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Abstract

Virtually all aspects of modern life depend on space tech-

nology. Thanks to the great advancement of computer vi-

sion in general and deep learning-based techniques in par-

ticular, over the decades, the world witnessed the grow-

ing use of deep learning in solving problems for space ap-

plications, such as self-driving robot, tracers, insect-like

robot on cosmos and health monitoring of spacecraft. These

are just some prominent examples that has advanced space

industry with the help of deep learning. However, the

success of deep learning models requires a lot of train-

ing data in order to have decent performance, while on

the other hand, there are very limited amount of publicly

available space datasets for the training of deep learning

models. Currently, there is no public datasets for space-

based object detection or instance segmentation, partly be-

cause manually annotating object segmentation masks is

very time consuming as they require pixel-level labelling,

not to mention the challenge of obtaining images from

space. In this paper, we aim to fill this gap by releasing

a dataset for spacecraft detection, instance segmentation

and part recognition. The main contribution of this work

is the development of the dataset using images of space sta-

tions and satellites, with rich annotations including bound-

ing boxes of spacecrafts and masks to the level of object

parts, which are obtained with a mixture of automatic pro-

cesses and manual efforts. We also provide evaluations

with state-of-the-art methods in object detection and in-

stance segmentation as a benchmark for the dataset. The

link for downloading the proposed dataset can be found on

https://github.com/Yurushia1998/SatelliteDataset.

1. Introduction

Space technologies play a vital role in many critical ap-

plications today: communication [1], navigation [2] and

meteorology [3] are some prominent examples, thanks to

the development of computer vision and machine learning

techniques. Within the last two decades, there has been

a wide range of machine learning-based applications de-

ployed in the space industry, such as self-navigation sys-

tem for collision avoidance [4], health monitoring of space-

crafts [5], and asteroid classifications [6], just to name a

few. Accompanying the development of space technolo-

gies is an increase in demand of space datasets, as most

of state-of-art models for space technologies are using deep

learning-based methods, which require a significant amount

of annotated data for supervised training in order to have

good performance. However, one challenge that hinders the

advancement of these space technologies is the lack of pub-

licly available datasets, due to sensitivity in the space area

and the high cost of obtaining space-borne images.

One important technology in many space applications is

the accurate localisation of space objects via visual sensor,

such as object detection and segmentation in images, be-

cause localisation is a key step towards vision-based pose

estimation which is critical for tasks like docking [7], ser-

vicing [8], or debris removal [9]. However, a severe chal-

lenge for space-based object detection and instance segmen-

tation is the lack of accessible large datasets that have been

well annotated. There has been some large scale segmen-

tation dataset such as COCO[10], ImageNet [11], Pascal

VOC [12] including masks of a large number of classes

for daily life objects and human parts, but there is not any

specialized datasets segmenting space objects such as satel-

lites, space station, spacecrafts or other Resident Space Ob-

jects (RSOs). The closest and the largest datasets related to

this topic so far are the Spacecraft PosE Estimation Dataset

(SPEED) [13] and the URSO dataset [14]. However, these

datasets are focused on pose estimation and do not provide

any segmentation annotations.

Since pixel-level mask are required as ground truth for

training, building a segmentation dataset for any new do-

main, can be very time-consuming. For example, power-

ful interactive tools [15] are adopted for annotating the MS

COCO dataset [10], but it still takes minutes for an expe-

rienced annotator labeling one image [10]. As the large

amount of parameters in modern neural networks often re-

quire being trained on fairly large datasets in the scales from

thousands to millions, the total amount of effort it takes to

develop such a dataset remains dauntingly expensive.
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To reduce the cost and manpower required for image

mask annotation, there has been many researches trying

to automate or semi-automate the annotation process us-

ing unsupervised approaches, such as interactive segmenta-

tion [16, 17] where human annotators use a model to create

sample masks and interact with the samples iteratively to

refine it, or weakly supervised annotation methods [18, 19]

where users only need to provide a ‘weak’ annotation giv-

ing minimum information about the mask of the images.

Another line of works trying to circumvent the expensive

cost of annotation is to rid the need of annotation at all via

self-supervised learning, such as [20, 21]. However, self-

supervised learning based methods tend to be inferior in de-

tection and segmentation tasks compared to their supervised

counterparts.

Our contributions In this work, we aim to contribute

to space-based vision researches by creating a new public

available space images dataset, as the first step in a long

term goal to develop new machine learning algorithms for

spacecraft object detection, segmentation and part recogni-

tion tasks.

As spaces images are often considered as sensitive data,

there are not many real satellite images are publicly avail-

able. To enrich our image dataset, we collect 3117 images

of satellites and space stations from synthetic or real images

and videos. We then use a bootstrap strategy in the anno-

tation process to maximally reduce manual efforts required.

We first adopt an interactive method for manual labelling at

a small scale, then utilised the labelled data to train a seg-

mentation model for automatically producing coarse labels

for more images, which have subsequently gone through

manual refinement via the interactive tool. As more finely

annotated images are produced, this process repeats and

scales up until we finally produces the whole dataset.

To provide a benchmark for our dataset we conduct ex-

periments using state-of-the-art detection and segmentation

methods. The performance of our dataset in comparison

to popular datasets such as Cityscapces [22] and Pascal

VOC [12] indicates that space-based semantic segmentation

is a challenging task for models designed based on on-Earth

scenarios and poses a open domain for future research.

2. Related works

Image segmentation is a topic that has been studied for

a number of decades in the field of computer vision, which

has recently regained significant attention due to the suc-

cess of deep learning. Consequently, the demand for an-

notated datasets has grown rapidly. There has been various

researches that focus on minimizing the cost of training seg-

mentation models via either improving the data annotation

techniques or reducing the reliance on labelled data in train-

ing. We briefly review notable techniques in data annotation

and self-supervised learning.

Data annotation To minimise the amount of human in-

put in image mask annotation, various techniques have been

proposed. Maninis et al. [19] use extreme points of the ob-

jects that are to be segmented (points to the top, the bot-

tom, the left-most and the right-most on the boundary of

the object) as a annotation signal. Each extreme point is

converted to a 2D Gaussian heatmap and concatenated to

the input image as an extra channel of features. The model

then learns to utilise this information to produce an accurate

mask. Scribble-based techniques [18, 16] on the other hand,

use a scribbled-based input as an annotation signal. Unlike

extreme points or bounding boxes, scribbles does not give

information about the object location, instead it provides

information about color and intensity of the objects to be

segmented. The model then propagates this object specific

information from scribbles to other pixels and estimates the

object masks. Other notable techniques in mask annotation

include bounding box input [23], object centre input [24],

polygon input [25, 26] and interactive approaches [27, 17].

Self-supervised learning This is a topic that has recently

gained popular attention as it addresses the lack of training

data problem in deep learning methods. There has also been

efforts for image segmentation based on self-supervised

learning. The main idea of this approach is to facilitate the

model to learn information about inherent structures within

images by training the model with the same input data with

different representation or augmentation. In 2019, Lars-

son et al. [21] used a k-mean clustering to get predicted

labels for pixels of 2 different images from the same scene

with different weather condition. It uses a correspondent

loss of the differences in segmentation of both images to

learn meaningful features, as they should have the same la-

bels. Another work [20] uses a self-supervised equivariant

attention mechanism to provide additional supervision sig-

nal in semantic segmentation. In this work, instead of us-

ing images of same scenes at different weather condition,

it applies affine transformations on input images and uses

an equivariant cross regularization loss to encourage feature

consistency in learning.

3. Building the dataset

In this section we describe our methodology for data

collection and mask generation throughout the dataset de-

velopment process. We collect a large number of synthetic

and real images from the internet. We then use a bootstrap

strategy to effectively reduce the amount of manual labor

required for data annotation. We further perform a post-

process step to remove similar or identical images, remove
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Figure 1: Process from data collection to image segmentation.

texts or refine low-quality annotations. Figure 1 illustrates

the step-by-step process of our methodology.

3.1. Step 1: Initial data collection

For the dataset to be useful for training practical models,

we need to collect a significant amount of data. However at

this step only a small amount was needed since we would

only use them to test viable annotation methods that are

easy to operate and are able to produce satisfactory masks.

3.2. Step 2: Surveying annotation methods

Using the initial amount of data from previous step,

we conduct experiments on current various state-of-the-art

models and tools for image segmentation. Decomposing

spacecrafts into parts requires specialised domain knowl-

edge. For practical reasons, we opt to segment spacecrafts

into 3 parts that are commonly observable and easily iden-

tified, namely solar panel, main body and antenna.

Among the surveyed methods, self-supervised [20, 21]

and weakly supervised segmentation methods [18] have ad-

vantages of low human interaction and labor requirements

per images. However, their performance are no where near

satisfactory, as the satellites often have a lot of unorthodox

and small parts. Another drawback of self-supervised or

weakly supervised approaches is that it is highly inefficient

to further refine their output predictions. On the other hand,

interactive segmentation methods such as [19] have advan-

tages of allowing users to improve the mask bit by bit with

manual inputs, which are much more suitable for the pur-

pose of this work. After testing various methods, we de-

cided to use Polygon-RNN++ [27], an improved version of

Polygon-RNN [26]. This model allows us to break down

the object into small convex areas. We can then label each

of these convex area with polygons manually based on their

position on the spacecraft, and the mask will then be cre-

ated. The model also allows users to freely modify the mask

at pixel level by adding or removing key points. Figure 2 is

an example image with masks of each part, labelled using

Polygon-RNN++.

3.3. The bootstrap circuit

From step 3 to 5, we employ a bootstrap strategy to make

the labelling process semi-automatic, via utilising already

Figure 2: Example of an image collected and its annotated

masks. Red mask: solar panel; blue mask: antenna; green

mask: main body.

annotated images to train a segmentation model to gener-

ate initial mask predictions. We first collect more images

to expand our data base. A pre-processing step was then

conducted to remove similar or duplicate images. Lastly

we train segmentation models to predict the initial masks

and refine them using Polygon-RNN++ as described in step

2. This bootstrap circuit is repeated and as the training data

grows, the segmentation models also improve, which in turn

further lowers the cost of labelling more data.

Pre-processing In order to remove duplicate or near-

duplicate images due to difference in size, resolution and

augmentation, we used Agglomerative Clustering [28] im-

plemented in sklearn [29], combined with a simple search-

ing algorithm. For each image Ii, we create a feature vector

f (i) = [f
(i)
1 , ..., f

(i)
M ]T ∈ R

M using the color histogram of

the image. We then rrun the clustering algorithm based on

the chi-square distance

d(Ii, Ij) =
1

2

M∑

k=1

(f
(i)
k − f

(j)
k )2

f
(i)
k + f

(j)
k

(1)

between two images Ii and Ij .

After the clustering algorithm groups similar images into

clusters, we use a searching algorithm to find the top n

couples of images with highest similarity based on the chi-

square distance, and manually remove those that are nearly

the same.
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Figure 3: Comparing masks before and after manual refinement. Left: input image. Centre: assembled masks from model

predictions. Right: masks after manual refinement. The models here are trained on 1003 annotated images.

Data Annotation We label the initial batch of images

manually as described in step 2. For all further iterations,

we leverage existing annotations to support the labelling

process by training state-of-the-art models for producing

initial mask predictions for different parts.

We use the DeepLabV3 [30] architecture and refined ini-

tial weights pretrained on ImageNet [11] on our dataset. We

train 3 different models to predict: full mask of spacecrafts,

mask of the solar panels, and mask of antennae. For each

image, we then adopt good predictions of the parts, assem-

bled them, and manually refine the final mask. Figure 3

compares the predicted masks and the refined masks of an

example image.

As we accumulate more annotated images, the trained

models were further refined with the latest dataset to im-

prove future predictions, which in turn, reduces manual ef-

forts and speeds up the labelling of new images.

3.4. Step 6: Post­processing

After we got a sufficient number of masks from the boot-

strap circuit, we start going back to problematic images that

are marked as requiring further processing. There are im-

ages that has text need to be removed, similar images that

failed to be filtered in step 4, images that are deemed to be

too difficult to identify even with human vision, etc. We

also go back to re-mask those that we deem low in quality.

Once we obtain the mask labels, we compute tight bounding

boxes of the spacecrafts for each image.

Figure 4: Histograms of the spacecraft mask areas in the

training and test set.

4. Dataset statistic

The final dataset consists of 3117 images with uniform

resolutions of 1280× 720. It includes masks of 10350 parts

of 3667 spacecrafts. The spacecraft objects are also vari-

ous in range, they can be as small as 100 pixels to as large

as occupying nearly the whole images. On average, each

spacecraft takes up an area of 122318.68 pixels, while each

part of antenna, solar panel and main body occupies areas

of 22853.64, 75070.76 and 75090.92 pixels, respectively.

For the purpose of standardising benchmarking segmenta-

tion methods, we divide our dataset into a training and a

test subsets, which consists of 2516 and 600 images respec-

tively. Figure 4 provides the distribution of spacecraft sizes

in the training and test sets.

5. Experiments

In this section we conduct various experiments to bench-

mark our dataset with state-of-the-art models in tasks in-
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Model mAP AP50

YoloV3 0.700 0.852

YoloV3-spp 0.736 0.868

YoloV4-pacsp 0.807 0.896

YoloV4-pacsp-x 0.788 0.896

EfficientDet 7D 0.880 0.904

EfficientDet 7DX 0.707 0.902

Table 1: Mean AP50:95 and AP50 of different models on

datasets

cluding object detection, instance segmentation and seman-

tic segmentation.

5.1. Spacecraft object detection

To serve as the benchmark for spacecraft object detec-

tion, we train object detection models such as various ver-

sions of YOLO [31, 32] or EfficientDet [33]. We use the

same training and evaluation settings as in their original

codes, except that we change the training input size of

YOLO models to 1280x1280, while testing size remains

the same (640x640). We initialise YOLO models with Im-

ageNet pretrained weights, and COCO pretrained weights

for EfficientDet models. All models were trained for 20

epochs (around 50000 iterations for EfficientDet). For eval-

uation metrics, we use meanAP [10] and meanAP50 [10].

As shown in Table 1, our experiments suggest that Efficient-

Det has better detection performance than the YOLO vari-

ants in the space-based scenario.

5.2. Spacecraft instance segmentation

To benchmark our dataset with state-of-the-art mod-

els for spacecraft instance segmentation, We use a variety

of segmentation models to test their performances on our

dataset, including HRNet [34], OCRNet [35], OCNet [36],

ResneSt [37] and DeepLabV3+ Xception [38]. We main-

tain as much as possible the original training settings as in

the respective papers, with some small dataset or hardware

specific adaptations. All models are trained with around

40 epochs (For HRNet, AspOCNet and OCRNet, we train

them with 13000-15000 iterations). The training batch sizes

for DeepLabV3+ Xception were 8 while the rest of models

had batch size 4. We use pixel accuracy (PixAcc) [39] and

mean intersection-of-union (mIoU) [40] to compare model

performances.

For ResneSt models, we use 3 different backbone

with DeepLabV3, including ResneSt101, ResneSt200 and

ResneSt269, with DeepLabV3 and an extra auxillary header

as segmentation head, so the loss is a weighted combina-

tion of losses between DeepLabV3 header output and aux-

illary header output. All input training images are cropped

to size 480 × 480, except for ResneSt269 which had input

size 420× 420.

Model PicAcc mIoU mIoU

(No BG)

DeepLabV3+Xception 0.965 0.78 0.714

ASPOCNET 0.972 0.803 0.744

OCRNet 0.972 0.802 0.742

HRNetV2+OCR+ 0.974 0.797 0.735

ResneSt101 0.977 0.822 0.767

ResneSt200 0.978 0.838 0.79

ResneSt269 0.977 0.835 0.786

Table 2: Performances of different state-of-the-art models

for whole spacecraft segmentation.

Model Body Solar panel Antena

DeepLabV3+ xception 0.767 0.802 0.575

ASPOCNET 0.800 0.842 0.588

HRNetV2+ OCR+ 0.814 0.856 0.533

OCRNet 0.803 0.839 0.585

ResneSt101 0.834 0.868 0.600

ResneSt200 0.842 0.878 0.640

ResneSt269 0.830 0.870 0.65

Table 3: mIoU by spacecraft parts in different models

For DeepLabV3+ with Xception, we use Resnet101 as

backbone for the model and crop the input image to size

513 × 513. Similar to ResneSt models, we use full images

instead of a crop for testing.

For HRNet, we use model HRNet48W OCR with pre-

trained HRNet48W as backbone. Similar to ResneSt mod-

els, we also use an extra auxillary head and weighted aux-

illary loss in this model. All original images and masks

are resized to 1024× 512 for training and 2048× 1024 for

validation, similar to how HRNet processes Cityscape Im-

ages. On the other hand, OCNet and OCRNet use Imagenet

pretrained weights Resnet101 as backbone. All models use

SGD as optimizer with weight decay.

Table 2 reports the segmentation results across differ-

ent methods on our dataset. Because a significant part of

the image is background, which does not contribute much

meaningful information and can affect the result of model

evaluations, we represent two mIoU results of including and

excluding the background class.

5.3. Spacecraft parts segmentation

Table 3 shows the performance of state-of-the-art models

segmenting spacecraft parts on our dataset. The body and

the solar panel of the spacecraft have been decently seg-

mented as reflected by mIoU. The performance for antenna

on the other hand, is fairly poor since they are quite un-

orthodox in shape and difficult to identify. Also, it is notice-

able that performance on solar panel is higher than the other

parts. This is because solar panels are oftentimes clearly

5



Model Pascal VOC City. City. val Ours

DeepLabV3+ Xception 0.890 0.821 0.827 0.714

ASPOCNET - 0.817 - 0.744

OCRNet 0.843 0.824 0.806 0.742

HRNetV2+OCR+ 0.845 0.845 0.811 0.735

ResneSt101 - 0.804 - 0.767

ResneSt200 - 0.833 0.827 0.790

Average 0.859 0.824 0.818 0.749

Table 4: mIoU of state-of-the-art models across different datasets, treating spacecraft parts as classes of objects.

Figure 5: Predicted parts masks from different models.

separated from the other two parts while antenna and main

bodies are in many cases embedded with each other.

Because our dataset is the first publicly available space

dataset for spacecraft segmentation, it targets different type

of objects in a unique scenario when compared to popu-

lar segmentation datasets such as Cityscapces [22] or Pas-

cal VOC [12]. Nonetheless, for the sake of benchmark-

ing the performance of space-based semantic segmentation

against other on-Earth scenarios, we compare performances

of state-of-the-art models across different datasets, by treat-

ing spacecraft parts as classes of objects for our dataset.

Table 4 reports the result of semantic segmentation on 4

datasets: Pascal VOC, Cityscapes, Cityscapes Val and our

dataset. Overall, the average mIoU of Earth-based datasets

are 6% to 11% higher compared to that of our dataset. It ap-

pears that current state-of-the-art models have inferior per-

formance when deployed directly to identify and segment

spacecraft parts.

In Figure 5 we provide a few qualitative results of our

dataset from models in Table 4. As we can see, the complex

structures in spacecrafts can result in precarious predictions

of the masks of parts. Additionally, all models struggle to

well identify the antenna of the spacecraft in the first row of

Figure 5, which complies with the mIoU scores in Table 3.

Overall, the task of space-based semantic segmentation

might not be directly solvable by models designed for on-

Earth scenarios. Our dataset thus serves to address this gap

by bringing novel challenges in this task.

6. Conclusion

We propose a space image dataset for vision-based

spacecraft detection and segmentation tasks. Our dataset

consists of 3117 space-based images of satellites and space

stations, with annotations of object bounding boxes, in-

stance and parts masks. We use a bootstrap strategy dur-
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ing dataset development to reduce manual labors. We con-

duct experiments in object detection, instance and semantic

segmentation using state-of-the-art methods and benchmark

our dataset for future space-based vision research.
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