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Abstract

In-situ resource utilization (ISRU) is a key aspect for

an efficient human exploration of extraterrestrial environ-

ments. A cost-effective method for the construction of pre-

liminary structures is dry stacking with locally found un-

processed rocks. This work focus on learning this task from

scratch. Former approaches rely on previously acquired

models of rocks, which may be hard to obtain in the con-

text of a mission. In alternative, we propose a model-free,

data driven approach. We formulate the problem as the task

of selecting the position to place each rock on top of the cur-

rently built structure. The rocks are presented to the robot

in sequence. The goal is to assemble a wall that approxi-

mates a target volume, given the 3D perception of the cur-

rently built structure, the next object and the target volume.

An agent is developed to learn this task using reinforcement

learning. The deep Q-networks (DQN) algorithm is used,

where the Q-network outputs a value map corresponding to

the expected return of placing the object in each position

of a top-view depth image. The learned policy outperforms

engineered heuristics, both in terms of stability of the struc-

ture and similarity with the target volume. Despite the sim-

plification of the task, the policy learned with this approach

could be applied to a realistic setting as the high level plan-

ner in an autonomous construction pipeline.

1. Introduction

For a long term human exploration of extraterrestrial en-

vironments, such as the Moon and Mars, it is essential to

use native materials as replacement to resources otherwise

brought from Earth at great expense. This is commonly re-

ferred to as in-situ resource utilization (ISRU) and, amongst

other applications, is useful for the construction of planetary

infrastructures [13]. Initial settlement structures, such as

roads, platforms and shade walls, may be built with unpro-

cessed or minimally processed local rocks using the ancient

method of dry stacking [16]. Although rudimentary, this

Figure 1. Visualization of the environment. The white box rep-

resents the region where the agent can observe the currently built

structure, which corresponds to the region where placements are

allowed. The green box represents the target volume. The new

object is presented at the top left corner of the image. The boxes

are represented for visualization and are not physically present in

the environment.

technique has been proven to produce long lasting struc-

tures, while requiring very low pre-processing time and en-

ergy. Due to the increased risk and limitations imposed by

human missions [1], it is important to have systems with the

capability of autonomously setting up infrastructure.

However, assembling a structure from a set of irregularly

shaped rocks is a difficult task, usually performed by expe-

rienced humans and requiring some amount of intuition. It

is not clear how to translate this into an autonomous sys-

tem, specially in a context where no models of the environ-

ment are available. Model-based approaches are not suit-

able within this context. For this reason, the problem of dry

stacking in extra-terrestrial environments requires a learn-

ing from scratch and model-free approach. An increasingly

successful approach to autonomously learning such difficult

tasks is reinforcement learning (RL). Concretely, the field

of deep RL has seen a number of breakthroughs in recent

years, such as the deep Q-networks (DQN) algorithm [10].

We argue that optimization-based approaches are difficult

to devise since it is not clear how the sequential nature of

the problem should be translated.



With this work, we propose a formulation for the prob-

lem of autonomously building a stable dry stack wall with

irregular 3D blocks that is compatible with a model-free RL

approach. We aim to show that it is possible for an agent

to learn this complex task from scratch.To accomplish this,

a deep neural network architecture is developed to learn a

mapping of the state representation to action values using

DQN.

1.1. Related work

Some previous works exploit a physics engine to plan

a stable structure from a set of pre-scanned irregular rocks.

Lambert and Kennedy [6] developed an application that out-

puts an assembly plan for a set of prism-shaped rocks, a 2-D

simplification of the problem, where the pose of each rock

is obtained using simulated annealing to minimise a simple

heuristic based on the vertical coordinate of the rock posi-

tion. Nielsen and Dancu [11] propose a system for assisting

real-time dry stone wall construction, where a good place-

ment is found in simulation by dropping the 3D model of a

stone at different positions and with different orientations.

The reached poses are evaluated using the distribution of

contact points and dot product between the contact normals

and the vertical direction. Furrer et al. [4] present a method

to select the best next object and pose by applying gradient

descent from several random initial poses to optimize a cost

function that takes into account: i) the area of the support

polygon, ii) the deviation between the support polygon nor-

mal and the gravity direction, iii) the kinetic energy of the

structure after the placement and iv) the distance between

centers of mass of next and previous objects. This approach

is validated in a real world setting with a pipeline capable

of constructing vertical stacks of up to four irregular rocks

with a robotic manipulator. Liu et al. [7] propose an ap-

proach that successively reduces a finite set of stable poses,

generated by the simulator, by applying a hierarchical se-

quence of filters based on heuristics. Concretely, the area

and normal of the support polygon, the height relative to

neighboring objects, the top surface sloping and interlock-

ing (number of objects in contact with the current one) are

used. In an experimental setting, this method is shown to

outperform the work of Furrer et al. [4] in building verti-

cal stacks and to be able to construct walls of four courses.

This was preceded by previous work of the same authors in

a simplified 2-D setting [8, 17], including a RL approach

[9] in which the DQN algorithm is used to learn the values

of each computed stable pose, which are used instead of the

sequence of heuristics.

The novelty of our work lies in: (i) developing a setup in

which it is possible to learn from scratch how to dry stack

irregular rocks, without requiring previously acquired ob-

ject models or internal physical simulation, including a new

metric for the reward shaping of the dry stacking task, and

(ii) the development of a two branched neural network, in-

spired by the Siamese architecture, that deals with two se-

mantically different inputs (the perception of the rock to be

placed and the currently built structure). To the best of our

knowledge, there is no previous work that explores a com-

pletely model-free approach to this problem.

2. Background

In a RL setting, an agent interacts with an environment

in order to learn a behaviour that maximizes a reward signal

[15].

The environment can be represented by the tuple

(S,A,R, p). At each time step t, the agent observes the

environment’s state st ∈ S and takes an action at ∈
A accordingly. This causes the environment to shift to

state st+1 ∈ S , which comes with the reward rt+1 ∈
R. The tuple (st, at, rt+1, st+1) represents the transi-

tion at time step t. The transition probability distribu-

tion p(st+1, rt+1|st, at) is a property of the environment,

and can be factorized as p(rt+1|st, at, st+1)p(st+1|at, st).
While p(st+1|at, st) is purely a function of the environ-

ment dynamics, p(rt+1|st, at, st+1) depends on the under-

lying goal. A more general representation is obtained by

explicitly including the dependency on the goal g ∈ G, as

p(rt+1|st, at, st+1, g).
The agent must learn a policy that maximizes the return

Gt =
∑∞

t′=t+1 γ
t′−t−1rt′ , where the discount factor γ de-

fines the importance given to delayed rewards. This policy

may be obtained implicitly from an estimate of the action-

value function qg,π(s, a) = E[Gt | st=s, at=a, π, g],
by selecting the action that maximizes the expected

return from a state s, given the policy π and the

goal g. From the definition of Gt, it is possible to

state the Bellman optimality equation qg∗(s, a) =
E[rt+1 + γmaxa′ qg∗(st+1, a

′) | st=s, at=a, g], where

qg∗ is the action-value function for the optimal policy given

the goal g [15].

2.1. Deep Q­networks

The DQN algorithm [10] uses a deep neural network

to learn a function approximation Q of the optimal action-

value function qg∗. This is done by minimizing the tempo-

ral difference error δt = rt+1 + γmaxa Q(st+1, a|w
−) −

Q(st, at|w), derived from the Bellman optimality equation.

w and w
− are the parameters of the current and target net-

works, used to estimate the action-values. The target net-

work is updated with the parameters of the current network

at a defined period and kept constant otherwise for stabil-

ity reasons. At each interaction with the environment, the

agent selects an action according to an exploratory policy

(e.g. ε-greedy) based on the current action-value estimates

and stores the transition in a replay memory. The network

update is then performed by sampling a minibatch of tran-



sitions from the replay memory and performing a stochastic

gradient descent step (or any improved optimization algo-

rithm) to minimize
∑

ti∈batch loss(δti), with some defined

loss function (e.g. quadratic).

The set of value functions for different goals may be uni-

fied using an universal value function approximator [14].

This can be achieved by using a deep neural network that

takes the goal as an additional input, such that Q(s, a, g|w)
is an estimate of qg∗(s, a). With this formulation, the func-

tion approximation allows to generalize not only over a po-

tentially large state space, but also over a potentially large

set of goals.

3. Methodology

The proposed approach to learn a policy using model-

free RL is divided in two parts. First, a simplified version

of the task is formulated as a RL environment with discrete

action space. Then, an agent architecture is developed to

learn a value function for the environment, using DQN.

3.1. Environment

The environment is set up in a physics engine to sim-

ulate the task of assembling a structure that approximates

a target volume, using a sequence of irregular blocks. At

each time step, the next object in the sequence is presented

to the agent, as well as the currently built structure and the

target volume. The agent chooses the new object position

(i.e, takes an action) and a careful placement of the object

on top of the current structure, with the same orientation

as it was presented, is simulated in the environment. The

simulation is then run until all objects stabilise. This pro-

cess is repeated until all objects in the sequence are placed.

Figure 1 shows a visualization of the environment.

A state of the environment is represented as a pair of

elevation maps, containing: (i) an overhead view of the cur-

rent structure (see Figure 2(b)), and (ii) a bottom view of

the new object (i.e. the side of the object that will be in

contact with the structure, see Figure 2(c)). An elevation

map is a 2D array whose elements represent the elevation at

a given discretised (horizontal) position. The elements are

always greater or equal than zero, with zero corresponding

to the minimum elevation. An action is represented by a

pair of indexes (i, j), corresponding to the coordinates of

the overhead elevation map (see Figure 2(e), where the ob-

ject placing position is shown in yellow). The goal is repre-

sented with an elevation map with the same dimensions as

the overhead view, but representing the target volume (Fig-

ure 2(a)).

3.2. Reward shaping

Reward shaping is a key aspect of RL. The learned be-

haviours are critically affected by the reward signal, so it

must clearly capture the intended goal [15]. At the same

time, it should be distributed in a way that makes learning

feasible.

A simple way to translate the goal of approximat-

ing a target volume into a reward value is by using the

intersection over union (IoU) between the volumes of the

current structure and the target, which can be computed us-

ing the corresponding elevation maps. However, this met-

ric presents two flaws for this context. Firstly, it consid-

ers empty spaces under the objects as part of the volume

of the structure. This may lead the agent to place the ob-

jects with large spaces between them in order to increase

the volume of the intersection. This can undermine the sta-

bility of the structure. Secondly, it ignores undesirable ob-

ject displacements. For instance, an object placed on an

unstable position that happens to fall inside the target vol-

ume will still contribute to the positive reward. However,

object movement and unstable placements are always not

desirable since they can affect the long term stability of the

structure.

The first flaw can be tackled with a metric equivalent

to the IoU, but instead of volumes, we exploit the number

of objects to define the metric. We can represent (i) the

intersection between the target and the current structure as

the number of objects currently inside the target volume;

(ii) the target as T , which is the ideal case where all the

objects are inside the goal; and (iii) the current structure

as the number of objects already placed, t. The union is

obtained using the property |X ∪ Y| = |X | + |Y| − |X ∩
Y|, where the elements of the right hand side are obtained

as described in (i), (ii) and (iii). With this definition, it is

possible to address the second flaw by directly applying a

discount factor to the contribution of each object, based on

the distance between its current pose and the placing pose.

The new metric is then given by:

DIoUt =

∑t−1
i=0 b

[i]
t · µ

[i]
t

T + t−
∑t−1

i=0 b
[i]
t

, (1)

where b
[i]
t is 1 if the object i is inside the target at time step

t and 0 otherwise, and µ
[i]
t is the applied discount. This

metric lays in the range [0, 1], with 1 corresponding to the

ideal case of a terminal state in which all objects are inside

the target volume with no displacements from the original

poses. The value of b
[i]
t can be determined by retrieving

the object position (center of mass) from the simulator and

checking if it is inside the target volume. The discount can

be defined as:

µ
[i]
t =







0 if |∆x
[i]
t | > ∆xmax ∨ |∆θ

[i]
t | > ∆θmax

(

1−

(

|∆x
[i]
t

|
∆xmax

)cx)

·

(

1−

(

|∆θ
[i]
t

|
∆θmax

)cθ)

o/w,

(2)

where ∆x
[i]
t and ∆θ

[i]
t are the 3D translation and rotation

distances between the original pose of object i and its pose



Action
choice

(a) (b)

(c)

(d) (e)
State value

(scalar)

Action
advantage

Q-network

Figure 2. Diagram of the proposed approach. The input of the Q-network consists of the m0 × n0 elevation maps of (a) the target volume

and (b) the current structure, and the m1 × n1 elevation map of (c) the next object. The output is a value map (d) with the values estimated

for each position, from which an action (i, j) is selected, as visualised in (e). The modules ϕ0 and ϕ1 perform a pixelwise feature extraction

from the inputs, returning d channel images.

observed at time step t. The parameters ∆xmax and ∆θmax

represent the maximum allowable distances. If the displace-

ment exceeds one (or both) of these distances, its contribu-

tion to the reward is zero. The exponents cx and cθ con-

trol how µ decreases with the distances. Higher values

(cx, cθ > 1) make it less sensitive to small displacements.

The value of the metric in the end of the episode DIoUT

provides an evaluation of the obtained structure and could

be sent as a reward in the terminal state, which perfectly

captures the goal of reaching the ideal case described. How-

ever, it is hard to learn the value of each action from it, since

the actions influence the final result in complex and unclear

ways. In order to make the problem tractable, each contri-

bution to the final value may be rewarded immediately, as

rt = DIoUt − DIoUt−1. This way, an action that increases

the metric (e.g. successfully places an object inside the tar-

get) is immediately rewarded, while an action that makes it

decrease (e.g. causes part of the existing structure to col-

lapse) is penalised.

3.3. Model generation

In order to allow the agent to learn a generalisation, the

experience provided by the simulated environment must be

diverse, which includes the object models used. As it is hard

to find a large number of models of real irregular objects

(e.g. natural rocks), these models are synthetically gener-

ated. This allows the generation of a large set of models

from which the sequences used in each episode are sam-

pled.

The process used to generate 3D models is inspired on

the method presented by [17] to generate datasets of irreg-

ular 2D shapes. Our method takes a rectangular prism as a

starting point and then applies a sequence of random vertex

displacements and mesh subdivisions. The displacements

are sampled from a truncated normal distribution scaled by

an irregularity parameter ς . After each subdivision, the

scale of the random displacements of the new vertices is

halved. The irregular object is obtained as the convex hull

of the displaced vertices. This is done for two reasons:

firstly, the usage of convex shapes makes the collision com-

putations more efficient in the physics engine; secondly, the

convex hulls actually resemble more natural rocks (often

subject to erosion) than the obtained irregular shapes. From

initial experiments in this setup without using convex hulls,

we observed that the algorithm performs similarly for both

cases. Thus, this assumption seems not to affect signifi-

cantly the solution, while allowing faster and more stable

simulations.

The meshes of the models are generated using Trimesh1.

Each mesh is positioned and oriented in the model’s frame

so that its oriented bounding box is centered at the origin

and aligned with the axes, with the largest extent aligned

with the first axis and the smallest with the third (verti-

cal). A value for the material density is uniformly sampled

from an interval [ρmin, ρmax], which simulates diverse ma-

terials or materials with variable composition or porosity.

The robot does not use this information whatsoever, but in-

duces robustness in the learning process. Some examples of

models generated with different values of ς are presented in

Figure 3.

(a) ς = 0. (b) ς = 0.1. (c) ς = 0.25. (d) ς = 0.5.

Figure 3. Models generated with different values of the irregularity

parameter ς (3 subdivisions performed).

3.4. Agent

The agent takes as input the elevation maps of the tar-

get volume, the current structure and the next object, as

depicted in Figure 2. The first two are stacked to form

a two channel input, which makes the spatial relation be-

tween the current structure and target volume clear to the

1M. Dawson-Haggerty et al. Trimesh. https://trimsh.org/, version

3.8.1.



agent. A mapping of these inputs to the values of all pos-

sible actions (i.e. corresponding to all possible offsets be-

tween the inputs) is obtained with a cross-correlation like

operation that slides the object elevation map through the

overhead elevation maps. This is translated into the neural

network architecture depicted in Figure 2, which is inspired

on the fully convolutional Siamese network presented in

[3]. Differently from the Siamese architecture, where the

inputs have the same meaning and must be matched, we use

two different fully convolutional modules ϕ0 and ϕ1 as the

branches, with no shared weights. Both modules perform

a dense (pixelwise) feature extraction and return outputs

with the same number of channels, which are then cross-

correlated. Each branch uses the U-net architecture [12],

which consists of a contracting path that gradually extracts

higher level, lower resolution features, and a symmetric ex-

panding path that gradually increases the resolution. As the

object elevation map is smaller and contains less semantic

information, a shallower network is used for its branch. The

network sizes used are 5 levels in ϕ0 and 3 in ϕ1, and both

branches use convolutional layers with 16 channels at the

first level (see [12]).

The network architecture is extended with one additional

fully convolutional module ϕout, placed at the output of the

cross-correlation. This is motivated by the fact that the net-

work must learn a specific value function, estimated from

the collected rewards. With the additional module ϕout, the

output of the cross-correlation is mapped to the intended

values. This gives the branches more freedom to express the

features, as the output of the cross-correlation is not forced

to fit the value function. This module consists of two 3× 3
convolutional layers with 16 channels and ReLU activation

followed by a 1× 1 single channel convolution, with no ac-

tivation, that maps the 16 channels to the output value map.

Additionally, the network is adapted to match the duel-

ing architecture [21]. The intrinsic value of a state is greatly

influenced by the current structure, as it defines the avail-

ability of potentially good positions for a new object. Addi-

tionally, it reflects the stage of the episode (i.e. an advanced

episode, indicated by a structure with many objects, means

lower expected return because the terminal state is closer).

Although the shape of the object by itself may also be in-

dicative of the overall expected quality of the placement,

this influence is not significant when compared to the over-

head input. This observation is translated into the architec-

ture by extracting the state value from the branch ϕ0, which

is then combined with the advantage function returned by

ϕout as in [21]. This value is extracted by applying a global

average pooling layer to the higher level, lower resolution

feature maps in ϕ0 (i.e. the end of the contracting path of

the U-net), and then applying one fully connected layer with

256 units and ReLU activation and a single fully connected

unit (no activation) to map the feature vector to a scalar.

3.5. Baselines

Three levels of baseline performance are considered for

comparison with the learned policies. The first corresponds

to the policy that randomly samples actions from the com-

plete action space. The second is given by the policy that

randomly samples actions inside the target volume, which

corresponds to capturing the notion of the goal of the en-

vironment. For the third level, a position choice criterion

is introduced in the form of a heuristic function that must

be optimized. This level corresponds to capturing a basic

understanding of the environment dynamics. The heuris-

tic is given by the cross-correlation between the elevation

maps of the current structure and object. As the values in

the elevation maps are always greater or equal to zero, the

cross-correlation effectively results in a blurring operation

on the overhead elevation map with a filter given by the ob-

ject shape. The local minima of the cross-correlation out-

put are likely to correspond to concavities in the structure

where the object fits, because sharper local minima in the

elevation map would have been blurred out. Additionally,

the global minimum is also the lowest point in the blurred

surface, which is consistent with the height criterion used

in related work (e.g. [7]). The action is selected as the

minimum cross-correlation value inside the target region,

thus, this baseline is a optimization-based approach to the

dry stacking problem.

Although several methods on dry stacking were pre-

sented on the related work section, none of the methods

were considered as a baseline since they require that the

agent has an internal model of the environment to compute

the set of possible positions. This is not available in this

setup, which is consistent with the ISRU paradigm.

4. Results

A set of experiments2 is performed on the described en-

vironment, simulated using PyBullet3. The dataset of rock

models used is composed of 500 models generated with

each value of ς ∈ {0.5, 0.55, . . . , 1}, resulting in a com-

plete dataset of 5500 models. The size of the overhead and

object elevation maps are 128 × 128 and 32 × 32, respec-

tively. The episode length T is set to 30 objects. Two met-

rics are used to evaluate the obtained policies. The first is

the IoU, which is a measurement of the similarity between

the built and target volumes. The second is the average of

the discounts defined in (2), given by

ADt =
1

t

t−1
∑

i=0

µ
[i]
t , (3)

2Implementation available at https : / / github . com /

menezesandre/stackrl.
3E. Coumans and Y. Bai. Pybullet, a python module for physics simula-

tion for games, robotics and machine learning. http://pybullet.org, version

2.9.6.
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Figure 4. Evolution of the rewards during training. In blue are several runs of our proposed model-free RL approach trained using (a) IoU

rewards and (b) DIoU rewards. Solid blue corresponds to the best run. The orange, green and red horizontal lines correspond to the average

results obtained with each baseline policy over 100 episodes.
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Figure 5. Evolution of the intersection over union (IoU) and average discount (AD) metrics for the learned policies during an episode.

Values obtained over 100 episodes. In blue are the distributions obtained with the learned policies. In orange, green and red are the average

values obtained with each baseline policy.

which is a metric of the similarity between the planed struc-

ture (given by the poses were the objects were placed) and

the actual structure (given by the current poses of the ob-

jects). The ADt evaluates the effectiveness and stability of

the placements.

The training sessions are performed using the DQN algo-

rithm with a replay memory of size 400000, minibatch size

of 32, and 2 transitions collected between network updates.

The network optimization uses Adam [5] with learning rate

6.25 · 10−5 and exponential decay rate 0.95 for the first and

second moment estimates.

One training iteration of our approach takes on average

0.15s of continuous process time (CPU for the simulation

and GPU for inference and backpropagation) on the used

hardware (an Intel(R) Core(TM) i7-7820X, and a GeForce

GTX 1080 Ti, respectively). Thus, a training session with

106 iterations lasts around 42 hours.

Two training sessions are run with rewards generated

with the IoU and four with rewards generated by the DIoU

(1). At intervals of 10000 iterations, the current greedy pol-

icy is evaluated with 100 episodes. Figure 4 shows the evo-

lution of the results during training, compared with the re-

sults of the three baseline levels. The curves highlighted

with the stronger colour are considered the best run for each

reward shape, and correspond to the same network initiali-

sation for both.

From the learning curves in Figure 4, it is observable that

the notion of the goal is easily (and quickly) learned. This

corresponds to reaching the second level of baseline perfor-

mance (green line), given by the policy that samples random



(a) t = 10 (b) t = 10 (c) t = 10 (d) t = 30 (e) t = 30 (f) t = 30

(g) t = 10 (h) t = 10 (i) t = 10 (j) t = 30 (k) t = 30 (l) t = 30

Figure 6. Examples of structures assembled with the learned policy are presented on the top row [(a) to (f)] and the corresponding value

maps estimated by the trained Q-network on the bottom row [(g) to (l)]. The examples show initial (t = 10) and advanced (t = 30) stages

of the episode. The initial stages illustrate the initial strategy, while the advanced stages depict the obtained structures. The value maps at

t = 30 reflect the scarcity of stable positions at that stage.

actions from the target region. Afterwards, the dynamics of

the environment are gradually captured by the value func-

tions. The best run with DIoU rewards (solid blue line in

Figure 4(b)) is able to learn a placing criterion that outper-

forms the third baseline level, given by the cross-correlation

heuristic. However, it can be verified that the rewards gener-

ated by the DIoU result in returns that are difficult to predict.

Indeed, the frequent breakdowns of the training sessions are

one of the reasons for this hypothesis. These breakdowns

correspond to one of the layers in the network stopping to

produce activations for any input, which results in the pre-

diction of equal values for all actions and the consequent

performance breakdown. The layer that does not produce

activations blocks backpropagation, which stops the learn-

ing process. This outcome could be prevented with network

architecture modifications (e.g. residual connections). On

the other hand, the policies learned with the IoU are more

consistent, but do not significantly outperform the baseline.

To further analyse the policies obtained from the best run

with each metric, a set of 100 episodes is used to access the

evolution of the evaluation metrics, IoU and AD, during an

episode. The results are shown in Figure 5 comparing them

to the average evolution obtained with the baselines. Ta-

ble 1 reports the average and standard deviation of the final

values of the metrics obtained with each policy (learned and

baselines).

Regarding the policy learned with the IoU, it is possible

to observe that it produces generally unstable placements.

The AD curve in Figure 5(a) shows average values of ADt

closer to the random policy. This ultimately prevents the

policy from outperforming the cross-correlation baseline.

From Figure 5(b), the evolution of the IoU and AD

throughout the episodes allows an interpretation of the be-

haviour improvement over the baselines. The IoU starts

by increasing slower for the proposed method than for the

cross-correlation heuristic. This is explained by the fact that

Table 1. Evaluation results. Values reported as the average and

standard deviation (in parentheses) over 100 episodes.

IoU30 AD30

Learned with IoU 0.266 (0.026) 0.584 (0.064)

Learned with DIoU 0.303 (0.029) 0.791 (0.058)

Random 0.125 (0.027) 0.738 (0.06)

Random (goal) 0.232 (0.025) 0.507 (0.064)

Cross-correlation 0.27 (0.024) 0.769 (0.046)

this policy starts by packing a tight first course, which also

results in keeping the value of AD closer to one for longer.

This initial behaviour, along with a suitable understanding

of the dynamics of the environment, end up enabling the as-

sembly of structures more similar to the target and with less

displacements from the original poses. Figure 4 shows ex-

amples of structures assembled with the learned policy and

value maps estimated by the trained Q-network.

A remarkable observation is the strategy learned for the

initial stage. The agent learns to start an episode by plac-

ing the first objects in the boundary of the target area. This

allows the following objects to be supported by an inwards

sloping surface, which prevents them from falling out and

increases the overall stability of the structure. This be-

haviour, learned from scratch, is consistent with dry stack-

ing theory [20].

5. Conclusion and Future Works

The major achievement of this work was to develop a

setup in which a dry stacking policy can be learned with-

out any previously acquired models of the environment. An

agent is able to learn from scratch a policy that captures

the goal of the environment and its dynamics. The emerged

behaviour is, to some extent, consistent with dry stacking



theory [20]. The agent learned the policy using a model-

free approach in simulation, which can be directly used in

extra-terrestrial environments since the agent is not based

on pre-existent models. Our data-driven approach is more

suitable for ISRU.

The policies learned with the proposed approach could

be applied to a realistic setting as the high level plan-

ner in an autonomous construction pipeline, where a lower

level feedback controller would be responsible for reach-

ing, grasping and carefully placing the objects [19], while

adjusting the action as needed. In opposition to feedforward

execution of the planned actions, this would allow the sys-

tem to better approximate the way a human performs the

task. Additionally, the gap between the simulated train-

ing and a real environment can be reduced by introducing a

source of randomness into the synthetic observations [2, 18]

(e.g. random noise in the depth images).

As future work, we plan to improve the network archi-

tecture with residual connections to avoid training break-

downs. The overall efficiency of the method can also be

improved by giving the agent more freedom on building the

structure. One solution is allowing the agent to select the

rock orientation (right now, the orientation is fixed). Ad-

ditionally, a pool of available rocks could be presented to

the agent instead of the pre-defined (random) sequence. In

this more challenging scenario, the agent should be able to

choose (i) the next rock to place on the structure, (ii) its ori-

entation and (iii) where to place it. These improvements can

be accomplished as an extension of the current approach,

by presenting a set of possible rocks and different orienta-

tions as a batch of inputs, and allowing the agent to select

which rock and orientation provides a placement with great-

est value.
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