general predictor model with the architecture discussed

in Section 4.1 using the training set Z, defined in Equation

1. We will refer to this trained general time-series predic-

tor model as MRONet. We also train models with the same

architecture on each channel X(i) separately, using a train-

ing set similar to Wi in Equation 2, except with X(i) in-

stead of Y (i). To evaluate the performance of MRONet, we

can compare its average prediction RMSE for one time step

ahead across all m = 50 channels with the average of the

same for the m = 50 channel-specific models, as shown in

Table 1.

Model RMSE

MRONet 8.1%

Channel-Specific LSTMs 6.3%

Table 1: The average prediction error of MRONet vs.

Channel-Specific LSTMs on the MRO data.

While the overall performance of MRONet has room for

improvement, the prediction error is still relatively close to

the one achieved by the channel-specific models, meaning,

in this case, a small amount of channel-specific information

is lost when gaining the capacity for a general prediction

approach. This means MRONet must be capturing the gen-

eral behavior of all m = 50 channels, making it a good

candidate for our transfer learning experiment. The theoret-

ical work done by Mariet and Kuznetsov [21] suggests that

a potential area of improvement is to increase the number

of channels m used during training. We can also explore

other model structure archetypes, like an encoder-decoder,

but must prioritize the ease of applying transfer learning

principles to the model for the ultimate goal of anomaly de-

tection.

5.2. Anomaly Detection Experiment

Hundman et al. [14] provided a publicly available space-

craft telemetry dataset that contains expert-labeled anoma-

lous data. The dataset consists of telemetry data from the

NASA Soil Moisture Active Passive (SMAP) satellite as

well as the NASA Mars Science Laboratory (MSL) rover,

Curiosity. It contains 54 and 27 channels of data for SMAP

and MSL, respectively. This data has also already been split

into training and testing sets. We further split the training

data for each channel in a ratio of 4 : 1 to obtain our training

and validation data, respectively. We normalize this data

to have values between 0 and 1 as well. Let us take this

SMAP/MSL dataset with u = 81 channels as Y.

Instead of training u = 81 channel-specific models from

scratch, we can use the general time-series predictor model

MRONet as discussed in Section 4.2. We explore two op-

tions for the MRONet finetuning process: (1) finetune the

entire model (MRONet-FT) and (2) freeze the LSTM lay-

ers and finetune only the FC layers (MRONet-FC). Both ap-

proaches result in u = 81 channel-specific models that have

been finetuned on the training sets Wi, defined in Equation

2. These models are then inferenced on the provided test

data, and the anomaly extraction process detailed in Section

4.3 is used to detect anomaly sequences.

As we are evaluating both performance and efficiency,

we look at both the anomalies detected as well as the train-

ing time taken. Below, we define our anomaly detection

performance criteria, identical to the rules used by Hund-

man et al. [14]:

1. We record a true positive (TP) if any detected anomaly

sequence overlaps with a true anomaly sequence. If

multiple detected anomalies overlap with the same true

anomaly sequence, only one true positive is recorded.

2. We record a false positive (FP) if a detected anomaly

sequence has no overlap with a true anomaly sequence.

3. We record a false negative (FN) if a true anomaly se-

quence has no overlap with a detected anomaly se-

quence.



Method
SMAP MSL Total

Recall Precision Recall Precision Recall Precision

MRONet 0.833 0.487 0.806 0.521 0.825 0.497

MRONet-FC 0.712 0.770 0.742 0.561 0.722 0.686

MRONet-FT 0.773 0.797 0.774 0.706 0.774 0.765

Channel-Specific LSTMs 0.833 0.809 0.839 0.765 0.835 0.794

TadGAN [9] 0.835 0.523 0.694 0.490 0.786 0.513

Hundman et al. [14] 0.855 0.855 0.694 0.926 0.800 0.875

StackedPredictor [18] 0.913 0.900 0.861 0.816 0.895 0.870

Table 2: The recall and precision of anomaly detection for our models on the SMAP/MSL dataset provided by Hundman

et al. [14]. We also show the results of three other approaches from the literature: the results of an LSTM GAN-based

approach called “TadGAN” [9], the LSTM model from Hundman et al. [14], and a combination of LSTMs and an SVM

called “StackedPredictor” [18]

In the future, a more sophisticated approach can be em-

ployed, where the degree of overlap (or lack thereof) is fac-

tored into the rules, enabling evaluation of “close” misses or

“lucky” detections [16]. However, with this relatively sim-

pler criteria, we now define our primary metrics for evalu-

ating anomaly detection performance:

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
. (6)

A high precision means that the model is not prone to

flagging false positive sequences. This can be made a pri-

ority because new adopters of technology are often deterred

by misleading results that require attention [14]. Recall can

also be prioritized, as a high recall means the number of true

anomalies going undetected is low. Depending on the oper-

ating situation, a prioritization decision has to be made. We

show the precision and recall values obtained by our models

on the SMAP/MSL dataset in Table 2.

In terms of degree of finetuning on the SMAP/MSL

dataset for the versions of the MRONet model, we can

order them as MRONet (least/none) → MRONet-FC →
MRONet-FT (most). We can see this progression in similar

ways for SMAP and MSL. MRONet flags many sequences

in the data, meaning it identifies a lot of true anomalies,

but also detects a large number of false alarms. This is ex-

pected, as the model has not seen any of the data in the

SMAP/MSL dataset. As more of MRONet is finetuned on

the data, the overall performance improves. While the re-

call drops slightly as the model misses some anomalies, the

precision greatly improves with the degree of finetuning as

the model learns more about the specific channel data. This

means a small number of true anomalies are missed to dras-

tically drop the number of false anomalies, which is an ac-

ceptable outcome. We also note that freezing the LSTM lay-

ers seems to limit the MRONet model performance in terms

of anomaly detection. Since the LSTMs capture patterns in

the input data, this limitation is expected and is compliant

with transfer learning literature [30]. However, freezing cer-

tain LSTM layers while leaving others for finetuning could

be a viable strategy if time is an important constraint.

We can see two anomaly detection results from

MRONet-FT in Figures 4 and 5. Figure 4 shows the

anomaly detected by MRONet-FT on channel A-4 from the

SMAP data. The top row shows the ground truth, or where

the anomaly is actually located. The bottom row shows the

detected anomaly sequence, which we can see encompasses

the area the ground truth is actually located. In Figure 5, we

see the results on channel F-7 from the MSL data. The lay-

out of the figure is the same, with the different colors rep-

resenting different anomalies, and we can see that the true

anomalies are all detected. However, the model also flags a

normal sequence early in the data. The difference in length

of some of the detected and actual anomalies indicates a

discrepancy in the specific samples identified as part of the

anomalous sequence (as discussed in Section 4.3).

Overall, it seems that finetuning MRONet allows for

comparable anomaly detection performance to equivalent

channel-specific models trained from scratch, as well as

other approaches. The strength of the finetuning approach

comes from the time taken to complete its training satisfac-

torily. We report the average training time taken to achieve

the best model for each channel of the SMAP/MSL dataset

in Table 3. Recall that an early stopping criteria was used

for all models to reduce overall training time.

From Table 3, we can see that the MRONet anomaly

detection performances in Table 2 are achieved in a frac-

tion of the time taken to train equivalent channel-specific

models from scratch, let alone the time taken by the high-

performing StackedPredictor [18]. This shows us that it is

indeed possible to use knowledge about one spacecraft sys-



Figure 4: The result of MRONet-FT on channel A-4 from

the SMAP data. The top row shows the actual anomaly

location and the bottom row shows the detected anomaly

sequence.

Figure 5: The result of MRONet-FT on channel F-7 from

the MSL data. The top row shows the actual anomaly lo-

cations and the bottom row shows the detected anomaly se-

quences, including a false positive.

Model Time (seconds)

MRONet-FC 13.35

MRONet-FT 34.41

Channel-Specific LSTMs 71.45

StackedPredictor [18] 427.5

Table 3: The average training time to achieve the best model

for each of the u = 81 channels of the SMAP/MSL dataset.

tem to quickly learn information about another spacecraft

system. While performance should always be the priority,

this tradeoff between performance, adaptability, and train-

ing time allows for some possible applications. For exam-

ple, an ensemble of MRONet models can be trained quickly

to further improve anomaly detection performance, as en-

sembles tend to be more robust [7]. Another option is to

use an MRONet model to quickly adapt to unseen teleme-

try data onboard a spacecraft in real-time, or at least until a

more permanent solution is made available.

6. Conclusions

It is vital to observe spacecraft systems for anomalous

behavior to monitor for potential issues. With thousands

of channels to evaluate, optimizing unique models for each

channel can be tricky and time-consuming. In this paper,

we present an approach to train a general time-series pre-

dictor model and quickly adapt it to detect anomalies in any

specific telemetry channel, dramatically reducing the num-

ber of truly unique models. The anomaly detection perfor-

mance of our finetuned models is comparable to that of sim-

ilar models trained from scratch on the same data, as well

as previous approaches to anomaly detection. We also show

that it is feasible to take knowledge learned from one space-

craft system and use it to quickly learn information about

another system, as our finetuned models reach their peak

performance in a fraction of the time taken by normal ap-

proaches. Future work includes establishing a measure of

dataset similarity for anomaly detection and prediction, as

well as investigating attention and Transformers [27] as an

option to further highlight patterns in time-series data. We

will also explore the feasibility of using these models in an

online learning scenario.
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