
Investigating Spiking Neural Networks for Energy-Efficient On-Board AI

Applications. A Case Study in Land Cover and Land Use Classification

Andrzej S. Kucik, Gabriele Meoni*

European Space Agency

{andrzej.kucik, gabriele.meoni}@esa.int

Abstract

Spiking neural networks have been attracting the interest

of researchers due to their potential energy efficiency. This

feature makes them appealing for applications on board

CubeSats or small Earth observation satellites, given their

strict energy consumption requirements. However, the per-

formance of spiking neural networks in terms of the accu-

racy on the space-scene classification datasets, and their

benefits with respect to the energy efficiency still remain

to be demonstrated. This work is a preliminary investiga-

tion on deploying spiking neural networks to land cover and

land use classification problems. To train a spiking model,

a VGG-16-based artificial neural network has been trained

on EuroSAT RGB benchmark dataset. The parameters of

this network were then used to initialise a spiking model,

which was optimised by fine-tuning the connection weights

and the synaptic filters parameters. By using the mean

neuron activations, and the number of time-steps and their

width as proxies for the energy consumption of the models,

this study shows different trade-offs between accuracy, and

energy efficiency, when comparing a spiking model to the

deep learning approach. Moreover, some additional input

data preprocessing strategies are investigated as a method

of further enhancement of the energy benefits of the spiking

models.

1. Introduction

Over the last years, researchers in the space community

have been exploring the possibility of applying Artificial

Intelligence (AI), and in particular deep Artificial Neural

Networks (ANNs), on board the Earth Observation (EO)

satellites [15, 20, 30, 12]. The applications of ANNs on-

board include early-detection of natural disasters [15], fil-

tering and discarding the data to mitigate downlink band-

width requirements of small EO satellites, which has be-

come stricter in the last years because of the growing res-

*Ordered alphabetically, equal contribution.

olution of space sensors [15, 41]. Nevertheless, one of the

factors limiting the deployment of ANN models is the re-

stricted energy-budget of SmallSats[7, 15]. This fact forces

the research of complex design trade-offs, optimizing both

the algorithms and hardware to perform the inference on the

edge [20, 33, 37].

In this work, we propose to investigate Spiking Neural Net-

works (SNNs) [19, 40] for an on-board AI applications,

which have been gaining the attention of researchers for

their promising energy efficiency [36, 29]. This is due

to the asynchronous nature of their neuromorphic compu-

tational paradigm. Indeed, according to a biologically-

inspired model, each neuron of an SNN takes as the input

the postsynaptic currents produced by the upstream neurons

and combines them through connection weights. The re-

sulting current is accumulated during different time-steps,

altering the value of the membrane voltage. When the lat-

ter passes a fixed threshold, the membrane voltage is reset,

and a spike is emitted. Such spike is processed by a post-

synaptic filter, producing the output postsynaptic current.

Since various neurons can emit a spike in different instants,

the computation of an SNN model is normally sparse [29].

When inferred on neuromorphic hardware (for example,

SpiNNaker [16, 17, 34], TrueNorth [39], or Loihi [10]) such

sparsity is generally advantageous in terms of power con-

sumption [22]. In addition, depending on the data format

[6], and the information coding approach [36], and hard-

ware implementation [6], SNNs may also provide benefits

in terms of energy efficiency when compared to their arti-

ficial counterparts. In particular, whilst for the event-based

input the energy benefits of spiking models are clear, the

advantages of SNNs for static input images – such as those

used for many EO applications – seem strictly dependent on

the input data [6, 22]. Furthermore, even if the previous ap-

plications of SNNs to remote sensing exist [45, 5, 44], more

research is needed to assess their practicality for space de-

ployment.

In view of that, we propose an investigation of the relevancy

of spiking models for on-board AI applications. In partic-

ular, we focused on land cover and land use classification

case study for the availability of benchmark datasets such

as EuroSAT [23, 24] and benchmark solutions, which might

foster future research.

In addition, the EO data about the land use is collected in

order to better understand how human activity affects our

planet and to help us solve the problems that said activity

may cause, for example, the human-caused climate change.

The reputation of the tremendous success of deep learning

helps it propagate across different scientific domains and to

be employed in a variety of problems. The EO research

is not an exception here. However, this success story is not

without shortcomings. The cost of growing deep neural net-

works [9, 21] is increased intensity of computation [2], and

consequently – raise in power consumption and CO2 emis-

sion [43]. This leads to a paradox, where to solve problems

related to global warming, we use the tools which directly

contribute to it – in a non-negligible way. Thus, an alterna-

tive approach to AI is desperately needed, and the SNNs, as

well as the neuromorphic hardware designed for their im-

plementation, may be just the toolbox that we need.

To this aim, we trained a VGG-16-based ANN model [42]

on the EuroSAT RGB [23, 24] benchmark dataset. The

resulting network parameters were used to initialise the

weights of the spiking version of VGG-16 model, which

was re-trained in the spike-domain using KerasSpiking

framework [3].

To explore different trade-offs in terms of accuracy and

energy efficiency, various levels of spiking regularisation

was applied to the model, outlining many compromises that

can be made in order to satisfy potential applications’ con-

straints. The original ANN network and the various SNN

models were compared in terms of accuracy and energy

per inference, which can be roughly estimated on differ-

ent hardware platforms through the approach described in

Section 2.4.1. Moreover, to further investigate the depen-

dence of energy efficiency on the input data, we proposed

an image preprocessing approach relying on Prewitt filter-

ing and input quantisation to foster data-sparsity and reduce

the neuron activation rate.

Even if the strong assumptions made to estimate the energy

per inferece make it impossible to claim the higher energy

efficiency of SNNs with absolute certainty, the obtained re-

sults suggest that SNNs might have a potential for some AI

applications, despite the reduction in accuracy compared to

the ANN model.

The remainder of the paper is structured as follows: Sec-

tion 2 describes the EuroSAT RGB dataset, the SNN and

ANN models, the training framework and the approach used

for the energy estimation. Section 3 provides the results in

terms of accuracy and energy per inference and proposes

a preprocessing pipeline based on Prewitt filtering and in-

put quantisation that further improves our results. Section

4 outlines the main limitations of this work and proposes

future improvements. In Section 5 we give our conclusions.

2. Methodology

2.1. The model

To demonstrate that an SNN deployed on a neuromor-

phic computing platform can achieve better inference en-

ergy efficiency than an ANN implemented on standard

hardware, we initiated the experiments with one of the stan-

dard deep learning models – VGG-16 network [42], which

we use as both: to set up the SNN topology and parameters,

and to use it as a performance baseline (in terms of land

cover and land use classification accuracy and single-image

inference energy consumption). The VGG-16 network, al-

beit already dated and falling short in performance when

compared to the contemporary state-of-the-art models, of-

fers certain advantages in the SNN-ANN conversion proce-

dure. First, it does not have batch normalization layers (in-

vented after VGG architecture was published [27]) and skip

connections, both of which are problematic to realise in the

spiking paradigm; batch normalisation, because it involves

global computation, and skip connections, because they re-

quire further synchronisation of spikes moving in parallel

across a different number of layers. And secondly, VGG-

16 is a relatively large model (over 14 million parameters),

so it offers a reliable insight into the transferability of the

presented methodology. That is, very often the ANN-SNN

schemes are only implemented on elementary datasets, such

as the classic MNIST (e.g. [28]), and executed with shallow

networks, which does not guarantee the scalability to more

complex datasets and model architectures.

In all our experiments we have used TensorFlow 2.4.1 [1]

and KerasSpiking [8] software and two NVIDIA Quadro

RTX 8000 Graphical Processing Units (GPUs). All our re-

sults are reproducible, with the code to run the experiments

available at [31].

2.2. The dataset

To demonstrate the feasibility of employing spiking

models in the context of EO, we selected the EuroSAT RGB

land cover classification library [23, 24] as our task dataset.

The original dataset consists of 27,000 64×64 Sentinel-2A

satellite images covering 13 spectral bands and consisting

of 10 classes, each represented by 2000-3000 images. Of

those 13 bands 3 corresponding to the RGB colour channels

are selected, so that there is compatibility with the original

VGG-16 expected input channels.

We split the dataset into training, validation, and tests sets

using 80%:10%:10% ratio. We normalise the images to the

unit interval, and augment them by applying random zoom

(±5%), crop, dihedral transformation, change of brightness

(±20%), contrast (by a factor c ∈ [.2, 1.8]), hue (±10%),

and saturation (by a factor s ∈ [.9, 1.1]), in order to avoid

over-fitting during the training.

2.3. Training procedure

2.3.1 ANN training

We use the VGG-16 pre-trained on ILSVRC-2012 (Ima-

geNet) [13]. We remove the top three dense layers and re-

place them with global pooling and a single 10 output-units

dense layer without bias. We swap the max pooling layers

with average pooling layers because the former require lat-

eral node connections in the spiking context, and there is no

consensus on how they should be implemented in that set-

ting.

The network is then trained for 1000 epochs, on batches

of 2700 examples (8 training steps per epoch), using RM-

SProp optimizer [25] with 10−3 learning rate (reduced by

a factor of 10−1 after 50 epochs of no improvement in the

validation loss). We also use 10−3 kernel ℓ2, and 10−4 bias

ℓ1 normalization for the convolutional layers. The final test

set accuracy that we achieve is 95.07%. This is expectantly

below the 98.57% reported in [24], because of the superior

ResNet-50 architecture used therein. However, our aim was

never to improve upon that result, but rather to show the per-

formance transferability between ANN and SNN models in

this context.

2.3.2 SNN conversion

After training the ANN model, we transform it into a spik-

ing model in the following way. First, we remove the pool-

ing layers from the model (apart from the final global pool-

ing), by noting that a 3× 3 stride-1 same-padding convolu-

tion followed by ReLU activation, and 2×2 stride-2 average

pooling is equivalent to 4× 4 stride-2 same-padding convo-

lution followed by ReLU activation, with kernel parameters

appropriately adjusted. This reduces the number of oper-

ations in the model and shortens the path that each spike

has to traverse from the input to the output of the network.

Next, we replace the ReLU functions with spiking activa-

tions corresponding to the one of an Integrate and Fire (IF)

neuron, and a low-pass filter with a parameter τ . That is,

the layer spiking rate (in Hz) is equal to the complementary

ReLU activation value, and

y(t) :=
(

1− e−∆t/τ
)

x(t) + e−∆t/τx(t− 1),

where x(t) is the output of the spiking activation at time t,
y(t) is the output of the low-pass postsynaptic filter, and ∆t
is the temporal resolution of the network (initially we fix it

at ∆t = 1ms). The conversion procedure is depicted in Fig-

ure 1.

If we also scale the firing rate of the neurons by a factor of

250 and let τ = 0.005 we get that the spiking neural net-

work achieves 94.59% classification accuracy after 200ms,

without any further training. This is negligibly worse than

the performance of the ANN. However, it comes at a non-

trivial computational cost, and thus consumes a significant

amount of energy during the inference. This is because,

even though the higher firing rate of the neurons need not

to increase the actual number of spikes (we can apply a

linear scale to the input of all the neurons, and then di-

vide their output by the same scale factor), the simulation

length T = 200 steps requires a lot of accumulate opera-

tions, adding a hefty operational cost (see 2.4). Thus, our

next step was to fine-tune the SNN in order to reduce the

number of operations that it has to perform, without a seri-

ous drop in the classification accuracy performance.

2.3.3 Integrate and Fire neuron model

As described in Section 2.3.2, the SNN conversion pro-

cedure converts the ReLU activation of the ANN network

with the spiking activation implemented in KerasSpiking,

and add postsynaptic low-pass filter modelling the dynam-

ics of neural synapses. In this way, each block composed

of a convolutional layer, spiking activation and low-pass fil-

ter is equivalent to a layer of IF neurons with postsynaptic

filter. For the sake of simplicity, let us consider the case

of fully-connected IF neurons. At time t a neuron N takes

as input the postsynaptic current JM (t) from an upstream

neuron M , as described in Equation 1 [28]:

JM (t) = hM (t)⊛ σM (t), (1)

where hM (t) is the synaptic filter impulse response, ⊛ is

convolution operation, σM (t) =
∑

k δ(t−tM,k) is the post-

synaptic voltage spike train emitted by the neuron M , and

tM,k is the the kth firing instant of the neuron M . All the

postynaptic currents JM are linearly combined through the

weights wN,M , and a bias bN is added to produce the to-

tal presynaptic current JN−in(t) as input to the neuron N .

At time t, the JN−in(t) is added to the membrane voltage

VN (t) (multiplied by a dimensional constant equal to 1 Ω)

of the neuron N in order to update it [28], as shown in Equa-

tions 2:
{

JN−in(t) =
∑

M wN,M · JM (t) + bN

VN (t) = VN (t−∆t) + JN−in(t),
(2)

where ∆t is the time-step width. When VN (t) exceeds

some threshold (usually set to 0 for IF neurons), VN (t) is

reset and an output spike is generated by the neuron. In

particular, at every time t, in a ∆t interval, a neuron can

produce more than one spike.

2.4. Spiking neural network objectives

2.4.1 Energy per inference estimation

To estimate energy per inference we adopted the approach

exploited in KerasSpiking [8]. According to this method,

Figure 1. Flowchart showing the conversion of the VGG-16-based ANN convolutional block to an SNN convolutional block. From left

to right. First, the max pooling layers in the original network are replaced with average pooling, and the network is trained. Then, the

pooling layers are removed, and the preceding convolutional layer has its weights, kernel size, and strides altered accordingly, in order to

preserve the expected output consistency; this version is used for estimating the energy consumption of the ANN model. Finally, the ReLU

activations are replaced with spiking ReLU and a low-pass filter. The first convolution and activation in each block are repeated k times,

where k ∈ {2, 3}. The network is concluded with global average pooling and a dense layer classifier with softmax activation.

the total energy per inference is given by two main con-

tributions: the energy per synaptic operations: Es and the

Energy per neuron update: En.

Specifically, for a spiking model Es is the energy spent to

update the input current of a neuron by weighting the post-

synaptic currents from upstream neurons over the different

time-steps [32, 14]. It is reasonable to assume that no en-

ergy is spent on a synapse update in a time-step if no cur-

rent is provided as input. Because of that, for spiking mod-

els, Es can be reduced by decreasing the average neuron

firing-rates. On the contrary, for an artificial model, Es is

the energy required to linearly combine all the activations

from upstream neurons through weight multiplication. But

unlike for SNNs, ANN synaptic operations are only carried

out once per each connection to perform the inference.

En is the energy required to update the neuron’s activation.

For an artificial neural layer, it is the energy required to cal-

culate the activation on the input.

For a spiking neural layer, En is the energy required to up-

date the neuron by performing the membrane potential up-

dates and to generate the postsynaptic current. Thus, it is

reasonable to assume that En also includes the energy spent

on synaptic filtering.

En and Es were measured by adding the contribution of all

convolutional, and global average pooling layers. In partic-

ular, for each layer, we estimated

Es = Eo · S

En = Eu · U,

where Eo and Eu are respectively the energy per synaptic

operation and the energy per neuron update on the target

hardware platform, whilst the S and U are the number of

synaptic operations and neuron updates per inference.

The values of Eo and Eu provided in KerasSpiking, citing

[11, 26, 10], for the hardware platforms considered here.

For Central Processing Units (CPUs) and GPUs, the energy

required for a Multiply and ACcumulate (MAC) is used,

assuming that a MAC operation is required for a synaptic

operation and a neuron update. The values Eo and Eu for

the above types of hardware are summarised in Table 1.

The number of synaptic operations S(L) for a layer L was

estimated according to Equation 3:

S(L) =
∑

N

Sneuron · fin · T ·∆t, (3)

where Sneuron is the number of synaptic operations per neu-

ron, matching the average number of connection per neuron,

Device
Eo

[nJ]

Eu

[nJ]

CPU [11]

(Intel i7-4960X)
8.6 8.6

ARM [11]

(Cortex-A)
0.9 0.9

GPU [11]

(NVIDIA GTX Titan Black)
0.3 0.3

Spinnaker [26] 13.3 26

Spinnaker 2 [26] 0.45 2.19

Loihi [10] 0.02711 0.081
Table 1. Eo and Eu (in nanojoules) for the different hardware plat-

forms.

fin is the average spiking rate at the input layer of L, T is the

number of timesteps, ∆t is the time-step width, and the sum

is taken over all the neurons N in L. When L is a convolu-

tional layer, S(L) depends on the position of the neuron in

the layer. Indeed, if padding is used, neurons in the corner

have a lower number of input connections than the internal

ones. For the sake of simplicity, we assume that the number

of input neurons is uniform across all the neurons N of L,

leading to an overestimation of the energy required.

The number of neuron update per inference U for a layer

was estimated as in Equation 4:

U = |N |T, (4)

where |N | is the cardinality of the set N (i. e. the number

of neurons). For the artificial model, we take T = 1 and

fin = 1/∆t, making the energy independent of the values

of T and ∆t. For the spiking model, T and ∆t are produced

by the training procedure.

To estimate fin of each layer, we performed the inference

of the model on the 2700 test images, and we measured the

average value of the layers’ activations over the simulation

time. The average activation value of the input layer is used

for the first convolutional layer and the average low-pass

filter output is used for the remaining layers and the global

average pooling, which in turn is used to estimate the fin of

the final dense layer.

Note that our method relies on the assumption that synaptic

filtering is performed as the last operation for a neuron. As a

result, the output spikes of a neuron have different heights,

forcing the synaptic operation to be a MAC operation, in-

stead of only an accumulation. However, this also reduces

the frequency of synaptic operations thanks to the low-pass

filter.

Alternative implementations can exploit the synaptic filter

as the first or the second operation performed by a neu-

ron. Consequently, each neuron collects the spike current

trains having unitary height as input from the upward neu-

rons, which are then processed by the low-pass filter. This

way, synaptic updates require only to accumulate spikes,

but the frequency of synaptic operation is generally higher.

Both implementations are possible to realise on hardware,

with different advantages and drawbacks. In this work, we

assumed that only the first approach is used for all the hard-

ware platforms, even if they allow for the second approach

to be implemented as well.

Finally, it is necessary to point out that the method used

does not aim to provide the exact estimation of the energy

per inference, nor can it. Indeed, it does not consider ad-

ditional sources of power consumption such as the static

power contribution, networks on chip congestion, accesses

to off-chip memories, and other effects [8] that might sig-

nificantly affect the estimation performed. Instead, it wants

to be used as a tool to compare the different solutions de-

pending on the values of T , ∆t, and input preprocessing,

indicating which setting may lead to a higher gain in energy

efficiency when used in a real case scenario.

2.4.2 Spiking-aware training

Bearing these assumptions in mind, we have a new train-

ing objective for the network: energy efficiency. We aim

to reduce the spiking rate of the neurons and the temporal

resolution of the simulation while keeping the total simula-

tion length below some threshold. We initialise the network

as outlined in 2.3.2, setting T = 1 steps, τ = 0.1, and

∆t = 1s, where the latter two are trainable parameters, and

each τ is independent for each network node (i.e. during

the training they will start to diverge from 0.1 across the

layer). Note that setting the simulation length and resolu-

tion to one second does not mean that the entire inference

will only last a single second; rather it is the simulation time

per layer, meaning that each layer will be simulated sub-

sequently for 1s, and hence the entire inference takes 18s

(16s for the convolutional layers, and 1s for global pooling

and dense layers each). The network is then trained for 512

epochs, on batches of 1024 examples, using RMSProp op-

timizer with 3−5 learning rate (reduced by a factor of 10−1

after 128 epochs of no improvement in the validation loss).

We iterate the process, each time doubling the simulation

length T, and halving the number of training epochs, batch

size, the base learning rate (i.e. the value of the learning rate

in the previous iteration before any reduction on the valida-

tion loss plateau), and the learning rate decay patience. Our

target simulation length is T = 32 steps, and upon reaching

it, we stop the training. To increase the sparsity of the spik-

ing events, we also encourage the neurons to spike with a

frequency between 10-20 Hz by applying ℓ2 activity regu-

larization to the spiking activation layer. The regularization

penalty is chosen from {2 · 10−9, 10−9, 5 · 10−10}.

Figure 2. Representatives of each of the land-cover classed of the EuroSAT dataset, in RGB (top row), and after applying the (normalised)

Prewitt filter (bottom) row.

3. Results

We summarise the results in Figure 3 and Table 2. We

see that the drop in the classification accuracy is almost

10%, which not insignificant. However, the estimated

gain in energy efficiency as compared to a GPU is almost

sixteen-fold, which is very substantial.

Furthermore, the gain in energy efficiency is not only due to

the hardware properties but also because of the algorithmic

advancement. To illustrate it, we included a comparison to a

hypothetical implementation of the ANN on the Loihi chip,

assuming that an ANN might be inferred by using the same

Eo and Eu for spiking models. And even in this case, the

SNN consumes 1.43× less energy.

3.1. Input filtering

Brain-inspired computing is not limited to neuromorphic

hardware and spiking neural network. It also encompasses

neuromorphic sensors, such as event-based cameras, also

known as dynamic vision sensors (DVS), or silicon reti-

nas [18]. They are characterised by their asynchrony, low-

energy consumption, high dynamic range, latency, and spar-

sity. The latter is of particular interest to us. The DVS

only record (as a sequence of events) those pixels, where

a change of light intensity (above some predefined thresh-

old) occurred. This is normally caused by the motion (real

or apparent) of the observed objects against a background

of a different shade. That is, the information is registered

primarily on the edges.

In land-cover machine learning problems, based on Earth

observation data, the images are often composed of regions

of identical visual patterns, meaning that the boundaries of

these uniform patches contain the most pertinent informa-

tion. Furthermore, the feasibility of deploying a DVS in the

high-radiation hostile conditions of a space flight was re-

cently demonstrated in [38].

Now, to the best of the our knowledge, there exists no event-

based dataset of land-cover images, neither collected by on-

board sensors nor synthetic, so we cannot verify how well a

classification model would perform in this framework. Nev-

ertheless, we can simulate the information load, if not qual-

itatively, then at least quantitatively in terms of the number

of pixels that are being used as the input for the classifica-

tion pipeline. To that end, we preprocess the EuroSAT RGB

dataset by applying the (normalised) Prewitt filter to all the

images, discarding all the resulting values which are below

the 0.0078 threshold. That is, for all input images X, we get

the preprocessed image X
′ by the Equation (5):

X
′ := max

(

c
√

(G⊛X)2 + (G⊤ ⊛X)2, 0.0078 · 1

)

,

(5)

where

G :=
(

1 1 1
)⊤ (

1 0 −1
)

,

⊛ denotes 2-dimensional convolution operation, c is the

normalising constant, 1 is a tensor of ones with the same

shape as X, and the maximum is taken entrywise. This

effectively leaves us with the edges of regions of similar

colour and brightness, similar to what an on-board DVS

camera could record, due to its ego-motion.

As shown in Figure 2, We feed these modified images to the

VGG-16-based ANN, and conduct the training in the ex-

act same manner as described in 2.3.1. The network scores

90.19% of accuracy performance, which is understandably

lower than in case of the RGB images, because we have de-

graded the network input in some sense. We then proceed

to train this network in the spiking context, as described in

2.3.1. The final top accuracy that we get is 87.89%, which

is is higher than in the case of SNN without Prewitt filtering

of the input. This might be a stochastic coincidence, but it

is also possible that removing obsolete information from the

input acts like denoising, allowing the meaningful spikes to

propagate more easily. We can also gain more than twice

the energy efficiency, when compare to the SNN with un-

filtered input. The results are summarised in Table 2 and

Figure 3.

Hardware platform

Model Acc. (%) T ∆t Energy SpiNNaker SpiNNaker 2 Loihi CPU ARM GPU

ANN 95.07 Es 3.09195 0.10461 0.00630 1.99931 0.20923 0.06974

1 – En 0.01901 0.00160 0.00006 0.00629 0.00066 0.00022

(+ Prewitt) (90.19) Total 3.11096 0.10622 0.00636 2.00559 0.20989 0.06996

Es 2.06081 0.06973 0.00420

SNN 85.11 4 0.0381 En 0.07604 0.00640 0.00024

Total 2.13685 0.07613 0.00444

Es 2.12170 0.07179 0.00432

SNN 84.11 2 0.0626 En 0.03802 0.00320 0.00012

Total 2.15972 0.07499 0.00444

Es 1.56687 0.05301 0.00319

SNN 83.74 2 0.0663 En 0.03802 0.00320 0.00012

Total 1.60489 0.05622 0.00331

SNN Es 2.21900 0.07508 0.00452

+ 87.89 4 0.0403 En 0.07604 0.00640 0.00024

Prewitt Total 2.29504 0.08148 0.00476

SNN Es 0.97873 0.03312 0.00199

+ 85.07 1 0.0813 En 0.01901 0.00160 0.00006

Prewitt Total 0.99774 0.03472 0.00205

Table 2. The best models’ accuracy and energy consumption (in joules) per inference on selected hardware platforms. Values in italics are

hypothetical referenced values. Values in bold are the optimal experimental values for the SNN and SNN with Prewitt filter applied to the

input respectively. That is, the highest accuracy, the lowest simulation time (T ·∆t), and the lowest energy consumption per inference. All

the SNN models have the same architecture, and the difference in the performance levels results from different parameters’ initial values.

Figure 3. Distribution of trained model’s accuracy against the energy consumption (in joules) per inference (log scale). Best to be viewed

in colour. The size of the dots corresponds to the duration of the simulation (T · ∆t), which tends to stay close (standard deviation

σ = 0.0308) to the mean value µ = 0.1369s. Note that the implementation of the SNN on the Loihi chip remains more energy efficient

than an implementation of the ANN on a hypothetical chip with the same MAC energy consumption as Loihi.

4. Discussion

This work offers a preliminary investigation of the en-

ergy efficiency of SNNs models for static images scene clas-

sification problems. As stated in Section 2.4.1, the method-

ology used for energy estimation relies on strong assump-

tions on the implementation of neuron models and neglects

some other energy contribution factors that might signifi-

cantly affect the estimated results presented in Section 3.

However, it is not uncommon in the literature to use the

number of synaptic operations and floating-point operations

as proxies of the energy consumption for spiking [32, 14]

and artificial models’ [4] operations. Therefore, despite the

impreciseness of the values of the energy per inference, the

proposed method can be considered as a valid theoretical

solution to benchmark ANNs and SNNs for land cover and

land use scene classifications. In that respect, results pro-

vided in Section 2.4.1 should encourage future research on

the use of SNNs for image classification, given the promis-

ing energy efficiency demonstrated by these algorithms in

our benchmark. Furthermore, the study also suggests the

values of T and ∆t giving a clue about the best trade-offs

between accuracy and energy efficiency.

Consequently, we intend to continue this work in the future

by deploying to the models on neuromorphic hardware, en-

abling us to perform more accurate measurements, which

might be used to validate the results conjectured in this pa-

per, and, shall the result of this investigation be positive,

consider the deployment of an SNN on an on-board neuro-

morphic platform. In addition, we also plan to extend the

benchmark to modern hardware accelerators for edge infer-

ence of ANN models, such as Myriad 2 [35], which was

already exploited to accelerate ANN models on board EO

satellites [20].

Another limitation of the presented work relates to the use

of the VGG-16 model, whose performance lags behind the

state-of-the-art-models [24]. This is due to the requirement

to avoid skip connections, max pooling, alternative activa-

tion functions for which the corresponding spiking imple-

mentations are less straightforward. None the less, future

works will hopefully also extend its scope to more sophisti-

cated networks, which may further reduce the accuracy and

energy-efficiency trade-offs.

Finally, another contribution of the work is the exploration

of potential benefits of the proposed preprocessing strat-

egy, i.e. quantisation and Prewitt filtering. Such prepro-

cessing enables both an increase of the accuracy and the

energy efficiency, by ensuring a high sparsity of the in-

put. These potential advantages might be due to the typ-

ical structure of the data of scene classification. Indeed,

the presence of rivers, fields, and other vegetation in the

image leads to mostly uniformly colored areas, whose in-

formation is condensed in the edge by the preprocessing

pipeline. In particular, it shall be noted that the energy spent

to implement the preprocessing is not included in the esti-

mated energy consumption per inference. This is due to the

fact that in the real-world implementations additional con-

volutional preprocessing operations might be performed on

the input data, in which Prewitt filtering might be included,

thus not increasing the overall energy consumption. Also,

in the future the static data may be replaced by dynamic

senors’ output [18], resulting in the information workload

similar to gradient preprocessed input, but with no need to

perform any additional filtering operations. Otherwise, the

additional energy budget for Prewitt filtering must be added

to the estimates shown in Table 2.

5. Conclusions

In this paper, we presented a theoretical investigation of

the potential energy consumption benefits of the SNNs for

on-board AI applications, focusing on the scene classifica-

tion case study. Accordingly, different ANN/SNN models

were trained and compared in terms of energy efficiency and

accuracy trade-offs on the EuroSAT RGB dataset. Further-

more, a preprocessing pipeline including Prewitt filtering

and input quantisation is proposed, leading to an improve-

ment of said energy accuracy concessions.

Despite the inaccuracy of the suggested energy estimation

method, the preliminary results show that the use of SNNs

might ensure potential benefits in terms of energy efficiency

for this particular application with limited loss of accuracy,

which should encourage future research involving the de-

ployment of these models on neuromorphic hardware.

6. Acknowledgements

The authors of this paper would like to thank the Ad-

vanced Concepts Team and Φ-Lab divisions of the Euro-

pean Space Agency for their continued support of this re-

search. We would also like to express our gratitude to

Lenovo Italy for providing us with the GPU hardware in-

frastructure (ThinkStation P920) necessary to carry out the

experiments.

References

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey

Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-

icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dandelion Mané, Rajat Monga, Sherry Moore,

Derek Murray, Chris Olah, Mike Schuster, Jonathon

Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,

Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,

Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin

Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang

Zheng. TensorFlow: Large-scale machine learning

on heterogeneous systems, 2015. Software available

from tensorflow.org.

[2] Dario Amodei, Danny Hernandez, Girish Sastry, Jack

Clark, Greg Brockman, and Ilya Sutskeve. AI and

compute, May 16 2018.

[3] Applied Brain Research. KerasSpiking. https://

www.nengo.ai/keras-spiking/project.

html- Last access on 20/04/2021.

[4] Gionata Benelli, Gabriele Meoni, and Luca Fanucci.

A low power keyword spotting algorithm for memory

constrained embedded systems. In 2018 IFIP/IEEE

International Conference on Very Large Scale Integra-

tion (VLSI-SoC), pages 267–272. IEEE, 2018.

[5] Pritam Bose, Nikola K Kasabov, Lorenzo Bruzzone,

and Reggio N Hartono. Spiking neural networks for

crop yield estimation based on spatiotemporal anal-

ysis of image time series. IEEE Transactions on

Geoscience and Remote Sensing, 54(11):6563–6573,

2016.

[6] Maxence Bouvier, Alexandre Valentian, Thomas

Mesquida, Francois Rummens, Marina Reyboz, Elisa

Vianello, and Edith Beigne. Spiking neural networks

hardware implementations and challenges: A survey.

ACM Journal on Emerging Technologies in Comput-

ing Systems (JETC), 15(2):1–35, 2019.

[7] Jasper Bouwmeester and J Guo. Survey of worldwide

pico-and nanosatellite missions, distributions and sub-

system technology. Acta Astronautica, 67(7-8):854–

862, 2010.

[8] Applied Brain Research. KerasSpiking - Estimat-

ing model energy. https://www.nengo.

ai / keras - spiking / examples / model -

energy.html - Last access on 20/04/2021.

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child,

Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens

Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-

teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,

Christopher Berner, Sam McCandlish, Alec Radford,

Ilya Sutskever, and Dario Amodei. Language mod-

els are few-shot learners. In H. Larochelle, M. Ran-

zato, R. Hadsell, M. F. Balcan, and H. Lin, editors,

Advances in Neural Information Processing Systems,

volume 33, pages 1877–1901. Curran Associates, Inc.,

2020.

[10] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao,

S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain,

Y. Liao, C. Lin, A. Lines, R. Liu, D. Mathaikutty, S.

McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. Weng,

A. Wild, Y. Yang, and H. Wang. Loihi: A neuromor-

phic manycore processor with on-chip learning. IEEE

Micro, 38(1):82–99, 2018.

[11] B. Degnan, B. Marr, and J. Hasler. Assessing trends

in performance per watt for signal processing applica-

tions. IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems, 24(1):58–66, 2016.

[12] Bradley Denby and Brandon Lucia. Orbital edge com-

puting: Nanosatellite constellations as a new class

of computer system. In Proceedings of the Twenty-

Fifth International Conference on Architectural Sup-

port for Programming Languages and Operating Sys-

tems, pages 939–954, 2020.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai

Li, and Li Fei-Fei. Imagenet: A large-scale hierarchi-

cal image database. In 2009 IEEE conference on com-

puter vision and pattern recognition, pages 248–255.

Ieee, 2009.

[14] Charlotte Frenkel, Jean-Didier Legat, and David Bol.

Morphic: A 65-nm 738k-synapse/mm2 quad-core

binary-weight digital neuromorphic processor with

stochastic spike-driven online learning. IEEE transac-

tions on biomedical circuits and systems, 13(5):999–

1010, 2019.

[15] Gianluca Furano, Gabriele Meoni, Aubrey Dunne,

David Moloney, Veronique Ferlet-Cavrois, Antonis

Tavoularis, Jonathan Byrne, Léonie Buckley, Mihalis

Psarakis, Kay-Obbe Voss, et al. Towards the use of

artificial intelligence on the edge in space systems:

Challenges and opportunities. IEEE Aerospace and

Electronic Systems Magazine, 35(12):44–56, 2020.

[16] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana.

The spinnaker project. Proceedings of the IEEE,

102(5):652–665, 2014.

[17] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside,

E. Painkras, S. Temple, and A. D. Brown. Overview of

the spinnaker system architecture. IEEE Transactions

on Computers, 62(12):2454–2467, 2013.

[18] G. Gallego, T. Delbruck, G. M. Orchard, C. Bar-

tolozzi, B. Taba, A. Censi, S. Leutenegger, A. Davi-

son, J. Conradt, K. Daniilidis, and D. Scaramuzza.

Event-based vision: A survey. IEEE Transactions on

Pattern Analysis and Machine Intelligence, pages 1–1,

2020.

[19] Samanwoy Ghosh-Dastidar and Hojjat Adeli. Spik-

ing neural networks. International Journal of Neural

Systems, 19(4):295–308, 2009.

[20] Gianluca Giuffrida, Lorenzo Diana, Francesco de

Gioia, Gionata Benelli, Gabriele Meoni, Massimiliano

Donati, and Luca Fanucci. Cloudscout: A deep neural

network for on-board cloud detection on hyperspectral

images. Remote Sensing, 12(14):2205, 2020.

[21] Priya Goyal, Mathilde Caron, Benjamin Lefaudeux,

Min Xu, Pengchao Wang, Vivek Pai, Mannat Singh,

Vitaliy Liptchinsky, Ishan Misra, Armand Joulin, and

Piotr Bojanowski. Self-supervised pretraining of vi-

sual features in the wild, 2021.

[22] Bing Han, Aayush Ankit, Abhronil Sengupta, and

Kaushik Roy. Cross-layer design exploration for

energy-quality tradeoffs in spiking and non-spiking

deep artificial neural networks. IEEE Transactions on

Multi-Scale Computing Systems, 4(4):613–623, 2017.

[23] Patrick Helber, Benjamin Bischke, Andreas Dengel,

and Damian Borth. Introducing eurosat: A novel

dataset and deep learning benchmark for land use and

land cover classification. In IGARSS 2018-2018 IEEE

International Geoscience and Remote Sensing Sympo-

sium, pages 204–207. IEEE, 2018.

[24] Patrick Helber, Benjamin Bischke, Andreas Dengel,

and Damian Borth. Eurosat: A novel dataset and deep

learning benchmark for land use and land cover clas-

sification. IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, 2019.

[25] George Hinton, Nitish Srivastava, and Kevin Swersky.

Lecture 6e —RMSProp: Divide the gradient by a run-

ning average of its recent magnitude. COURSERA:

Neural Networks for Machine Learning, 2012.

[26] S. Höppner, B. Vogginger, Y. Yan, A. Dixius, S.

Scholze, J. Partzsch, F. Neumärker, S. Hartmann, S.

Schiefer, G. Ellguth, L. Cederstroem, L. A. Plana, J.

Garside, S. Furber, and C. Mayr. Dynamic power

management for neuromorphic many-core systems.

IEEE Transactions on Circuits and Systems I: Regu-

lar Papers, 66(8):2973–2986, 2019.

[27] Sergey Ioffe and Christian Szegedy. Batch normaliza-

tion: Accelerating deep network training by reducing

internal covariate shift. In Francis Bach and David

Blei, editors, Proceedings of the 32nd International

Conference on Machine Learning, volume 37 of Pro-

ceedings of Machine Learning Research, pages 448–

456, Lille, France, 07–09 Jul 2015. PMLR.

[28] Saeed Reza Kheradpisheh, Mohammad Ganjtabesh,

Simon J Thorpe, and Timothée Masquelier. Stdp-

based spiking deep convolutional neural networks for

object recognition. Neural Networks, 99:56–67, 2018.

[29] Saeed Reza Kheradpisheh and Timothée Masque-

lier. Temporal backpropagation for spiking neural net-

works with one spike per neuron. International Jour-

nal of Neural Systems, 30(06):2050027, 2020.

[30] Vivek Kothari, Edgar Liberis, and Nicholas D Lane.

The final frontier: Deep learning in space. In Pro-

ceedings of the 21st International Workshop on Mo-

bile Computing Systems and Applications, pages 45–

49, 2020.

[31] Andrzej S. Kucik and Gabriele Meoni. SNN

for Space. https : / / github . com /

AndrzejKucik/SNN4Space, 2021.

[32] Erwann Martin, Maxence Ernoult, Jérémie Layde-

vant, Shuai Li, Damien Querlioz, Teodora Petrisor,

and Julie Grollier. Eqspike: spike-driven equilib-

rium propagation for neuromorphic implementations.

iScience, page 102222, 2021.

[33] Abhas Maskey and Mengu Cho. Cubesatnet: Ul-

tralight convolutional neural network designed for

on-orbit binary image classification on a 1u cube-

sat. Engineering Applications of Artificial Intelli-

gence, 96:103952, 2020.

[34] Christian Mayr, Sebastian Hoeppner, and Steve

Furber. Spinnaker 2: A 10 million core processor sys-

tem for brain simulation and machine learning, 2019.

[35] David Moloney, Brendan Barry, Richard Richmond,

Fergal Connor, Cormac Brick, and David Donohoe.

Myriad 2: Eye of the computational vision storm. In

2014 IEEE Hot Chips 26 Symposium (HCS), pages 1–

18. IEEE, 2014.

[36] Priyadarshini Panda, Sai Aparna Aketi, and Kaushik

Roy. Toward scalable, efficient, and accurate deep

spiking neural networks with backward residual con-

nections, stochastic softmax, and hybridization. Fron-

tiers in Neuroscience, 14, 2020.

[37] Philippe Reiter, Philipp Karagiannakis, Murray Ire-

land, Steve Greenland, and Louise Crockett. FPGA

acceleration of a quantized neural network for remote-

sensed cloud detection. In 7th International Workshop

on On-Board Payload Data Compression, 2020.

[38] Seth Roffe, Himanshu Akolkar, Alan D. George,

Bernabé Linares-barranco, and Ryad Benosman.

Neutron-induced, single-event effects on neuromor-

phic event-based vision sensor: A first step towards

space applications, 2021.

[39] J. Sawada, F. Akopyan, A. S. Cassidy, B. Taba, M. V.

Debole, P. Datta, R. Alvarez-Icaza, A. Amir, J. V.

Arthur, A. Andreopoulos, R. Appuswamy, H. Baier,

D. Barch, D. J. Berg, C. Di Nolfo, S. K. Esser, M.

Flickner, T. A. Horvath, B. L. Jackson, J. Kusnitz, S.

Lekuch, M. Mastro, T. Melano, P. A. Merolla, S. E.

Millman, T. K. Nayak, N. Pass, H. E. Penner, W. P.

Risk, K. Schleupen, B. Shaw, H. Wu, B. Giera, A. T.

Moody, N. Mundhenk, B. C. Van Essen, E. X. Wang,

D. P. Widemann, Q. Wu, W. E. Murphy, J. K. Infan-

tolino, J. A. Ross, D. R. Shires, M. M. Vindiola, R.

Namburu, and D. S. Modha. Truenorth ecosystem for

brain-inspired computing: Scalable systems, software,

and applications. In SC ’16: Proceedings of the In-

ternational Conference for High Performance Com-

puting, Networking, Storage and Analysis, pages 130–

141, 2016.

[40] Stefan Schliebs and Nikola Kasabov. Evolving spiking

neural network – a survey. Evolving Systems, 4(2):87–

98, 2013.

[41] Daniel Selva and David Krejci. A survey and assess-

ment of the capabilities of cubesats for earth observa-

tion. Acta Astronautica, 74:50–68, 2012.

[42] Karen Simonyan and Andrew Zisserman. Very deep

convolutional networks for large-scale image recog-

nition. In Yoshua Bengio and Yann LeCun, editors,

3rd International Conference on Learning Represen-

tations, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings, 2015.

[43] Emma Strubell, Ananya Ganesh, and Andrew McCal-

lum. Energy and policy considerations for deep learn-

ing in NLP. In Proceedings of the 57th Annual Meet-

ing of the Association for Computational Linguistics,

pages 3645–3650, Florence, Italy, July 2019. Associ-

ation for Computational Linguistics.

[44] Shilpa Suresh, Devikalyan Das, and Shyam Lal. A

framework for quality enhancement of multispectral

remote sensing images. In 2017 Ninth International

Conference on Advanced Computing (ICoAC), pages

9–14. IEEE, 2017.

[45] Xiaoli Tao and Howard E Michel. Novel artificial neu-

ral networks for remote-sensing data classification. In

Optics and Photonics in Global Homeland Security,

volume 5781, pages 127–138. International Society

for Optics and Photonics, 2005.

