
SPACESeg: Automated Detection of Bed Junction Morphologies Indicating Signs

of Life in Ediacaran Period

Padmaja Jonnalagedda†*, Rachel Surprenant§, Mary Droser§, Bir Bhanu†

Dept. of Electrical And Computer Engineering†, University of California Riverside

Dept. of Earth and Planetary Sciences§, University of California Riverside

{sjonn002, rsurp001, droser, bir.bhanu}@ucr.edu

Abstract

With Perseverance out looking for life on Mars, we iden-

tify the need to equip ourselves with automated techniques

for remote assessment of geological information. The first

step in this translational research is studying early signs of

life on Earth. More specifically, we examine the Ediacaran

sedimentological record of the Flinders region in Australia,

whose unique bed ripple junction morphologies have been

determined as the definite indicators of early life on Earth.

We propose an automated technique, SPACESeg, that ro-

bustly detects the artifact-clouded, miniature ripple struc-

tures from cross-sectional views of the Ediacaran rocks.

We demonstrate the efficacy of SPACESeg in precisely ex-

tracting the desired structures with high accuracy, outper-

forming many techniques. We also establish the robustness

of this technique as it extracts desired biosignatures from

drastically varying image conditions, even when the ripples

comprise of < 1 % of the image around significant artifacts.

We provide quantitative and qualitative analysis and com-

pare our method against many unsupervised rule-based and

supervised deep learning methods, outperforming them all.

1. Introduction

The story of the origin and evolution of life on Earth is

held within the natural archive of Earth’s geologic record

which contains the fossils and sedimentological signals nec-

essary to develop our understanding of early evolution on

Earth [36, 35]. In turn, study of this terrestrial record can

provide valuable pointers for identifying life on other plan-

ets. The terminal Ediacaran Period is most well-known

for its exceptional preservation of the first multicellular,

community-forming organisms on Earth, known colloqui-

ally as the Ediacara Biota (574 - 539 Ma) [5, 19]. Not only

do the Ediacara Biota hold broad significance as the first

complex animals on Earth, the Ediacaran sedimentological
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Figure 1: Illustration of cyclic depositional processes under

modern and Ediacaran marine conditions (left) and subse-

quent sedimentary cross-sections (right). A) Modern condi-

tions, no organic mat and the unstabilized seafloor; a. an es-

tablished modern marine population; b. erosion of the pop-

ulation and top-most rippled surface during a storm event; c.

deposition of a new sediment layer during the same storm;

d. re-establishment of marine population on storm deposits

followed by its erosion and top-most rippled surface dur-

ing a second storm; e. deposition of new sediment during

the second storm. B) Ediacaran conditions, the seafloor is

covered and stabilized by organic mats; a: an established

Ediacaran ecosystem; b. deposition of sediment during a

storm event forming Double-Rippled Bedform (DRB); c.

re-establishment of a new macrobiota community on the

DRB; d. subsequent storm event resulting in stacked DRBs.

record is unique because the ripples on seafloor were stabi-

lized by ubiquitous organic mats. Therefore, each storm

event filled in the ripples instead of eroding them, sub-

sequently creating ”Double-Rippled” Bedforms (DRBs or

”ripples”) between consecutive storms. This resulted in

a sedimentological record composed of stacked, discrete

storm events with ripples on the top- and bottom-most sur-

faces (Fig. 1) [19]. This sedimentological record is unique

to Ediacaran rocks that preserve organic surfaces and is,

therefore, identified as a distinct and definitive biosigna-



ture. The detection of rippled biosignatures undoubtedly

indicates the presence of past life. Thus we propose an

automated technique, called ”Scene-aware Perception Au-

tomation using Composite Embedding for Segmentation”

(SPACESeg) which analyzes the terrain cross-sections to

detect the DRBs.

To develop a remote methodology for identifying the

presence of these organic mat biosignatures, we turn to the

Ediacara Member of the Rawnsley Quartzite in the Flinders

Ranges of South Australia. There are multiple localities

in the Flinders Ranges that preserve extensive outcrops of

the Ediacara Member wherein meters of stratigraphic sec-

tion are characterized by double-rippled bedforms [8]. In

order to tap into the astrobiological and paleobiological po-

tential of DRBs, an objective method of recognizing and

characterizing cross-sectional bed junction morphologies

of mat-dominated bedforms is needed first. The automa-

tion of organic mat cross-sectional identification and subse-

quent analysis directly contributes to the study of the evo-

lution of multicellular life on Earth. Modeling the param-

eters using the unequivocally biotically-mediated sedimen-

tary structures from the Ediacaran Period will provide a use-

ful tool for identifying less well-developed biologically im-

portant sedimentological signatures in rocks of the deeper

Precambrian. Furthermore, our research can be translated

to remotely recognize biologically-mediated sedimentary

structures on other planets - thereby allowing for the de-

tection and recognition of astrobiologically significant out-

crops that have potential to identify the presence of past-life

elsewhere in the Universe. This is in line with the main goal

of the Mars 2020 Perseverance rover, which NASA states is

to ”Seek signs of ancient life and collect samples of rock

and regolith for possible return to Earth” [7]. Our algorithm

can be trained to analyze the images taken by Perseverance

of geological features on Mars to recognize the presence

or absence of the definitively biologically-mediated double-

rippled bedforms, allowing for the rapid, remote and quanti-

tative identification of astrobiologically significant outcrops

on Mars that warrant further assessment.

As a computer vision task, the automated detection for

DRBs poses many challenges. In addition to the cross-

sectional morphology of DRBs being diverse, the data are

very limited and the field of view is highly variable. The

characteristic bed junction morphology of DRBs is very

thin, which adds to the challenges. Furthermore, there are

no set standards for image resolution, time of the day (lo-

cation of sun, intensity variations, haze etc.), perspective

frame of reference or external artifacts, among other vari-

ables. While these constraints pose a challenge for the de-

velopment of automated methods, a robust methodology

that can overcome these extraneous variables will be most

well-suited for extended application to the study of bed

junction morphologies in geological cross-sections in dif-

ferent regions on Earth, in other time periods, and on other

planets. We propose a hybrid model (SPACESeg) based on

rule-based optimization (Composite-image Optimized Re-

gion Activation or CORA) and Saliency Guided Encoder

(SGE) to achieve a bed junction segmentation. SPACE-

Seg adapts to and leverages varying local terrain properties

while rejecting perceptually inconsequential features. The

benefit of such a model is that it operates with limited do-

main information and a diverse dataset, while being adapt-

able to incrementally increasing data availability.

The design of SPACESeg tackles a lot of practical prob-

lems in computer vision tasks such as the variation in imag-

ing conditions - both device and atmospheric, limited quan-

tity and quality of data and diversity of feature set of real-

world settings. In addition to these, SPACESeg’s detection

algorithm places an importance on perceptual quality as op-

posed to statistical similarity in feature space. As an ex-

ample, the bed ripple junctions are almost visually indistin-

guishable from shadows. However, the shadows provide no

usable information in the characterization of the ripples as

they have no biotic origin. Thus, we develop our method

so it can distinguish between the information-rich ripples

and the low-entropy shadow artifacts. With the increas-

ingly practical applications of smart computational tech-

nologies, techniques such as SPACESeg can be invaluable

in extracting and distinguishing usable information from vi-

sually similar and useless artifacts.

2. Related Work and Contributions

2.1. Related Work

In Astrobiology and Geology: The unique window into

early life and its impact on the environment provided by

the Ediacaran fossil record has garnered substantial atten-

tion, with extensive and active research being conducted

on Ediacaran organic surfaces [9, 10, 34, 37, 25]. The de-

velopment of a methodology to consistently and correctly

identify and describe the sedimentological impact of or-

ganic mats has been brought to attention [22], though so-

lutions have thus far focused on the microscopic charac-

terization of microbial fabrics or the subjective identifica-

tion of discrete organically-induced morphological features

[3, 23, 29]. This process is tenuous and is not universally

agreed to represent definitive biosignatures, thus limiting

their paleobiological and astrobiological utility. The identi-

fication and quantitative characterization of the established

double-rippled bedforms utilizing nothing more than a stan-

dard digital camera provides a rapid, low-cost, and easily

replicated process for characterizing surfaces that otherwise

evade objective definition.

In Computer Vision and Machine Learning: Seman-

tic segmentation has been one of the most widely researched

area of computer vision. There exists a wide array of



traditional and deep network methods proposed for seg-

mentation [2, 21, 14, 31, 38, 39] and boundary detection

[24, 33, 15, 1]. Specifically, there has been attention to-

wards scene-aware segmentation [38], concrete crack de-

tection [39] that could potentially translate to our research.

However, little precedent exists for the computer-based

identification of cross-sectional bed junction morphologies

on Earth, let alone on another planet. With increasingly

accessible technology, geologists have focused efforts on

producing work-flows for the 3D visualization of outcrops,

allowing for the field to be brought back to the lab, but still

relying on human inference to interpret and gather data from

these models [6, 16]. Secondary focus has been placed on

utilizing computer vision and image analysis methods in

the Geosciences, using these methods to characterize sed-

iment particle movement [26, 28], to conduct areal shape

analysis of carbonate reefs using satellite imagery [32], to

characterize thin sections [18, 27], to characterize lithol-

ogy in core samples [12], to process seismic data to recon-

struct stenography at depth [4], and to characterize ripple

features across a plane using photogrametric models [17].

While computational methods are clearly widely applied in

the Geosciences, we believe ours is the first of any pro-

grams developed to characterize cross-sectional geometries

of bed junctions in outcrops formed under normal marine or

biologically-mediated conditions (e.g., Fig. 1).

In light of the current interest in exobiological investiga-

tion as well as the increased accessibility of computer vision

methodologies, this research aims to answer the fundamen-

tal questions of whether we could develop an approach to

quantify the recognition of organically-mediated bedforms

on Earth using images so that it could be deployed for use

on remote imagery more broadly. In line with this ques-

tion, we propose computer vision and deep learning tech-

niques to study the impact of widespread organic substrates

on cross-sectional geometries of sedimentary sections to de-

velop a robust array of computational tools for translational

research, paleontology, and exobiology.

2.2. Contributions

The contributions of this work are:

• Automated detection of biosignatures from sedimento-

logical records, allowing for remote and translational as-

trobiological analyses

• SPACESeg: A hybrid semi-supervised model that can de-

tect perceptually desired regions from complex scenes

• CORA: An unsupervised technique for isolating region

boundaries by employing multi-constraint optimization

• SGE: Supervised segmentation network that is guided by

region activations from saliency maps

• Successful detection of ripple bed junctions as thin as

1mm from a 10cm Field of View

3. Technical Approach

We propose a hybrid semi-supervised approach named

”Scene-aware Perception Automation using Composite

Embedding for Segmentation” (SPACESeg). The task of

automating bed ripple junctions poses many challenges,

some of which are - variations in time of day (hence shad-

ows), variations in image resolution, field of view, artifacts

(such as objects used for scale depiction), etc. The latent

space representation to isolate DRBs is high-dimensional.

Modeling a complex non-linear feature association is where

deep segmentation networks excel. However, due to the

lack of data, it is a challenging task. On the other hand,

designing unsupervised rule-based techniques are beneficial

when the data are limited. But the resultant feature associa-

tion is either linear or low-level at best, because most tech-

niques employ approximation (ignoring higher-order terms)

and a limited set of features to achieve convergence. Our so-

lution is a hybrid model, that combines rule-based (CORA)

and neural encoding-based (SGE) models. The resultant

SPACESeg is designed to tackle these issues by performing

saliency analysis to achieve a low-level rendition of feature

association as seed to be provided to the deep segmenta-

tion network. Therefore, it adapts to the topography (scene-

aware) and rejects the seemingly indistinguishable artifacts

to detect only DRBs (perception automation) while guid-

ing a segmentation network towards the global minimum.

SPACESeg does so by generating various composite repre-

sentations of an image and embedding them hierarchically

in the latent space to isolate the artifacts, shadows and the

desired ripple beds (DRBs). The composite representations

are generated using CORA, a Composite-image Optimized

Region Activation technique, which are then provided as

saliency maps to SGE, that embeds, quantifies and isolates

the regions in the latent space. The descriptions of CORA,

SGE and subsequent post-processing for DRB analysis are

provided in the following subsections.

3.1. Problem Formulation

Let X be a cross-sectional view of stacked DRBs and the

ground-truth DRB annotation be Ŷ. Our objective is to iso-

late the ripple junctions while rejecting the varying condi-

tions of the image. As the image conditions vary and avail-

ability of data, it is challenging to isolate ripple junctions

accurately without the information on atmospheric condi-

tions, field of view, artifacts etc. To tackle this we uti-

lize an unsupervised Composite-image Optimized Region

Activation (CORA) module, that performs a rudimentary

scene parsing to generate region activation maps. The re-

gion activation maps provide the contextual information for

the region of interest, which is otherwise missing in the

stacked DRBs images. These activation maps with contex-

tual knowledge guides the Saliency Guided Encoder (SGE)

to achieve the final fine-grained segmentation map Ŷ.
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Figure 2: Overview of the Composite-image Optimization Region Activation (CORA) module

3.2. CORA

The overview of Composite-image Optimized Region

Activation (CORA) is shown in Fig. 2. The goal of this

module is to generate a region activation map via unsuper-

vised multi-constraint optimization. The region activation

map highlights the desired bed junctions over imperceptible

obstructing artifacts so the subsequent deep segmentation

network can train accurately. The algorithm formulation is

detailed as follows:

Pre-processing: To address the issue of variations in day-

light and brightness conditions in images we employ light

standardization technique. While it is complicated to esti-

mate the exact light conditions of the captured image, it is

possible to standardize the intensity representation to a cer-

tain degree. To standardize the image decomposition and

energy functions, we estimate the atmospheric light using a

dark channel prior [11]. In this method, the radiance of an

image can be estimated by estimating the transmission map

(coefficient of light scattered at a given patch of the image).

Scene radiance is estimated using inverse Koschmieder law

[11] and the resultant image (J) obtained by filtering using

this estimate. We use the same assumptions as in [11] for at-

mospheric light estimate A and transmission factors t. The

pre-processed image J is obtained as:

J(x) =
I(x)−A

max(t(x), t0)
+A (1)

where, x is search space and t0 is lower-bound of t(x).

Auxiliary Image Representation and Decomposition:

Exploratory Data Analysis (EDA) revealed the representa-

tions of data that trigger and highlight the features corre-

sponding to ripple junctions, terrain, shadows and artifacts

(collectively referred to as image attributes). A rudimentary

analysis that included constrained Hough transform, Eigen

decomposition, Gabor and Fourier descriptors revealed that

the image attributes can be partially isolated in a larger

search space of a Composite Energy Gradient (CEG). We,

therefore, create a CEG of hybrid image channels. The

observations of EDA are cast on to a 6-channel Auxiliary

Image Representation (Jaux). Jaux, as cast into a visible

color scale. It is then subjected to Eigen Value Decompo-

sition and Principal Component Analysis (PCA) to create a

Composite Image Representation (Jcomp). The composite

image is cast as a mock-RGB image by combining filtered

auxiliary image channel aggregates and an image represen-

tation of the first principal component of the PCA. Any di-

rect energy computation on auxiliary channels will reside in

a limited search space, similar to employing fuzzy cluster-

ing and swarm optimization techniques on an image, which

calls for the use of composite image instead of the auxiliary

image. The composite image as shown in Fig. 2 is cast onto

the perceptual 8-bit range. It can be noted in Fig. 2 that

the composite image heat-map already begins to partially

isolate shadow from ripple prior to the optimization step,

thereby justifying the use of this composite representation.

Composite Energy and Gradient Optimization: This is

composed of fuzzy contour optimization step and the gradi-

ent optimization step. To activate desired regions, we turned

to Active Contour Models (ACMs) [13, 30]. General ACMs

are affected by image inhomogeneity, initialization of level-

set functions and non-convex properties of the energy func-

tion. With the resultant search space of the composite im-

age, we suppress the impact of image inhomogeneity. For

the initialization, a binarized image saturation prior acts as

a psuedo-level set function. The region energy function is

defined as the combination of edge and region energies.

To optimize the energy gradients, we employ the Fuzzy

Energy Active Contour (FEAC) [21] method that incorpo-

rates fuzzy sets in the contour calculations. A combina-

tion of these steps helps us tackle the non-convexity in en-

ergy function. The output image is then optionally sub-

jected to secondary gradient optimization that exerts con-

straints on the orientation, solidity, extent, convexity, sat-

uration and luminescence. We employ FEAC-like energy

functions F(J,C, δ), where C is the contour and δ is the

initialization. We make use of the dark-channel priors from



Y channel of YCbCr space and S channel of HSV space to

provide a pseudo-initialization level set δ. From the Jaux,

we extract the orientation information (ω) and contour prop-

erty descriptors (Ci ∈ C) to define a pseudo-initialized,

multi-constrained problem as follows:

min
α, β, γ

min
ω

min
Ci

∑

S

F(J,C, δ) (2)

where α, β and γ channels are the 3 channels of Jcomp

instead of R, G, B channel of the original image and S is

the search space based on delta.

The optimization process yields an output that contains

partially isolated ripple boundaries. The output of CORA

is interpreted as a seed activation and given to SGE as a

saliency map (σ). The design of this guided segmentation

network is described in the next subsection.

3.3. Saliency Guided Encoder (SGE)

Deep segmentation networks are difficult to train with

limited data, and with the added complexity of a diverse and

high dimensional feature space, the task difficulty is com-

pounded. Furthermore, for our task, the dataset is practical

and, thereby, imperfect. This adds a variety of artifacts that

are difficult to characterize. For an automated method, arti-

fact boundaries, regolith and shadows look similar to ripple

junctions in the feature space. Testing segmentation deep

networks such as U-Net [31], DeepCrack [39], PSPNet [38]

etc. revealed the issues of over-segmentation, confusion

between artifacts and ripple junctions, and/or sub-optimal

convergence. We, therefore, propose Saliency Guided En-

coding (SGE, Fig. 3), that leverages the activated maps σ

and partially isolated ripple boundaries Xc obtained from

CORA to generate composite embedding. The generated

embeddings are associated image attributes at varying lev-

els of abstraction. Detailed technical description of SGE is

given in the following subsections.

3.3.1 Composite embedding

Saliency Guided Encoder is composed of two encoders and

one decoder module. The encoder E is for the original input

image Xc and encoder S is for the region activated map

σ. The composite embedding is obtained by combining the

output of each layer of encoder and passing it to the next

layer of the image encoder (see Fig. 3) as presented below.

σi =

{
S0(σ), if i == 0.

Si(σi−1), otherwise.
(3)

Xi =

{
E0
(
Xc

)
, if i == 0.

Ei
(
Xi−1

⊕
σi−1

)
, otherwise.

(4)

where, Ei and Si represents the ith layer of image and con-

text encoder, respectively; σi is the contextual output and

Xi−1 is image encoded representation from the ith layer of

their respective encoders.
⊕

is the concatenation operation.

3.3.2 Hierarchical Segmentation

The composite embedding obtained from each layer is then

utilized to perform n-level hierarchical reconstruction. We

also include the activation maps here to emphasize on the

context information during segmentation. Segmentation of

output at each level (Ŷi) is defined as:

Ŷi =

{
Gi

(
Xi

⊕
σi

)
, if i == n.

Gi

(
Ŷi+1

⊕
σi−1

)
, otherwise.

(5)

where, Gi represents the ith layer of decoder; σi is the con-

textual output and Xn is image encoded representation from

the nth layer and Ŷi is the ith-level segmentation output.

3.3.3 Objective function

The SGE does not merely employ an attention block to

leverage the information obtained from CORA. Instead, it

performs feature multiplexing at every level of abstraction

of encoding and fusion-image segmentation at every level of

decoding. The combination of feature multiplexing and fu-

sion decoding encompasses the composite embedding part

of the SGE. SGE gets its name not only because of saliency

embedding, but also because every composite representa-

tion is included in a compounded loss function. The loss

function for SGE is as follows:

L =
∑

n

L
i
rec

(
Ŷi, Li

)
(6)

where Li
rec is reconstruction loss at ith level, Li is the

down-sampled label image for respective level and Ŷi is

segmented output from Gi.

4. Experimentation and Results

4.1. Dataset

The dataset used for this analysis was obtained from

three sources. All of the images from these sources were

taken in the Northern Flinders region in Australia. The most

high-resolution images covering the largest mat substrate

area were collected by MLD. The rest of the images were

collected from the research published by [20, 35]. 86% of

the data has an associated field of view. For this subset of

the data, the field of view ranges from 2cm to 1m, indicat-

ing a large variation of the mat substrate associated. The

resolution of the images varies from 3-265pixels/cm. The

cumulative of the dataset spans > 4 m. There are 28 raw

images in the dataset which are subsequently divided into

smaller images for assessment. The smaller images are ran-

domized in terms of extent of zooming and crop sizes and
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Figure 3: Overview of Saliency Guided Encoder (SGE)

locations. This helps the model to look at varying magnifi-

cation levels and fields of view of input data. We obtain a

total of 2304 sub-images, and this set of data are used for

training and evaluation. During CORA processing, the im-

ages can be any size. For SGE training, we resize images to

256x256 and employ 80 percent of images for training. For

the sake of consistency, all deep networks are trained using

the same division of dataset. The qualitative and quantita-

tive results are detailed in the following subsections.

4.2. Qualitative Results

In Fig. 4 and Fig. 5 for CORA and SGE analysis, we

picked 3 images based on their varying characteristics.

Image (a) was chosen as it has minimal shadow artifact. It

does, however, present a difficult artifact - the rock itself.

The second-bottom ripple of Image (a) is easy to miss by

most methods. Image (b) was chosen to demonstrate the

robustness of CORA and SGE against shadow artifacts.

Image (c) does not have shadow but its ripple formation is

complex and it can be seen that most methods had difficulty

detecting the ripples in this image. Additionally, this image

has 2 significant artifacts, that CORA and SGE are able to

efficiently reject.

CORA: CORA is the first step of our segmentation

model SPACESeg. We compare results of CORA against

the standard unsupervised segmentation techniques. The

number of clusters for Fuzzy c-means (FCM) [2] and Par-

ticle Swarm Optimization (PSO) [14] were chosen based

on the performance achieved. We tested cluster numbers

between 3 to 6 and it was noted that n=4 gave the best per-

formance. The results are summarized in Fig. 4. For the

active contours, we used Chan-Vese [13]. While CORA

optimization is based on FEAC [21], we test our results

against FEAC itself to demonstrate the performance effi-

cacy of CORA against various surfaces. For Image (a), we

notice that all methods are unsuccessful in either isolating

the shadow artifact or the rock artifact. We, however, note

that CORA is successfully able to isolate all shadows and

is also able to activate the general ripple region that even

looks like the rock. Effect of shadow can also be noted in re-

sults for Image (b). For Image (c), while most methods are

able to detect the general region of the ripples, they either

also include the surrounding rock or in the case of Active

Contours, get stuck at a local minima of the artifact due to

sensitivity in initialization. The output of CORA precisely

detects the ripple boundaries.

SPACESeg: SGE is guided by the output of CORA,

which is the second step of our SPACESeg model. We com-

pare our SPACESeg results against UNet [31], PSPNet [38],

and DeepCrack [39] which is designed to detect cracks in

concrete surfaces, which can be perceived as a similar task.

However, we note that DeepCrack is unable to adapt to the

varying thickness of the double rippled bedforms. While

it does completely reject shadows, it gets penalized when

the ripple boundaries are mistaken for shadows. On the

other hand, UNet suffers from shadow confusion and ends

up over-segmenting. PSPNet is designed for scene parsing

and while it does show promise in detecting the right re-

gions, compared to SPACESeg, it falls short in isolating the

artifacts. It can be noted that in Image (a), the rock-like rip-

ple is rejected while in Image (b), ripples and shadows are

both partly detected and partly rejected. In Image (c), the

top of the image reveals the over-segmentation problem be-

cause of the very closely spaced ripples. It can be seen that

SPACESeg is robust to all these issues.
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Figure 4: Visual comparison of performance: CORA vs other rule-based methods
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Figure 5: Visual comparison of performance: SPACESeg vs deep segmentation networks

Table 1: Quantitative performance of our proposed SPACE-

Seg (Row 8) vs other rule-based segmentation (Rows 1-

4) and deep segmentation networks (Rows 5-7). Metrics

- ACC: Accuracy, PRE: Precision, REC: Recall, SSIM:

Structural Similarity. Metrics are in %.

Algorithm ACC PRE REC SSIM

FCM [2] 64 (21) 46 (19) 78 (06) 62 (16)

PSO [14] 67 (19) 48 (16) 76 (12) 64 (16)

Chan-Vese [13] 63 (19) 57 (19) 60 (13) 67 (19)

FEAC [21] 70 (15) 64 (19) 74 (10) 69 (17)

UNet [31] 72 (13) 50 (13) 85 (04) 67 (16)

DeepCrack [39] 78 (12) 62 (03) 70 (12) 76 (14)

PSPNet [38] 80 (08) 58 (10) 82 (06) 70 (14)

SPACESeg (ours) 89 (03) 71 (05) 82 (08) 85 (03)

CORA vs SGE vs SPACESeg: It can be argued that

fine-tuning CORA enough or training SGE long enough

would yield the same results as the integrated SPACESeg.

In Fig. 6, we demonstrate the conditions where each one

of them fails. We note that in cases where rocks and arti-

facts completely overshadow the extremely thin ripples in

the center, CORA outputs spurious activations, but SGE

picks up the desired regions approximately. On the other

hand, as in the case of the image in the second row, where

the field of view is too large and not cross-sectional, CORA

is able to adapt and learn the scene, thereby bootstrapping

the performance of SGE. Thus, SPACESeg as an integrated

system is robust to the individual weaknesses of rule-based

and trainable transformations of CORA and SGE respec-

tively. The average improvement in SSIM is 14% by using

integrated SPACESeg as opposed to SGE or CORA alone.
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Figure 6: Isolating the effects of CORA and SGE and comparing with the integrated SPACESeg

4.3. Quantitative Results

For all tested algorithms, we report Accuracy (ACC),

Precision (PRE), Recall (REC) and Structural Similarity In-

dex Metric (SSIM). Table 1 reports all of the metrics for

the unsupervised and supervised techniques as compared

with SPACESeg. All metrics are reported as mean value

(std). For the deep segmentation models trained using the

configurations in the papers were used and fine-tuned. We

pretrained these networks on concrete crack images before

fine-tuning on our dataset. We report these results instead

of trained from scratch as pre-training on domain related

dataset improved performance. Analyzing the numbers, it

can be seen that for accuracy, the general performance is

high, however, the standard deviation is also high. This

can be attributed to the fact that ripples occupy a very

small fraction of the image and over-segmentation is a com-

mon problem for networks training on complex and limited

datasets. The precision for networks that get confused be-

tween shadow and ripple is low, because while they segment

the ripple, it is included with the shadow, causing the preci-

sion to fall due to over-segmentation. On the other hand, re-

call is the extent of ripples being correctly detected, which

shoots very high in cases where the shadow encompasses

the ripples, but not so much when other artifacts (such as

ripple looking like the rock surface) are introduced. Thus,

the precision and recall alternate between highs and lows

for most techniques, based on extent of artifact vs ripple

presence, as indicated by the high standard deviation. Since

the ripple structures have varying thickness and shapes, we

also report SSIM. As opposed to the other metrics, SSIM

will include the overall properties of the structures being

segmented, emphasizing on whether perceptually meaning-

ful regions have been picked up by the networks or not.

It can be seen that SPACESeg has consistently the best

performance among all methods across all metrics. It has

a slightly lower performance than UNet in recall because

UNet does over-segmentation, which increases its sensitiv-

ity, which is an issue that SPACESeg efficiently tackles.

The holistic assessment of the qualitative and quantitative

performance of SPACESeg demonstrates that not only is it

efficient in learning under adverse data conditions, it also

reports perceptually meaningful outcomes.

5. Conclusions

There is an increasing interest in astrobiological re-

search, and resources are being invested in the search for

life on other planets. In such a pivotal point in this field,

data are a valuable and elusive resource. It is, therefore,

important to develop tools that allow for remote analysis of

data. The Ediacaran period holds massive significance in

its unique capability to present us with definitive biosigna-

tures that directly correlate to evolution of life. This study

can open avenues for translational research in studying the

Cambrian evolution of life and take us many steps closer

to studying life signatures on other planets. To this end,

we proposed SPACESeg, a robust detector of biosignatures

from the Ediacaran organic subtrates. SPACESeg’s hybrid

approach of CORA and SGE allows it to tackle the biggest

issues that real-world data faces. Practical dataset poses

many challenges in it’s limited quantities, largely varying

conditions and uncontrolled artifact manifestations. More-

over, it is able to do so while detecting miniature structures

from the images. We report quantitative and qualitative re-

sults supporting this and note that SPACESeg outperforms

other methods by at least 10%, while efficiently isolating

human perceivable outcomes. The robustness of SPACE-

Seg opens doors for scalable, translational, remote assess-

ment tools that can aid in our search for signs of terrestrial

and extraterrestrial life.
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