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Abstract

The Geosynchronous Equatorial Orbit (GEO) is home

to many important space assets such as telecommunica-

tion and navigational satellites. Monitoring Resident Space

Objects (RSOs) in GEO is a crucial aspect in achieving

Space Situational Awareness (SSA) and in protecting criti-

cal space assets. However, ground-based GEO object de-

tection is challenging due to the extreme distance of the

targets, as well as nuisance factors including cloud cov-

erage, atmospheric/weather effects, light pollution, sensor

noise/defects, and star occlusions. The Kelvins SpotGEO

Challenge is designed to establish to what extent images

coming from a low-cost ground-based telescope can be used

to detect GEO and near-GEO RSOs solely from photomet-

ric signals that are without any additional meta-data. At the

same time, the SpotGEO dataset also addresses the lack of

publicly available datasets from a computer vision perspec-

tive on the satellite detection problem; by assembling and

releasing such a dataset, we hope to spur more efforts on

the optical detection of RSOs and enable objective bench-

marking for existing and future methods. In this work, we

present details of the SpotGEO dataset development, chal-

lenge design, evaluation metric, and result analysis.

1. Introduction

Space technology has virtually shaped many aspects of

our modern life, including communications, navigation and

meteorology–to name a few. Economic losses due to the

persistent disruption of space-based services will dwarf the

trillions of dollars already invested into existing space as-

sets. Unfortunately, increasing space utilisation and the

worsening pollution by space debris make the prospect of

disruption due to collisions realistic.

To alleviate the risk of disruption, such as collision be-

tween space assets and debris, it is crucial to develop Space

Situational Awareness (SSA)[11], which is the broad task

of building up-to-date information of the space environ-

ment. An important aspect of SSA is detecting and con-

firming the existence of tens of thousands of resident space

objects (RSO) such as debris, satellites and space stations

that are currently orbiting the Earth. Realistically, the de-

tection of RSOs will be achieved using a variety of ap-

proaches such as ground-based radar [9, 20], ground-based

telescopes [21, 16] and satellite-based observers [10, 14].

These approaches each have their pros and cons and com-

plement each other in a holistic SSA system.

In this work we focus on the ground-based approach and

ask the following question: can a low-cost ground-based

camera be used to detect satellites orbiting the GEO? In

order to answer this question, the Kelvins SpotGEO Chal-

lenge was held jointly by the Advanced Concept Team

(ACT) of the European Space Agency (ESA) and the Uni-

versity of Adelaide, to invite the worlds’ machine learning

and computer vision experts to develop advanced and ef-

fective methods for this particular task. The challenge in-

volves detecting RSOs in or close to the GEO from ground-

based images. Developing SSA in GEO is of tremendous

importance since that orbital belt contains some of the most

critical space assets, such as satellites for communications,

meteorology, navigation, etc.

1.1. Why is this problem difficult?

A fundamental reason behind the difficulty of this prob-

lem is the extreme distance between the observer and the

target objects. In the case of the employed telescope, hav-

ing an angular pixel size of about 4.5 arc seconds and the

distance between the ground level and GEO, each pixel cor-

responds to an arc length of about 800m at GEO. Hence, tar-

gets of interest are no larger than 1 pixel in area. With atmo-

spheric distortion and the long exposure time, the received

photons from an orbiting object are then smeared over a few

pixels; however, this has the effect of dimming the observed

object. An example image is provided in Figure 1.

Other nuisance factors also contribute to the difficulty

of the problem: cloud cover, atmospheric/weather effects,

light pollution, sensor noise/defects, star occlusion (when a
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Figure 1. An example image of the SpotGEO dataset. Three GEO satellites are captured within the image, which are marked by the green

circles. Note that object 3 is partially occluded by a star streak.

background star happened to cross the image coordinates of

an orbiting object, as shown in Figure 1) and in rare cases,

orbital manoeuvres conducted by an active GEO satellite

during capture.

1.2. Our contributions

A number of algorithms [21, 16, 7, 13, 17, 12, 18] have

already been developed for similar problems, but it is cur-

rently unclear what the best approaches are. This competi-

tion served as an invitation to researchers and practitioners

in relevant fields from around the world to test our current

best capability for this important problem. From the so-

lutions submitted by the competition participants, we have

summarised a 3-step pipeline that works effectively for this

task and is adopted by most participants, which is discussed

in Section 4.4.

At the same time, the SpotGEO Challenge also addresses

the lack of publicly available datasets from a computer vi-

sion perspective on the satellite detection problem; by as-

sembling and releasing such a dataset and developing the

evaluation metric for the task, we hope to spur more efforts

on automated pipelines for the optical detection of space

objects and enable objective bench-marking of already ex-

isting methods.

2. Related works

There has been long-lasting efforts in the space domain

looking into the RSOs detection problem. Earlier work by

Schildknecht et al. [17] proposed a ground-based optical

detection algorithm. This method firstly applies siderostatic

tracking to align a sequence of captured images. It then

uses a reference frame to either produce masks of all ob-

jects to filter other images, or subtract all other frames with

the reference frame, before it scans for objects with differ-

ent characteristics than stars. Yanagisawa et al. [21] pro-

pose a method that utilises a short image sequence with
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long exposure time, and image processing algorithms are

used for denoising. They then exhaustively search all of the

linear combinations across the image sequence using field-

programmable gate array (FPGA) acceleration. However, a

limitation of this technology when deployed in space is that

it could suffer failures introduced in the FPGA due to the

radiation environment.

More recently, Šára et al. [16] proposed a framework

that first registers the images to a common image frame and

then uses randomised heuristic for linear structure detec-

tion, followed by a scoring system to select valid tracks.

Liu et al. [13] adopted the framework of [16] and proposed

a novel deterministic topological sweep algorithm [8] which

boosted the efficiency of the track extraction step.

Another line of work tackles the GEO object detection

problem under the track-before-detect (TBD) treatment [5].

The key idea of TBD is to improve the Signal-to-Noise Ra-

tio (SNR) of weak targets by accumulating spatial and tem-

poral signals in order to increase detection confidence. Un-

der similar settings of [16, 7, 13], Davey et al. [3, 4] de-

veloped a histogram probabilistic multi-hypothesis tracking

(H-PMHT [19]) method for detecting RSOs. However, the

limitation of their methodology is that relatively long im-

age sequences are required in order to achieve satisfactory

results.

3. The SpotGEO dataset

The purpose of this challenge for us was to establish to

what extent images coming from a ground-based low-cost

telescope can be used for detecting RSOs without utilising

any information from additional meta-data. For this rea-

son we release our dataset using PNG image format rather

than the more commonly used FITS format in astronomy,

as to give this competition a stronger focus on generic pur-

pose vision algorithms and discourage the use of object cat-

alogues.

Due to the difficulties of the problem described in Sec-

tion 1.1, the detection of GEO satellites is specifically for-

mulated to be based on a sequence of 5 images or frames,

instead of a single image. This provides more information

sources for the detector to better handle noisy/missing sig-

nals, as well as the possibility of utilising the geometric

structure of signals in the detection, which will be described

in Section 3.2.

The SpotGEO dataset consists of 6,400 sequences, each

of which has 5 frames. Each frame is a grayscale image of

size 640× 480 pixels. To facilitate machine learning-based

methodologies, we split the dataset into training and test-

ing subsets, which makes up 20% and 80% of the 6400 se-

quences, respectively. Since the competition has concluded,

the dataset including annotations for both training and test-

ing subsets has been released and is publicly available on

Zenodo [2].

3.1. Data acquisition

The dataset images were acquired using a ground-based,

low-cost CMOS sensor during nighttime. The specific data

acquisition approach used for this challenge is illustrated in

Figure 2. Each capture instance yielded a sequence of 5

frames. For each frame, a 40-second exposure was used

while the camera was kept static on the ground (equiva-

lently, the camera was rotating at sidereal rate during ex-

posure). To simulate a sky-sweeping scenario, after each

frame in one instance had been recorded, the camera was

slightly rotated to observe a different field of view (FOV)

which maintains a significant proportion of overlapping

with the previous FOV. This camera motion is constant be-

tween two consecutive frames within a sequence. Eventu-

ally this methodology resulted in sequences of five frames

such as shown in Figure 1, where, as an example, 3 objects

are also clearly marked.

Note that under the adopted capture regime, stars appear

as streaks, while GEO or near-GEO objects mostly appear

as blobs or shorter streaks since they are (mostly) static rel-

ative to the observer.

3.2. Data annotation

For each frame in each sequence, groundtruth object lo-

cations are annotated manually via careful visual inspec-

tion. The coordinates of an object within the FOV of an

image is given by (x, y), where

x ∈ [−0.5, 639.5], and (1)

y ∈ [−0.5, 479.5], (2)

since the image sizes are 640 × 480 pixels and we corre-

spond the centre of each pixel to non-negative integer coor-

dinates.

The definition of a valid object We provide the exact

definition of an object in accordance to the annotation pro-

cess. By object we mean GEO or near-GEO orbiting ob-

jects with consistently detectable presence in the FOV of

the images. As explained in Section 3.1, such objects were

imaged as blobs or short streaks. Note that we are not in-

terested in low Earth orbit (LEO) objects that occasionally

appeared in the FOV of the frames and were imaged as very

long streaks (longer than the star streaks). Hence, LEO ob-

jects are not considered valid objects in the dataset. Also,

blob-like artefacts due to sensor noise or bright pixels due

to sensor defects are not considered as objects. During our

labelling procedure, an object was considered consistently

detectable if it appeared in at least 3 out of 5 frames in the

sequence. If an object appeared in only 1 or 2 frames in the

sequence, it is not labelled as a valid object and thus is not

a target of detection.
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Figure 2. A conceptual illustration of the data capturing process and an example result where GEO objects are marked with green circles.

We ensured the following properties of the dataset during

its development.

1. Each frame in a sequence has the same number of ob-

jects, since we have maintained that each valid object

lies in the common FOVs of all frames in the sequence.

2. A valid object should form a trajectory across the se-

quence according to GEO orbital motion and the con-

stant inter-frame camera motion within each sequence.

Note that the presence of a valid object in a sequence does

not mean that the object is visible in all frames, since it can

be occluded or is too dim to be observable in a subset of the

frames.

The above properties are designed to facilitate sequence-

based detection instead of frame-based detection. This prior

knowledge of object trajectory across frames in a sequence

can be utilised to assist filtering noisy signals and inferring

hidden ones, as exemplified in Figure 3. Algorithms should

thus be able to estimate the coordinates of a detected object

across all frames, including frames where it is not observ-

able.

4. The SpotGEO challenge

In this section we first describe the competition design

and the evaluation metric for ranking participants, followed

by competition results and its analysis.

4.1. Competition design

The competition was hosted on the Kelvins competi-

tion website, a platform created by the Advanced Concepts

Team of the European Space Agency specifically for space

related competitions. During the competition, participants

were given the training set with groundtruth labels for de-

veloping their solutions, and the test set without labels for

generating predictions.

To encourage active engagement, a leader board au-

tomatically calculates indicative scores once a participant

submits a prediction, and lively ranks participants based on

their best submission thus far. To ensure fairness and pre-

vent extraction of groundtruth information from the leader

board, each participant was allowed two submissions ev-

ery 24 hours, and the leader board scores were based on a

random half of the test set only. After the submission pe-

riod ended, scores based on the full test set were calculated,

which were used for the final ranking.

4.2. Evaluation metric

For each submission we produce two scores: an F1 score

and a Mean Squared Error (MSE) score. Participants are

ranked based on both 1 − F1 and MSE, in the spirit of

Kelvins’ “reach the absolute zero error” motto. The official

evaluation toolkit is available in [6].
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Figure 3. Examples of frame-based and sequence-based detection

results. The object trajectory can be utilised to handle nuisance

factors and improve detection results.

4.2.1 Evaluating detection results for one sequence

To evaluate the predictions of one sequence against the

groundtruth, the following inputs are required:

• Groundtruth object locations Y = {Yf}5f=1 in the 5

frames of a sequence, where each Yf = {yf
j }

N
j=1 con-

tains the coordinates of N objects in frame f . Note that

N can be 0, in which case Yf for all f , and hence Y , are

empty.

• Predicted object locations X = {X f}5f=1 in 5 frames,

where each X f = {xf
i }

Mf

i=1 contains the coordinates of

Mf objects in frame f . Note that Mf is allowed to vary

across frames. Also, Mf can be 0, in which case X f is

empty.

• Predefined matching distance threshold τ and tolerance

distance ǫ, such that 0 ≤ ǫ < τ .

Matching For a given frame f , a one-to-one matching

between X f and Yf is first obtained. Assuming for now

Mf ≤ N , the matching is encapsulated in a binary matrix

H
f ∈ {0, 1}Mf×N (3)

with the following constraints

N
∑

j=1

H
f
i,j = 1, ∀i, (4)

to the rows and

Mf
∑

i=1

H
f
i,j ≤ 1, ∀j. (5)

to the columns.

In words, each point in X f must be matched uniquely to

a point in Yf ; not all points in Yf need to be matched to a

point in X f , but those that are matched do so uniquely.

The matching is solved via the minimum weighted un-

balanced assignment problem

argmin
Hf

Mf
∑

i=1

N
∑

j=1

H
f
i,jδ(x

f
i ,y

f
j ) (6)

subject to the constraints (4) and (5), where function δ im-

plements the truncated distance

δ(xf
i ,y

f
j ) =

{

‖xf
i − y

f
j ‖2, if ‖xf

i − y
f
j ‖2 ≤ τ,

ℓ, otherwise.
(7)

Here ℓ is a sufficiently large positive number, e.g., the diag-

onal pixel length of the image. The problem can be solved

efficiently via the Hungarian algorithm, maximum flow, lin-

ear programming, etc. Examples of the assignment problem

and their one-to-one matching solutions are given in Fig-

ure 4.

If Mf > N , the roles of X f and Yf are swapped and the

same problem can be solved to perform the matching. This

swap is transparent to most algorithms since only simple

changes are needed (e.g., adding dummy points at infinity

so that Hf is always square). If N = 0 or Mf = 0, then

H
f = NULL.

The matching procedure above is conducted for all

frames f = 1, . . . , 5.

True positives, false negatives and false positives Let

If = {1, ...,Mf} and J = {1, ..., N}. After the matching

matrix H
f for frame f is solved, if Hf is not NULL, the set

of correctly detected objects for frame f is

T Pf =
{

(i, j) ∈ If × J
∣

∣

∣
H

f
i,j = 1, δ(xf

i ,y
f
j ) ≤ τ

}

.

(8)
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Figure 4. Examples of the assignment problem and one-to-one matching solutions. Note the different results of Case C and Case D.

Because of the truncated distance defined in (7), x
f
2

is no longer matched to y
f
2

but to y
f
1

.

The set of missed objects for frame f is

FN f =






j ∈ J

∣

∣

∣

∣

∣

∣





Mf
∑

i=1

H
f
i,j = 0



 ∨





Mf
∑

i=1

H
f
i,jδ(x

f
i ,y

f
j ) > τ











. (9)

The set of false predictions for frame f is

FPf =






i ∈ If

∣

∣

∣

∣

∣

∣





N
∑

j=1

H
f
i,j = 0



 ∨





N
∑

j=1

H
f
i,jδ(x

f
i ,y

f
j ) > τ











.

(10)

We stipulate that if Hf = NULL, then

T Pf = ∅, (11)

FN f = {j}Nj=1, (12)

and

FPf = {i}
Mf

i=1. (13)

The accounting procedure above is conducted for all

frames f = 1, . . . , 5. The true positive, false negative and

false positive values for the sequence are then given by

TP =

5
∑

f=1

|T Pf |, (14)

FN =

5
∑

f=1

|FN f |, (15)

FP =

5
∑

f=1

|FPf |. (16)

Regression error To handle the possibility of a tie in F1

score, we provide another measure of detection accuracy,

the MSE of localising the objects.

Given the results of the procedures above, if not all T Pf ,

FN f and FPf are empty for frame f , the sum of squared

error (SSE) for frame f is

SSEf =
∑

(i,j)∈T Pf

π(xf
i ,y

f
j ) +

∑

j∈FN f

τ2 +
∑

i∈T Pf

τ2,

(17)

where

π(xf
i ,y

f
j ) =

{

0, if ‖xf
i − y

f
j ‖2 ≤ ǫ,

‖xf
i − y

f
j ‖

2
2, otherwise.

.

(18)
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Figure 5. SpotGEO race: the evolution of best scores of each team during the submission period.

In words, SSEf accumulates the squared distance (up-

per bounded by τ2) between predicted object locations and

ground truth object locations in frame f , with a tolerance

of ǫ to account for inaccuracies in manual labelling. Fur-

ther, each missed object and false detection respectively

contribute a constant squared error of τ2 to SSEf .

If T Pf , FN f and FPf are all empty sets, we stipulate

that SSEf = 0.

The SSE for the sequence is thus

SSE =
5

∑

f=1

SSEf , (19)

and the MSE for the sequence is

MSE =

{

SSE
TP+FN+FP

, if SSE 6= 0,

0, otherwise.
(20)

4.2.2 Evaluating detection results for the whole test set

Let there be K sequences of 5 frames each in the test set.

Denote by TPk the true positive value for the k-th sequence

computed according to (14) and similarly for FNk and

FPk. The overall precision is

P =

∑K

k=1 TPk
∑K

k=1 TPk + FPk

; (21)

the overall recall R is

R =

∑K

k=1 TPk
∑K

k=1 TPk + FNk

; (22)

and the F1 score is thus given by

F1 = 2
PR

P +R
. (23)

Denote by SSEk the SSE for the k-th sequence com-
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puted according to (19). The overall regression MSE is thus

MSE =

∑K

k=1 SSEk
∑K

k=1 TPk + FNk + FPk

. (24)

4.2.3 Ranking methodology

Participants were ranked primarily based on their submitted

predictions using 1 − F1 (23). In the event of ties (i.e., a

number of teams having the same F1), regression MSE (24)

would be used as a tie breaker.

4.3. Results

The competition attracted 54 teams globally to partici-

pate, out of which 33 teams have made valid submissions.

Figure 5 shows the evolution of scores of each participant

during the competition.

We asked participating teams to submit a brief descrip-

tion of their methodology, as a condition for their scores to

enter the final ranking. This was to prevent teams solving

the detection task using manual labeling. The final ranking

is presented in Table 1.

Rank Participant Name 1− F1 MSE

1 AgeniumSPACE 0.0517 33838.99

2 POTLAB@BUAA 0.0557 30541.73

3 dwiuzila 0.0711 41198.46

4 Magpies 0.0957 48919.92

5 Mr huangLTZaaa 0.1158 62021.81

6 francescodg 0.1211 65772.46

7 mhalford 0.1230 69566.91

8 PedroyAgus 0.1339 70104.97

9 elmihailol 0.1389 83172.81

10 Barebones 0.1634 105518.42

11 gauthier42 0.2357 133979.21

12 perbar 0.2605 118436.21

13 Matt 0.5800 307932.17

14 alexvmt 0.9946 510652.52

Table 1. Final ranking for the SpotGEO challenge. The full list

including unranked teams can be found in [1].

4.4. Solution analysis

Most of the submitted solutions generally follow a 3-step

pipeline:

• pre-processing step - remove noise such as stars, cloud,

light pollution, etc.;

• detection step - produce candidate objects;

• post-processing step - exploit the geometric structure

to prune false detection or interpolate missing ones.

In particular, we provide brief summaries of the tech-

niques employed by the best two teams, as they represent

two distinctly different approaches yet achieved very close

scores.

The solution of team AgeniumSPACE used the 3-step

pipeline described above. They first perform background

removal using L1-spline, and estimation of star shifting us-

ing a hand-crafted star descriptor and RANSAC. In the sec-

ond step, an ensemble of 10 U-Net [15] style Convolution

Neural Nets (CNNs) are trained to predict object locations.

Lastly, the predicted object candidates are post-processed to

remove false positives and recover missing objects via line

detection and trajectory filling.

The second place winning team POTLAB@BUAA tack-

les the problem from a quite different perspective which

employs a non-learning-based approach. Their pipeline is

mainly divided into two stages. In the first stage, the SNR

is calculated for each pixel in each input image. Pixels with

a SNR higher than a certain threshold are then selected.

Lastly, candidate stars and candidate satellites are extracted

via connecting adjacent selected pixels. In the second stage,

they firstly estimate the inter-frame star shifts from the star

candidates. This estimation is then used to filter out candi-

date satellites that are actually stars. The filtered candidate

satellites are used to estimate the satellite shifts between

consecutive frames. Finally, satellites are confirmed based

on their agreement to the estimated satellite shifts.

The key difference between the two approach is the em-

ployment of CNNs for detecting candidate satellites. Al-

beit deep learning being a popularly employed technique

amongst participating teams, the success of team POT-

LAB@BUAA shows that sheer thresholding and robust

fitting can perform equally well as or even better than

learning-based approaches in this particular problem.

5. Conclusion

This paper summarises the design, evaluation metric and

results of the Kelvins SpotGEO Challenge, as well as the

development of the SpotGEO dataset for this competition.

Through the results of this competition, we learn that im-

ages obtained from low-cost ground-based cameras can be

used to detect orbiting objects fairly well. This provides

a direction of research to further enrich our tool box for

achieving SSA.
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sen, Marcus Märtens, Moritz von Looz, Gurvan Lecuyer, and

Dario Izzo. Spotgeo dataset. Zenodo, https://doi.

org/10.5281/zenodo.4432143, 2021. 3

[3] Samuel J Davey, Travis Bessell, Brian Cheung, and Mark

Rutten. Track before detect for space situation awareness.

In International Conference on Digital Image Computing:

Techniques and Applications. IEEE, 2015. 3

[4] Samuel J Davey and Han X Gaetjens. Track-Before-Detect

Using Expectation Maximisation. Springer, 2018. 3

[5] Samuel J Davey, Mark G Rutten, Neil J Gordon, M Mallick,

V Krishnamurthy, and BN Vo. Track-before-detect tech-

niques. In Integrated tracking, classification, and sensor

management: theory and applications. Wiley Online Library,

2012. 3
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