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Abstract

As the exploration of human beings pushes deeper into

the galaxy, the classification of images from space and other

planets is becoming an increasingly critical task. Image

classification on these planetary images can be very chal-

lenging due to differences in hue, quality, illumination, and

clarity when compared to images captured on Earth. In

this work, we try to bridge this gap by developing a deep

learning network, MRSCAtt (Mars Rover Spatial and Chan-

nel Attention), which jointly uses spatial and channel atten-

tion to accurately classify images. We use images taken by

NASA’s Curiosity rover on Mars as a dataset to show the

superiority of our approach by achieving state-of-the-art

results with 81.53% test set accuracy on the MSL Surface

Dataset, outperforming other methods. To necessitate the

use of spatial and channel attention, we perform an abla-

tion study to show the effectiveness of each of the compo-

nents. We further show robustness of our approach by val-

idating with images taken aboard NASA’s recently-landed

Perseverance rover.

1. Introduction

Mars rover image classification aims to identify im-

portant objects in satellite imagery from Mars exploration

projects – such as instruments, objects, and surroundings.

As ongoing Mars exploration leads to the generation of high

volumes of data, it is necessary to categorize important ob-

jects from their images across various missions. This would

enable further scientific investigation and exploratory mis-

sions.

Image classification is a widely-studied domain of

high-level Computer Vision, and strong results have been

*denotes equal contribution.

achieved on a variety of tasks. The majority of these studies

have been carried out using Earthly images; limited focus

has been given to other planetary environments. To advance

scientific research on Mars images, Wagstaff et al. [25] in-

troduced the MSL Surface dataset. The dataset consists of

images captured during the NASA Curiosity mission that

contain various classes of objects.

However, the dataset consists of a small number of train-

ing images. Usually, for image classification approaches, a

large labelled training set is required to train a robust net-

work. To overcome this challenge, we use transfer learn-

ing. Similar to other tasks, we begin with ImageNet [5] pre-

trained weights, and fine-tune the network to our task. By

leveraging the existing representations learned by the base

network, we save training computation.

Images in the MSL surface dataset are shot with cam-

eras of different focal lengths, resolutions, and field-of-

view. Additionally, the images are captured from different

angles and magnifications, having challenging illumination

settings. Therefore, it is necessary to obtain a better way to

glean semantic information from these challenging image

backgrounds.

Wagstaff et al. [25] used a pre-trained AlexNet for image

classification on the dataset. However, not much additional

research has been performed towards perception and recog-

nition on the MSL Surface dataset. In this work, we aim

to show the effectiveness of spatial and channel attention in

classification on astronomical and other planetary images.

The use of spatial attention allows the network to pay atten-

tion on important spatial and channel-wise cues that char-

acterize the object categories. Channel attention focuses on

the representative features, which enables the learning of se-

mantic context through inter-channel relationships. Using

spatial and channel attention enables the network to focus

to important information associated with downstream clas-

sification and discard the noise associated with the image
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capturing process.

In summary, we have two main contributions. First,

we construct a two-stage deep learning network using spa-

tial and channel attention to leverage spatial and seman-

tic information for mars rover image classification. Sec-

ond, we experimentally show that our approach achieves

state-of-the-art results on the MSL Surface dataset, while

using significantly lower parameters. We justify the joint

optimization of classification accuracy and model memory

footprint for the easier integration of our method with fu-

ture research works. We believe that with increasing in-

terest in space exploration, classification of images in such

other planetary contexts will become important and that this

work will help investigate common objects across peaceful

exploratory missions in the future.

Our code is available at the following repos-

itory: https : / / github . com / anirudh -

chakravarthy/MRSCAtt.

2. Related Work

Image classification. Image classification has been a

well explored task in computer vision. LeNet [11] set

the foundation for image classification by using convolu-

tional neural networks (CNNs). AlexNet [10] reignited re-

search interest in computer vision tasks by demonstrating

the superiority of CNNs for image classification, achiev-

ing state-of-the-art results on ImageNet. VGGNet [21]

demonstrated the effectiveness of 3 × 3 convolutional fil-

ters, which allowed a deeper network with similar memory

usage. GoogLeNet [22] introduced the popular Bottleneck

layer in the Inception network, while reducing the compu-

tation cost. ResNet [6] introduced residual blocks to solve

vanishing gradients for easier optimization for deep CNNs.

Xception [4] used depth-wise separable convolutions to re-

duce the number of parameters in a convolution layer. He et

al. [7] examines the impact of training and optimization

procedures for image classification.

Computer vision for Mars. Numerous rovers and satel-

lites being deployed every year, several datasets have been

released for computer vision on Mars [25, 20]. Matthies et

al. [15] provides an outline to the computer vision era on

Mars, addressing the challenges, major milestones, and the

role of computer vision in Mars exploration. Recently,

there has been renewed scientific interest towards vision

on Mars. PlaNet [16] used an off-the-shelf RetinaNet [14]

object detector for recognizing Transverse Aeolian Ridges

(TARs) – the small unusual bedforms on the surface of

Mars. SPOC [19] visually identified terrain types and fea-

tures on Mars using a fully-convolutional neural network,

which was successfully deployed on Mars rover missions

such as MSL Navcam. Bickel et al. [3] used an ensemble of

deep learning methods for rockfall distribution and magni-

tude analysis on the Mars surface. Kerner et al. [9] iden-

tified surface changes on planetary bodies such as Mars,

Earth, and Moon using a convolutional autoencoder and

transfer learning with high precision.

Attention. Bahdanau et al. [2] introduced the attention

mechanism for text summarization. Since Xu et al. [27]’s

first work on attention in vision, attention modules have

demonstrated improved performance in popular image tasks

such as classification, detection, and segmentation. Trans-

former models [23], which have gained prominence lately,

also use the attention module. There exist 2 broad cate-

gories of visual attention modules – soft and hard atten-

tion. Hard attention considers a subset of highly relevant

image pixels and thus has significantly lower computation

and memory cost. However, it does not have a differen-

tiable cost function. Soft attention considers all input image

pixels and has higher resource demand, but can be trained

end-to-end.

Soft attention methods are generally used and can be

broadly divided into two categories. Channel attention de-

termines the importance of features along the channel di-

mension. Li et al. [13] used global attention on the full

image to select specific channel-wise features. [17] fused

high-level and low-level features at the channel dimension.

Spatial attention extends this idea to enhance feature ex-

traction at the spatial dimension. Jadenberg et al. [8] helped

understand spatial invariance. The integration of the con-

cepts used in these works helps extract features along both

channel and spatial dimensions.

We incorporate the soft attention mechanism in our

network– using spatial and channel attention.

3. Proposed Method

The input to our network, MRSCAtt, is a batch of RGB

or grayscale images from the MSL Surface Dataset. For

each of these images, our method aims to predict a class

category for the salient object in the image. In this paper,

we propose MRSCAtt (Mars Rover Spatial and Channel At-

tention), a two-stage network which also jointly uses spatial

and channel attention to accurately classify images. Fig 1

shows an illustrative approach to our proposed method.

Attention mechanism has received wide-spread research

focus. Recently, Vaswani et al. [23] demonstrated the ef-

fectiveness of the attention mechanism for computer vision

tasks. Attention is known to improve the descriptive ability

of features by focusing on important features and ignoring

the rest. For the challenging task of image classification on

Mars rover images, it is necessary to learn robust represen-

tative features. Therefore, we use attention mechanism as a

building block for our method.

Given an input image captured from the Mars rover, we

extract the image features using the backbone network. This
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Figure 1: The proposed MRSCAtt architecture.

serves as the first stage of our network, In order to account

for challenging variations during image capture (e.g: illu-

mination, focus, angle of capture), we attempt to enrich fea-

ture representations using the attention mechanism. To this

end, we follow the modules used in [26, 12]. Concretely,

the backbone features are first refined using the channel at-

tention block. The channel attention block considers each

channel as a feature detector [28], which allows learning the

important contextual characteristics from the backbone fea-

tures. Next, we also use the spatial attention block, which

allows the network to focus on the important regions within

the backbone features.

In the channel attention block, in addition to max-

pooling and average pooling layers, we also introduce batch

normalization to reduce the covariance shift. We also in-

clude random dropout to prevent overfitting. Finally, the

category prediction is obtained using a linear layer from the

obtained output features.

3.1. Channel Attention

The channel attention block outputs a refined feature

map given the backbone features. The channel attention

block aims to learn inter-channel dependencies and dynami-

cally decide which channels to give importance to for down-

stream classification. Concretely, channel attention guides

the network about ‘what‘ to look for in the backbone fea-

tures. Given input feature F ∈ RC×H×W , (where C de-

notes the number of channels, and H, W denote the height

and width of the feature maps), the channel attention block

learns a filter WC ∈ RC .

The filter WC learns to prioritize important semantic in-

formation across the channel dimension. This filter WC

is then applied to the input feature F , to output channel-

refined features R,

R = WC(F ) ◦ F (1)

where ◦ denotes the element-wise product. The output

features R, therefore, contain regions corresponding to the

important semantic context within the image, with the other

regions suppressed.

To learn the filter WC (Eq. 2), the features F are aggre-

gated along spatial dimensions. Global average pooling and

global max pooling are used to generate feature descriptors.

The multi-layer perceptron (MLP) is then used to learn rela-

tionships within the descriptors. The resultant feature vec-

tors from the MLP are then combined using the element-

wise addition operation.

WC(F ) = σ(MLP (AvgPool(F ))+MLP (MaxPool(F )))
(2)

Here, σ denotes the sigmoid activation function. To re-

duce the co-variate shift in the feature descriptors, we use

batch normalization after each layer in the MLP. This nor-

malizes the activations for each layer, thereby stabilizing

training and improving generalization performance.

3.2. Spatial Attention

The Mars surface images have significant spatial varia-

tions in terms of background and angle of capture. There-

fore, it is essential to capture robust spatial information to

achieve better context understanding. To this end, we uti-

lize the spatial attention module. For the channel-refined

features R ∈ RC×H×W , the spatial attention block learns a

spatial filter WS ∈ RH×W , which is then applied to the R,

O = WS(R)⊗R (3)

where ⊗ denotes tensor multiplication. The filter WS

allows the network to learn ‘where’ to look for important

information.

The filter WS (Eq. 4) is learnt from two feature descrip-

tors generated for each spatial dimension using global aver-
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(a) DRT Side (b) Wheel (c) Horizon

(d) MAHLI (e) Ground (f) Mastcam

(g) Portion box (h) DRT Front (i) ChemCam CT

Figure 2: Some images from the MSL Surface Dataset with corresponding category labels

age pooling and global max pooling. These feature descrip-

tors are concatenated and fed to a convolution layer with a

7× 7 filter and sigmoid activation (denoted by σ). We also

perform batch normalization post the convolution layer.

WS(R) = σ(conv7×7([AvgPool(R),MaxPool(R)]))
(4)

4. Experiments

In this section, we evaluate the performance of our net-

work, MRSCAtt, on the MSL Surface Dataset.

We approach this task as a multi-class classification chal-

lenge. [18] demonstrated that using extracted features from

models pre-trained on object classification datasets such as

ImageNet are beneficial for aerial and remote sensing im-

ages. Thus, we incorporate transfer learning.

Mars surface exploration is a relatively unexplored do-

main. With growing research, we anticipate the introduc-

tion of multiple data sets with addition of more classes in

future years. Redeploying models for more classes requires

parameter fine-tuning with newer data. In contrast to pre-

vious work, we propose an architecture whose training re-

quires minimal memory footprint — to minimize the cost of

future fine-tuning. Thus, apart from classification accuracy,

we also prioritize the need for fewer trainable parameters.

4.1. Dataset

The MSL Surface Dataset [25] consists of 6691 im-

ages of the Mars surface environment that were collected
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Figure 3: Loss curves for MRSCAtt on the MSL Surface

Dataset.

by three instruments on the MSL (Curiosity) rover: Mast-

cam Right eye, Mastcam Left eye, and MAHLI (Mars Hand

Lens Imager). The average size of images is 193 × 256,

with slight variations. The dataset consists of 24 classes as

identified by a Mars mission scientist, and contains RGB

images, grayscale images, and images with some other in-

strument filter-induced colours. Images are captured across

various settings of illumination, angles, and magnifications,

making classification challenging. Some images with their

corresponding category labels are illustrated in Fig 2.

To evaluate our network, we report the overall accuracy

(OA) and class-wise accuracy on the classification task.

4.2. Implementation Details

Following the dataset split proposed in [25], The train-

ing set consists of 3746 images, the validation set consists

of 1640 images and the test set consists of 1305 images.

The training, validation, and tests sets have been pre-split

based on the day of image acquisition. Since the size of

the training set is small, we use varying data augmentation

techniques to boost the size of the training set. We per-

form augmentation with random rotations (clockwise, anti-

clockwise, 72◦) and random flips (horizontal, 180◦). Apart

from the regularizing effect of augmentation, we also use

dropout with probability 0.2 to prevent overfitting.

We implement MRSCAtt using the PyTorch framework.

We use the ResNet-50 backbone [6] pre-trained on Ima-

geNet for feature extraction. We replace the final fully con-

nected layer to map to the 24 classes in the MSL Surface

dataset. To maintain our goal of using fewer trainable pa-

rameters for training, we freeze the first four residual blocks

and keep the last block as trainable. We train our network

for 15 epochs, with a learning rate of 0.0001 and a batch

size of 64. We use Adam as the optimizer and the cross-

entropy loss function to train our network. The training and

validation loss curves are plotted in Fig 3.

Method Train Valid Test

Random 4.2% 4.2% 4.2%

Most common 62.5% 5.3% 19.5%

AlexNet [25] 98.7% 72.8% 66.7%

ResNet-50 [6] 100% 80.37% 76.16%

MRSCAtt (ours) 99.60% 82.74% 81.53%

Table 1: Classification accuracy on the MSL Surface

dataset.

Class R-50 MRSCAtt

APXS 100% 100%

APXS CT 100% 100%

ChemCam CT 95.23% 90.48%

Chemin inlet open 55.95% 95.24%

Drill 55.0% 55.0%

DRT front 3.33% 0%

DRT side 34.66% 64.67%

Ground 93.7% 96.85%

Horizon 87.5% 73.61%

Inlet 0% 12.5%

MAHLI 58.33% 91.67%

MAHLI CT 70.17% 85.96%

Mastcam 71.87% 93.75%

Mastcam CT 83.33% 83.33%

Observation tray 100% 91.67%

Portion box 89.58% 91.67%

Portion tube 77.77% 77.77%

Portion tube opening 100% 100%

REMS UV sensor 69.44% 63.89%

Rover rear deck 92.85% 100%

Scoop 100% 80%

Wheel – –

Table 2: Class-wise performance on the test set of the MSL

Surface Dataset.

4.3. Results

We compare the performance of MRSCAtt with other

networks in Table 1. For reference, we also added the

performance of a random classifier and a classifier which

always votes for the most frequent object category. [25]

proposed a transfer learning method with AlexNet [10]

backbone with complete pre-training (no frozen layers) that

achieved a test set accuracy of 66.7%. We trained a ResNet-

50 network following the same protocol for MRSCAtt train-

ing, and achieved an accuracy of 76.16% on the test set.

However, the introduction of spatial and channel attention

blocks significantly improve the performance, demonstrat-

ing performance an improvement of 5.37% on the test set.

Using spatial and channel attention, MRSCAtt achieves

state-of-the-art results on the MSL Surface dataset. We also
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Figure 4: The confusion matrix for MRSCAtt on the MSL Surface test set.

note that in [25], the entire network is retrained on the MSL

Surface dataset. Since we only unfreeze the final residual

block, we use much fewer parameters. Therefore, not only

do we achieve state-of-the-art performance, we also utilize

significantly fewer parameters.

We also examine the performance of our network using

a confusion matrix in Fig 4. We note that the test set labels

miss 2 categories, explaining the size of the confusion ma-

trix. Despite large class imbalance in the test set, MRSCAtt

is able to reliably classify most of the categories accurately.

However, on closer inspection of the confusion matrix, we

observe a failure case of our method. Our network never

predicts the DRT Front class and often misclassifies it as

APXS or MAHLI CT.

To analyse this in greater detail, we also compare class-

wise performances in Table 2. As demonstrated in Table 1,

the baseline model is prone to overfitting. Although classes

such as Scoop have 100% baseline accuracy, they have

extremely low precision. In these classes, our MRSCAtt

model has better precision and thus generalizes better to

provide drastically improved accuracy for classes such as

Chemin inlet open, DRT side and MAHLI. In classes such

as APXS, APXS CT, and Portion Tube opening, MRSCAtt

retains 100% classification performance because the preci-

sion for these classes is sufficiently high. However, as we

found previously, DRT Front and Inlet are frequently mis-

classified, perhaps due to dataset imbalance. We also ob-

serve that these classes often appear visually very similar,

which may explain the model’s confusion for these classes.

We also visualize the performance of MRSCAtt on the

test set of the MSL Surface Dataset. We illustrate the cor-

rectly classified images in Fig 5.

4.4. Ablation Study

To understand where the performance improvement

stems from, we perform an ablation study on our compo-
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(a) MAHLI CT (b) APXS CT (c) Ground

(d) Horizon (e) Chemin inlet open (f) APXS

(g) MAHLI (h) Portion Box (i) ChemCam CT

Figure 5: Some predictions of MRSCAtt on the MSL Surface Dataset.

Backbone Spatial Channel Test accuracy No. of Parameters

ResNet-50 (res-5 frozen) × × 68.89% 51.2K

ResNet-50 × × 76.16% 15.015M

ResNet-50 X × 76.86% 15.016M

ResNet-50 × X 81.07% 17.126M

ResNet-50 (ours) X X 81.53% 17.127M

Table 3: Ablation study of the components in MRSCAtt.

nents, as shown in Table 3. The baseline accuracy using

ResNet-50 with the final residual block unfrozen during

training, is 76.16% on the test set. Using spatial attention,

we achieve a performance of 76.86%. This is surprising,

because the MSL Surface dataset consists of complex vari-

ations and heterogeneity. However, we hypothesize that the

ResNet backbone is sufficiently able to capture the spatial

variations across the dataset, thereby explaining this small

increment. To examine this claim, we train a MRSCAtt with

the entire backbone network frozen. In this setting, we ob-

serve a test set accuracy of 68.89%, which is significantly

lower and seems to support our understanding.
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(a) Observation Tray (b) Ground

Figure 6: Category predictions of our network on images captured by the Perseverance Rover

Channel attention contributes the majority of the perfor-

mance improvement, despite requiring a few thousand addi-

tional trainable parameters. This follows from [26], which

suggests that learning inter-channel dependencies enables

better understanding since each channel is a feature detec-

tor. Finally, the combination of both spatial and channel

attention in MRSCAtt enables the learning of both spatial

and inter-channel dependencies and achieves 81.53% test

set accuracy, while adding only 2 million additional train-

able parameters.

4.5. Perseverance Rover

NASA’s Mars 2020 mission is a follow-up to the 2016

Curiosity Mission. Recently in 2021, NASA’s Perseverance

Rover landed on Mars. It is part of the Mars exploration

program that aims to gather evidence for signs of habitabil-

ity on Mars. The cameras aboard the Perseverance rover,

like the Curiosity rover, are also designed to capture high-

resolution images of the planet’s surface and other rover

tools.

In order to validate the effectiveness of our method and

prove its generalization capacity for further Mars rover mis-

sions, we used our network to classify images collected

from the Perseverance mission’s image gallery1 in Fig 6.

Since there are no ground truths available for these images

at this time, we cannot report metrics for this experiment.

However, we show empirical results obtained using infer-

ence on MSRCAtt. Fig 6a is predicted as an Observation

Tray, while Fig 6b is predicted as Ground category. This

empirical verification shows us that MSRCAtt along with

1https : / / mars . nasa . gov / mars2020 / multimedia /

images/

the channel and spatial attention modules can also be de-

ployed across several NASA missions for image classifica-

tion on Mars.

5. Conclusion

In this work, we present a deep learning method ,

MRSCAtt, that jointly incorporates channel and spatial at-

tention mechanism to classify images of the MSL Surface

Dataset. Not only do we achieve state-of-the-art classifica-

tion results, we do so with significantly fewer trainable pa-

rameters compared to existing work. This allows the model

to be relatively inexpensive during training and accurate at

deployment. This is significant because of the potential

need to fine-tune the model to accommodate the dynamic

nature of Mars research – an increasing number of classifi-

cation categories.

Our ablation studies demonstrate the effectiveness of our

approach. By adding only 2 million additional trainable pa-

rameters to the backbone network, we significantly boost

the classification performance. After validating our model’s

performance on NASA’s Perseverance rover images, we be-

lieve that this is a feasible step towards the Mars rover

image classification challenge. With new advances with

rovers and satellites and thus new datasets in the upcoming

years [24, 1], scientific investigation will continue. There-

fore, the generalization of MRSCAtt is an extremely impor-

tant property for the upcoming decades. In the future, we

aim to evaluate our method for classification on other plan-

etary images. We also plan to use transformer networks for

learning attention mechanisms.
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