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Abstract

Being capable of estimating the pose of uncoopera-

tive objects in space has been proposed as a key asset

for enabling safe close-proximity operations such as space

rendezvous, in-orbit servicing and active debris removal.

Usual approaches for pose estimation involve classical

computer vision-based solutions or the application of Deep

Learning (DL) techniques. This work explores a novel DL-

based methodology, using Convolutional Neural Networks

(CNNs), for estimating the pose of uncooperative space-

crafts. Contrary to other approaches, the proposed CNN

directly regresses poses without needing any prior 3D in-

formation. Moreover, bounding boxes of the spacecraft in

the image are predicted in a simple, yet efficient manner.

The performed experiments show how this work competes

with the state-of-the-art in uncooperative spacecraft pose

estimation, including works which require 3D information

as well as works which predict bounding boxes through so-

phisticated CNNs.

1. Introduction

In recent years, more and more space mission scenarios

have involved close-proximity operations with uncoopera-

tive space objects such as space debris (e.g. active debris

removal), out-of-order satellites (in-orbit servicing) or even

comets and asteroids (space exploration).

In these scenarios, a chaser spacecraft seeks to approach

then to capture or to dock at a target orbiting space ob-
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Figure 1. Example of a spacecraft bounding box detection by LSP-

net. The bounding box is constructed based on the central red dot

yielded by LSPnet.

ject, that is uncooperative. In other words, the latter is

not communicating any information to the former, either

actively (e.g. by radio communication) or passively (e.g.

by featuring a fiducial marker) [14]. In this context, most

space relative navigation methods first require to estimate

the relative position and attitude, referred to as pose, be-

tween both spacecrafts, then to track the relative pose over

time using previous estimations [3]. To enable autonomous

close-proximity operations in space with uncooperative tar-

gets, robust and efficient on-board pose initialization solu-

tions are required. To this end, several vision-based works

propose to use active sensors such as Light Detection and

Ranging (LIDAR) [13, 10]. Despite their demonstrated effi-

ciency, such sensors remain heavy and high-power consum-

ing. On the contrary, relying on a single monocular camera

has the advantage of complying with strict power and mass



requirements relating to space missions, while ensuring a

low level of system complexity [3]. However, computing

the pose of a known uncooperative object from a single

monocular camera is a challenging task. First of all, the

target object in the field of view of the camera can be de-

picted in a wide range of different scales, depending on the

target’s size and on the distance to the chaser spacecraft.

Secondly, in a large number of cases, it is necessary to deal

with cluttered backgrounds introduced by the Earth which

can heavily complicate the task of pose estimation. Finally,

due to the nature of the input data, a target detection step

over the captured image is desired to reliably perform ori-

entation estimation as in the latest Satellite Pose Estimation

Challenge (SPEC) [8]. The downside of including a detec-

tion step is the increase in the solution complexity as well

as the decrease of its computational efficiency.

The solution proposed herein, named 2D Localization-

oriented Spacecraft Pose Estimation Neural Network (LSP-

net), deals with the aforementioned challenges while re-

maining simple and efficient. Our work takes advantage

of the Deep Learning (DL)-based advances in Computer

Vision by implementing a Convolutional Neural Network

(CNN). In contrast to the common approach of implement-

ing an object detection network (such as YOLO [18] or

Faster-RCNN [19]) for the detection step, our approach is

capable of yielding a simple bounding box in a straight-

forward manner. Additionally, a 2D-localization process is

developed in order to aid the part of the network respon-

sible for 3D position estimation. In other words, LSPnet

learns how to estimate the spacecraft position while being

driven by an auxiliary network which detects the center of

the spacecraft in the image. Finally, combining the pre-

dicted position into the center detection network, a region of

interest (ROI) crop (see Figure 1) is performed and used as

input for orientation estimation, thus yielding the full pose

of the uncooperative target spacecraft. Figure 2 presents a

high-level overview of LSPnet as well as the connections

between its modules.

The remainder of the paper is organized as follows: Sec-

tion 2 reviews the related literature on spacecraft pose esti-

mation. Section 3 formulates the problem and the proposed

approach. Section 4 describes and discusses the experimen-

tal evaluation. Lastly, Section 5 concludes the paper.

2. Related work

Spacecraft pose estimation from a single monocular

camera has extensively drawn techniques from Computer

Vision literature. Thus, we provide an overview of the dif-

ferent approaches that appear in space applications.

2.1. Model­based approaches

Many pose estimation methods rely on a 3D model of

the target spacecraft. One of the most proposed approaches

Figure 2. High-level architecture overview of the proposed LSP-

net. Given an input image with a target spacecraft, LSPnet yields

its position and orientation as well as a bounding box. Highlighted

in green are the parts of LSPnet aimed towards position estimation,

in red the ones aimed towards orientation estimation while in blue

are the parts which support both tasks.

consists in matching the 2D input image with a 3D wire-

frame of the spacecraft. To do so, visual features are ex-

tracted from the image then matched to their corresponding

elements in the wireframe. In these cases, the final pose

is obtained by solving the Perspective-n-Point (PnP) prob-

lem. The features used to solve PnP vary between interest

points (keypoints), corners, edges and depth maps. Classi-

cal works use handcrafted Computer Vision filters to detect

these features such as Canny and Sobel filters [11, 5]. State-

of-the-art in handcrafted Computer Vision filtering extracts

a range of different features which are afterwards fused into

a dense feature representation [2].

In addition to keypoint-based solutions which aim to

predict the pose by performing 2D-3D matching, there are

other approaches that also rely on the spacecraft 3D model.

Another common model-based approach is to minimize the

projection error defined as the misalignment between the

spacecraft in the image and the projected 3D model by the

predicted pose. These approaches require an initial pose

which is afterwards refined through a projection error min-

imization process. For instance, the work of [6] first initial-

izes a rough pose by means of feature matching and then

refines it through a multi-dimensional Newton-Raphson al-

gorithm used to minimize a projection error. Similarly, the

work of [21] fuses a weak gradient elimination technique

to detect finer features and estimates the pose based on a

Newton-Raphson projection minimization fashion.

2.2. Appearance­based approaches

In comparison to feature-based methods, some ap-

proaches rely on directly exploiting the appearance of

the spacecraft in the image. To the best of our knowl-

edge, the only appearance-based method using a monoc-



ular camera for spacecraft pose estimation is the work of

[22]. This method performs Principal Component Analy-

sis (PCA) over the spacecraft present in a query image in

order to match it to a dataset of stored images with their

corresponding pose ground truths. By performing PCA,

they drastically reduce the dimensions of the dataset. De-

spite this, the proposed method still requires to compare the

query image to each entry of the stored dataset, thus making

it not scalable [3].

2.3. Deep Learning­based approaches

In recent years, there has been a clear trend to rely on

DL techniques in order to perform spacecraft pose estima-

tion. The latest SPEC challenge [8] informs of a clear dom-

inance in DL-based solutions among the participant teams.

Following this trend, several works aim to directly regress

the pose of the spacecraft through CNNs such as the Space-

craft Pose Network (SPN) presented in [20], the network

proposed in [17] or the off-the-shelf GoogLeNet CNN [25]

implemented in [16]. The recent work of [24] implements

a double VGG architecture [23] to directly regress transla-

tion and rotation over a synthetic dataset as well as over a

laboratory-acquired dataset simulating an on-orbit assem-

bly operation. Deep Learning techniques offer great robust-

ness against different lighting scenarios as well as robust-

ness against cluttered backgrounds [9]. Other works com-

bine Deep Learning with classical approaches, e.g. Deep

Learning keypoints regression combined with PnP solving.

The works of [4, 15, 1] all perform a first step of zooming in

into a ROI yielded by an Object detection neural network.

Afterwards, [4, 1] regress a set of manually selected key-

points while [15] regresses the corners of the target space-

craft in an ordered manner to avoid additional matching

computations. Keypoint-based pose estimation solutions

are generally robust and accurate provided that high qual-

ity 2D-3D correspondences can be obtained beforehand.

Variations in lighting conditions as well as occluded key-

points can heavily impact pose accuracy. Fortunately, Deep

Learning-based techniques have proven to efficiently han-

dle these scenarios thanks to their generalization capabili-

ties [9].

3. Proposed approach

Formally, the problem statement of this work is the pre-

diction of the object’s pose, i.e. the pose of O, relative to

the camera frame C. In other words, the goal of the pre-

sented scenario is to predict the origin of the object’s refer-

ence frame as well as its axes with respect to the camera’s

reference frame. This goal is achieved by estimating both

the translation vector t = (x, y, z) and the rotation matrix

R which transforms the reference frame of C into the refer-

ence frame of O. Both t and R are expressed in the camera

basis meaning that the z coordinate of the translation vec-

Figure 3. Architecture overview of the Translation module for the

prediction of the 3-dimensional translation vector, t = (x, y, z),
as well as for the prediction of the pixel coordinates center of O,

(u, v).

tor expresses the distance to the object O. The rotation R,

which is expressed as a 3 × 3 orthogonal real matrix, can

also be represented by a quaternion q = (q1, q2, q3, q4) with

unit norm. In doing so, several advantages appear such as

eliminating the gimbal lock problem as well as encoding

the same rotation using only 4 values instead of 9. The

quaternion q encodes the same rotation through a closed-

form mathematical formulation of a rotation axis and the

angle to apply around the rotation axis. Given an input im-

age I which depicts a target spacecraft obtained through

a monocular visual sensor, composed by a single channel

(gray) or by three channels (red, green and blue), and given

the here designed Deep Learning network LSPnet with op-

timized weights w, then LSPnet(I, w) = (t, q).

LSPnet is formed by three interconnected CNNs (named

Position, Localization and Orientation) as depicted in Fig-

ure 2. When grouping together the Position and Localiza-

tion CNNs they can be referred to as the Translation module

due to their collaborative behavior for optimizing the pre-

dicted translation t. Once the Orientation CNN is connected

to the Translation module, a full Pose estimation module is

formed. The following sections cover the Translation mod-

ule, the complete Pose module, a connection variation be-

tween the two modules and a specifically designed data aug-

mentation technique.

3.1. Translation module

Based on the successful CNN architecture named Unet

[26], popularly used for image segmentation, as well as

based on the scalable ResNet [7] architecture, famous for

its breakthrough success in image recognition, we combine

both methodologies into a unified CNN which composes



the Translation module. We cast the goal of the Unet ar-

chitecture, i.e. image segmentation, into pixel coordinates

regression through the inclusion of the transformation titled

Differentiable spatial to numerical transform (DSNT) [12].

DSNT is designed to be a non-trainable Neural Network

layer for transforming heatmaps into 2-dimensional coordi-

nates in a differentiable manner, thus avoiding a direct de-

coupling of the predicted heatmaps from the loss function to

be optimized. Combining the 2D spatial information con-

servation capability of Unet, the scalability of ResNet and

the relevance in coordinates regression of DSNT, the final

Translation module is formed. Figure 3 offers an overview

of the here described architecture for regressing the trans-

lation t = (x, y, z) as well as the pixel coordinates (u, v)
which localizes the position of the object O in the image.

For practical reasons, the ground truth (u, v) values can be

derived from projecting the ground truth coordinates x and

y from the translation vector into the image plane. In this

case the pixel coordinates (u, v) represent the center of the

object’s reference frame in the image pixel space.

Given the input image I , ResNet extracts an embedding

which encodes 2D spatial information related to the target

spacecraft. The extracted embedding is transferred through

two different paths. First of all, a Neural Network (NN)

formed by Fully Connected and ReLu layers is responsi-

ble for predicting the translation vector t. The second path

connects to an upscaling CNN responsible for transform-

ing the embedding back to the original size of the input I .

This CNN makes use of upscaling layers followed by con-

volutional layers to increase the size of the embedding until

reaching the original size. Additionally, following the Unet

architecture, intermediate tensors from ResNet are concate-

nated into intermediate layers of the upscaling CNN. These

connections are also known as skip connections. It is sur-

mised that, through the use of these skip connections, dif-

ferent scales of the target spacecraft depicted in the image

can be efficiently handled. The reason for this comes from

the fact that the skip connections happen at different layers

of ResNet, and thus the visual receptive field at each skip

connection is different (from small to big scale features be-

ing captured). Once the embedding has been upscaled to

the original size, it is convoluted to only present one chan-

nel and, afterwards, it is normalized. This normalized one-

channel image corresponds to a heatmap representing the

probabilities in the image for the pixel coordinates (u, v) of

the spacecraft’s center. DSNT takes as input this normalized

heatmap and regresses (u, v). This same DSNT layer is the

responsible for inducing the upscaling CNN towards pre-

dicting meaningful heatmaps. The upscaling CNN, which

focuses on localizing the center of the spacecraft in the im-

age pixel space, induces a localization-oriented training to

ResNet when optimizing the embedding for translation es-

timation.

3.2. Pose module

The Pose module is built on top of the Translation mod-

ule. Given the architecture as well as the outputs of the

Translation module, the Pose module requires several com-

ponents extracted from the former in order to estimate the

quaternion q. First of all, the predicted pixel coordinates

(u, v) are taken and further processed in order to find a ROI

and zoom over it. This ROI crop, yielded by a straightfor-

ward bounding box technique, is used for the estimation of

the orientation through a ResNet CNN. The technique used

for predicting the bounding box is as follows:

1. The center of the bounding box in the image I corre-

sponds to the predicted pixel coordinates (u, v).

2. The bounding box always takes the shape of a square

which should contain the spacecraft (on its entirety if

possible).

3. Knowing that the bounding box is a square, the only

unknown variable left to estimate is its side length.

Taking the predicted distance from the camera to the

object, encoded in the z component of the translation

vector t in meters unit, a scaling transformation is ap-

plied as follows

BBL =
KO

z
(1)

where BBL is the length of the square bounding box

in pixels and KO is a constant parameter in pixels ×
meters unit which depends on the spacecraft being

processed in the image.

The hyperparameter KO needs to be fine-tuned depending

on each spacecraft object O. This parameter encodes the

size of the spacecraft in relation to the camera parameters.

The predicted bounding box lets LSPnet zoom in into a ROI

which has a significantly higher signal to noise ratio. Fi-

nally, the cropped ROI is then rescaled to a fixed size in

order to process it through a ResNet CNN responsible for

the regression of the orientation in quaternion form. Note

how the proposed bounding box technique presents the ad-

vantage of not requiring any object detection ground truth

labels. It is worth mentioning that after ResNet yields a 4-

dimensional vector (in combination with Fully Connected

and ReLu layers), it is normalized to impose the predicted

quaternion to have unit norm. In addition to the here de-

scribed methodology for estimating the orientation, a neural

network data-flow connection can be added to the Orienta-

tion CNN in hopes of improving its accuracy.

3.2.1 Heatmap Concatenation

Prior to performing the ROI crop, i.e. when taking the pre-

dicted bounding box and zooming on it over the input im-



Figure 4. Diagram of the full Pose module pipeline which includes HC. For architectural details of the Translation module refer to Sec-

tion 3.1 and to Figure 3.

age I , the H non-normalized heatmaps yielded by the Lo-

calization CNN (which are afterwards combined into a sin-

gle normalized heatmap) can be concatenated channel-wise

into the image I . For better clarification through the rest

of the paper, we label this process as Heatmap Concatena-

tion (HC). This technique offers the Orientation CNN an

input tensor with H +CI channels where CI is the number

of channels of I . By implementing HC we are creating a

differentiable data-flow from the Orientation CNN into the

whole Translation module. This in turn means that LSP-

net can be entirely optimized at the same time in a fully-

differentiable manner. An ablation study presented in Sec-

tion 4.1. offers insights on the impact of including HC on

LSPnet. Figure 4 shows a diagram of the connections be-

tween the Translation module and the Orientation CNN in

order to compose the final Pose module pipeline which in-

cludes HC.

3.2.2 Center Data Augmentation

Due to the nature of the bounding box methodology, a spe-

cialized data augmentation technique, which we name Cen-

ter Data Augmentation (CDA), can be implemented in order

to significantly increase the data variance offered to the Ori-

entation CNN. The implemented data augmentation tech-

nique proposes a new bounding box based on the predicted

one as follows

uaug = u+N (0, BBL ∗ r) (2)

vaug = v +N (0, BBL ∗ r) (3)

BBLaug = BBL (4)

where (uaug, vaug) is the center of the augmented bounding

box, BBLaug is the augmented bounding box length and

r is a fixed hyperparameter such that r ∈ R and r > 0.

The hyperparameter r encodes the dispersion added to the

center coordinates in relation to the length of the bounding

box. To ensure that the augmented bounding box offers a

high signal to noise ratio then small values of r should be

selected. An example of the results of CDA is depicted in

Figure 5. It is worth remarking how CDA is able to provide

challenging samples (due to truncated spacecrafts) as well

as high signal to noise ratio samples as seen in Figure 5. To

conclude, both HC and CDA are fully compatible and can

be combined in hopes of further enhancing LSPnet.

4. Experiments

A series of trainings and experimental setups have been

carried out using the Spacecraft Pose Estimation Dataset

(SPEED) [20]. This dataset offers a set of 12, 000 gray-

scale pose-labeled synthetic images of size 1200 × 1920
portraying a spacecraft in space. The rendered images cover

a wide range of different distances from the camera to the

satellite (from 5m to 40m approximately). The SPEED im-

ages randomly include a realistically rendered Earth on the

background, offering a series of challenging samples to pre-

dict. The labels for the test set of SPEED have not been

disclosed meaning that any comparison done with results of

SPEED will not be based on the same test set. Assuming

the test set of SPEED follows the same data distribution as

its train set, and in hopes of estimating the performance that

LSPnet would obtain over the test set, a fixed random split

of 10, 000 and 2, 000 images is performed. All the carried

trainings share the following common parameters:

1. Batch size of NB = 16 samples

2. Input images are rescaled to 256 × 409 pixels (thus

maintaining the aspect ratio)



Figure 5. Data augmentation technique, named CDA, for augmenting the bounding boxes extracted from the outputs of the Translation

module. The depicted example uses a value of r = 0.15 meaning that the standard deviation of each Normal distribution equals to 15% of

the bounding box length.

3. Adam optimizer with a learning rate of 1e− 4

4. Learning rate decay of 1/2 based on reaching a loss

plateau

5. Train for as many epochs as needed until convergence

6. When HC is implemented, a total of H = 64 non-

normalized heatmaps are predicted by the Localization

CNN

7. When CDA is implemented, the hyperparameter r is

fixed to 0.15

The loss function used to optimize the prediction of t is

the Mean Squared Error (MSE) loss which is presented in

the following equation

Lposition = MSE(t, t̂) =
1

NB

NB∑

i=1

(ti − t̂i)
2 (5)

where t is the batch of ground truth translation vectors, t̂ is

the batch of predicted translation vectors, NB is the batch

size and ti (t̂i respectively) corresponds to the i-th transla-

tion vector within the batch.

Regarding the optimization of (u, v), the loss function

selected is the one proposed in the work of DSNT [12]

which is formulated as follows

Leuc(c, ĉ) = ||c− ĉ||2 (6)

Lreg(ĥ, ĉ) = D(ĥ||N (ĉ, σ2 ∗ I2)) (7)

Lcenter =
1

NB

NB∑

i=1

Leuc(ci, ĉi) + λLreg(ĥi, ĉi) (8)

where c is the batch of ground truth centers (u, v), ĉ is the

batch of predicted centers (û, v̂), || · ||2 is the 2-norm, ĥ

is the batch of predicted normalized heatmaps, D(·||·) is a

divergence measure, I2 is the 2×2 identity matrix, NB is the

batch size and ci (ĉi, ĥi respectively) corresponds to the i-th

element within the batch. Based on experimental findings of

[12], the hyperparameters σ2 and λ have been fixed to 1 and

the divergence measure D(·||·) has been selected to be the

Jensen-Shannon divergence. Combining both Equations (5)

and (8), the final loss for the Translation module is formed

Ltranslation = Lposition + Lcenter (9)

Following common practice for optimizing quaternion esti-

mation, the following loss has been implemented

Lrotation =
1

NB

NB∑

i=1

2 ∗ arccos(| < qi, q̂i > |) (10)

where NB is the batch size, < ·, · > represents the dot prod-

uct, |·| is the absolute value function and qi (q̂i respectively)

corresponds to the i-th quaternion within the batch. Finally

the complete loss for optimizing LSPnet entirely, i.e. the

Pose module, is formulated as

Lpose = Ltranslation + Lrotation (11)

A set of ablation studies have been performed in hopes of

finding a highly performing LSPnet architecture specifica-

tion. The following sections cover the performed ablation

studies as well as a final comparison with state-of-the-art

over the SPEED dataset. The error metrics used throughout

the following sections are formalized here

Ec =
1

N

N∑

i=1

|tci − t̂ci |, with c ∈ {x, y, z} (12)

Et =
1

N

N∑

i=1

|ti − t̂i|2 (13)



Table 1. LSPnet ablation study covering Orientation CNN initialization as well as HC and CDA implementation.

Orientation CNN init. HC CDA Et Eq (deg)

Random ✗ ✗ 0.519± 1.0470.519± 1.0470.519± 1.047 36.13± 41.23
ImageNet ✗ ✗ 0.519± 1.0470.519± 1.0470.519± 1.047 22.36± 37.33
Random ✓ ✗ 0.588± 1.187 33.22± 38.78

ImageNet ✓ ✗ 0.602± 1.136 37.64± 41.11
ImageNet ✗ ✓ 0.519± 1.0470.519± 1.0470.519± 1.047 15.70± 23.6115.70± 23.6115.70± 23.61
Random ✓ ✓ 0.596± 1.106 33.05± 36.38

Table 2. Ablation study on Localization CNN enhancing the trans-

lation estimation task when connected to Position CNN.

Localization CNN Ex Ey Ez Et

✗ 0.0571 0.0573 0.519 0.539
✓ 0.05510.05510.0551 0.05580.05580.0558 0.4980.4980.498 0.5190.5190.519

Table 3. Position CNN initialization study.

Initialization Ex Ey Ez Et

Random 0.0746 0.0816 0.666 0.694
ImageNet 0.05510.05510.0551 0.05580.05580.0558 0.4980.4980.498 0.5190.5190.519

Eq =
1

N

N∑

i=1

2 ∗ arccos(| < qi, q̂i > |) (14)

where N is the size of the dataset being evaluated and tci
(t̂ci respectively) corresponds to the coordinate value c (x, y
or z) of the i-th translation vector within the dataset. If not

specified otherwise, Ec and Et are expressed in meters (m)

while Eq is expressed in radians (rad).

4.1. Ablation studies

During all the ablation studies performed, both CNN ar-

chitectures for the Position CNN and the Orientation CNN

have been fixed to ResNet18. Based on the following

findings, the best performing configuration is selected and

scaled up to ResNet50 before comparing to state-of-the-art.

It has been surmised that the Localization CNN aids the

Position CNN in the process of translation estimation. To

shed light on this claim, Table 2 presents translation results

when using Position CNN alone in comparison to includ-

ing the Localization CNN. Note that both architectures have

been initialized with ImageNet weights to ensure fair com-

parison. A slight decrease in translation error points to the

idea that Localization CNN aids, to some extent, the trans-

lation estimation task.

Once Localization CNN has been found to aid in opti-

mizing the predictions of t, a brief comparison between Im-

ageNet initialization and Random initialization of the Posi-

tion ResNet weights has been performed and can be found

in Table 3. Having fixed the initialization of the Position

CNN to ImageNet weights, due to its highly positive im-

pact, a complete ablation study has been carried covering

the following architectural and training decisions: (1) Ori-

entation CNN initialization, (2) implementation of HC and

(3) implementation of CDA. Table 1 presents all the re-

sults obtained during this complete ablation study. Note that

when HC is not implemented the Translation module used

is the best one obtained among Table 2 and Table 3. Also

note that not all the possible combinations have been tested.

This is due to the findings that have been extracted through-

out the ablation study process which are the following,

• Similarly to Position CNN initialization, Orientation

CNN ImageNet initialization significantly improves

rotation estimation when not including HC, i.e. when

the input is only composed by the ROI crop.

• It has been found that when HC is implemented, and

thus the input of the Orientation CNN is a tensor with

H + CI channels, ImageNet initialization negatively

impacts the orientation performance. This can be jus-

tified due to the drastically different data distributions

from ImageNet with respect to the non-normalized

heatmaps predicted by the Localization CNN. In this

sense a random initialization is more fitting to the spe-

cialized data distribution introduced by such heatmaps.

• Based on the previous findings, the remaining config-

urations worth testing are ImageNet initialization with

CDA as well as Random initialization with both HC

and CDA.

• It is also found that when training the full Pose module

at the same time, meaning that HC is implemented to

enable an end-to-end differentiable training, the trans-

lation error slightly increases. This is due to the fact

that in this scenario the Translation module has to be

optimized to both predict the translation vector t as

well as transfer orientation-meaningful heatmaps to

the Orientation CNN. When no HC is implemented

the Translation module is completely decoupled from

orientation estimation and thus it is solely trained for

position-related tasks.



Table 4. SPEC results and comparison.

Rank Team Et Eq (deg) PnP

1 UniAdelaide [4] 0.032 ± 0.095 0.41± 1.50 Yes

2 EPFL cvlab 0.073 ± 0.587 0.91± 1.29 Yes

3 pedro fairspace [17] 0.145 ± 0.239 2.49± 3.02 No

- SLAB Baseline [15] 0.209 ± 1.133 2.62± 2.90 Yes
...

...
...

...
...

7 Gabrie1A 0.318 ± 0.323 12.03± 12.87 No

- LSPnet (Ours) 0.456 ± 1.010 13.96± 20.13 No

8 stainsby 0.714 ± 1.012 17.75± 22.01 No

9 VSI Feeney 0.734 ± 1.273 23.42± 33.57 No

10 jblumenkamp 2.656 ± 2.149 35.92± 49.72 Yes

Table 5. SPN and LSPnet comparison results.

Model Ex Ey Ez Eq (deg)

SPN [20] 0.055 0.046 0.78 8.438.438.43
LSPnet (Ours) 0.0480.0480.048 0.0450.0450.045 0.440.440.44 13.96

• Lastly, when randomly initializing the Orientation

CNN, only implementing HC improves orientation re-

sults at the expense of slightly worsening the trans-

lation results. Furthermore, when implementing both

HC and CDA the orientation results very slightly im-

prove (and the translation error slightly increases).

Overall, the best performing configuration found does

not implement HC, implements CDA and initializes the Ori-

entation CNN with ImageNet weights. Such combination

means that the translation and orientation tasks are better

optimized by LSPnet when decoupled. It is worth noting

how CDA greatly improves orientation estimation.

4.2. State­of­the­art comparison

Given all the architectural decisions taken based on the

presented ablation studies, the best performing LSPnet is

chosen and compared to the SPEED state-of-the-art. A first

comparison is performed with the SPN network proposed in

the same SPEED work [20]. Table 5 presents the obtained

comparisons. LSPnet significantly surpasses SPN in depth

estimation (z coordinate of the translation vector). SPN, on

the other hand, is capable of predicting more accurately the

rotation quaternion q. For fair comparison, it is needed to

highlight the fact that SPN relies on 3D information, per-

forms Object detection through an off-the-shelf Object de-

tection Deep Learning model and refines the predicted pose.

Conversely, LSPnet achieves competitive results without re-

quiring any of the aforementioned characteristics. The final

comparison is done thanks to the latest SPEC challenge [8]

which also relied on the SPEED dataset. For this reason, the

results presented in SPEC are fit to be referenced in order to

localize LSPnet into the uncooperative spacecraft state-of-

the-art for pose estimation. The SPEC challenge involved

nearly 50 teams working towards pose estimation on the

SPEED dataset for 5 months. Table 4 shows the obtained re-

sults by LSPnet in the context of the top 10 ranking teams of

SPEC. LSPnet can be ranked at the top 8 position. Accord-

ing to SPEC, a total of seven teams reconstructed the 3D

model of the spacecraft to further use it in a keypoint-based

solution (e.g. in combination with a PnP solver). SPEC

also found that a recurring technique across the teams is the

detection of the spacecraft in the image through Object de-

tection Deep Learning models (such as YOLO) or through

image segmentation. Moreover, pose refinement steps can

also be found among the teams (e.g. [4]). LSPnet is ca-

pable of ranking top 8 while not relying on any 3D infor-

mation, not refining the pose and implementing a simple

yet efficient Object detection technique (easily augmented

by CDA). Note that even though we are directly comparing

LSPnet results with SPEED state-of-the-art results, our re-

sults are based on a different test set. This means that all

the comparisons done through this section should be taken

as indications of how LSPnet performs with respect to the

state-of-the-art.

5. Conclusions

The goal of the here presented work is to provide the

space literature with a simpler yet still effective solution for

pose estimation of uncooperative spacecrafts which does

not require prior 3D information nor involves pose refine-

ment. Additionally, the proposed model is capable of gener-

ating bounding boxes without relying on a complex Object

detection model and without needing bounding boxes labels

(only requiring translation ground truths). It is shown how

LSPnet achieves comparable results with respect to SPEED

state-of-the-art. Extensions of this work may target space-

craft generalization as well as pose tracking.
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