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Abstract

In advanced mission concepts with high levels of au-

tonomy, spacecraft need to internally model the pose and

shape of nearby orbiting objects. Recent works in neural

scene representations show promising results for inferring

generic three-dimensional scenes from optical images. Neu-

ral Radiance Fields (NeRF) have shown success in render-

ing highly specular surfaces using a large number of im-

ages and their pose. More recently, Generative Radiance

Fields (GRAF) achieved full volumetric reconstruction of a

scene from unposed images only, thanks to the use of an

adversarial framework to train a NeRF. In this paper, we

compare and evaluate the potential of NeRF and GRAF to

render novel views and extract the 3D shape of two differ-

ent spacecraft, the Soil Moisture and Ocean Salinity satel-

lite of ESA’s Living Planet Programme and a generic cube

sat. Considering the best performances of both models, we

observe that NeRF has the ability to render more accurate

images regarding the material specularity of the spacecraft

and its pose. For its part, GRAF generates precise novel

views with accurate details even when parts of the satellites

are shadowed while having the significant advantage of not

needing any information about the relative pose.

1. Introduction

The reconstruction of the pose and shape of an orbit-

ing object from a sequence of two-dimensional images is

an important part of several mission concepts that have

emerged in the last decade. In the context of active de-

bris removal missions [25, 34], the rendezvous, capture (or

attachment), and deorbit mission phases can leverage the

knowledge of the target debris shape. During the design

of the ESA e-deorbit mission [4], for example, de-orbiting

techniques based on clamping mechanisms were consid-

ered. This was made possible as the target object, the En-

visat satellite, while non-cooperative, is known to a high

level of details [21]. The value of computing, possibly on-

board, the shape of a generic, unknown, debris is then im-

mediately understood as to allow autonomous operations of

the chosen de-orbit strategy. A similar scenario is that of

generic close proximity operations, such as those encoun-

tered during rendezvous and docking or formation flight. In

the case of the Automated Transfer Vehicle operations, the

relative pose of the two docking platforms could be deter-

mined thanks to the prior detailed knowledge of a specific

3D feature on-board the target [7], while during the Prisma

mission [33] active visual features were used to facilitate a

similar task. The efficient and automated determination of

poses is actively studied in similar contexts and in [10], for

example, the spacecraft pose is determined to a high degree

of precision from a single two-dimensional image assum-

ing a detailed knowledge of the spacecraft model. In [20, 6]

pose reconstruction was carried out from a large dataset of

two dimensional images without explicit use of a model.

Space Situational Awareness [11], in-orbit servicing,

manufacturing and even recycling are also relevant and ac-

tive fields of aerospace research where the acquisition of

information about a generic target structural integrity, func-

tion and pose is pursued. The ESA’s OMAR (On-orbit Man-

ufacturing Assembly and Recycling) initiative or NASA’s

OSAM (On-orbit Servicing, Assembly, and Manufacturing

Servicing) shows the commitment of space Agencies to pro-

vide future missions with such a capability.

This work considers the use of a single monocular cam-

era to reconstruct a full colored three-dimensional model of

a target orbiting object. The resulting vision-based system

is potentially low cost and mainly passive when compared,

for example, to a LiDAR based solution [44]. Following

recent advances in computer graphics, we leverage Neural

Scene Representations to learn a 3D differentiable model

of a space object, using images as input. A recent study

proposed the Neural Radiance Field (NeRF) [31], which

computes a continuous mapping from a 3D location and

a 2D viewing direction to density and RGB color values.
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Figure 1: A Neural Radiance Field (NeRF) [31] and a Generative Radiance Field (GRAF) [40] are trained with synthetic

datasets of SMOS and CubeSat satellites (resp.), at image resolution 256×256 pixels. GT: ground truth. We generate images

of the satellites from previously unseen viewpoints. Although it is trained with unposed images, GRAF allows for explicit

camera control. NeRF generates more accurate images than GRAF regarding the lighting conditions, the view dependent

effects and the pose of the object. Both learn surface specularity.

Unlike most previous stereo-photogrammetry approaches,

NeRF models are able to account for view-dependent ef-

fects such as surface specularity. More recently, a gen-

erative model for radiance fields has performed success-

ful 3D-aware image synthesis and 3D shape estimation of

objects from unposed images. Generative Radiance Fields

(GRAF) [40] offer explicit control on the camera pose, al-

lowing to generate images of the object from unseen view

points. They also have the ability to disentangle the shape

of the object from its appearance when considering several

similar objects. To address the scarce availability of good

enough images of orbiting objects, synthetic dataset were

produced to simulate the necessary orbital scenes and in-

cluding two different satellites. On these, we compare the

ability of NeRF and GRAF to generate images and recreate

the accurate shape of the satellites from unseen viewpoints.

Using information on the relative position and orientation

of the camera, NeRF is able to identify a non-cooperative

object, providing a 3D representation of its shape and color

values. GRAF, on the other hand, opens a whole new per-

spective as it performs the same task using unposed images

only, without prior knowledge of the viewing direction.

The paper is structured as follows. In Section 2, we re-

view related work in novel view synthesis and volumetric

representation learning. Section 3 describes the two meth-

ods chosen for the comparison, namely NeRF and GRAF.

Section 4 details our experimental study, from our dataset

to our results. Finally, we discuss the performance of each

method and present future work in Section 5.

2. Related work

Novel view synthesis is the problem of generating an

image from an unseen viewpoint given a set of images of a

scene. It is an intensively investigated subject by the com-

puter vision community [41]. This task’s main challenges

are dealing with occlusions and incomplete illumination,

particularly when few observations are available.

Traditional approaches for novel view synthesis are

image-based rendering methods [27, 42, 9] which typically

use multiple images as input at runtime and warp seen pix-

els to the targeted view using a blending function to build

the new image.

Recent methods use Deep Learning to extract 3D proper-

ties of an object [27, 42, 9] or a scene [9]. Liu et al. [27] use

convolutional neural network (CNN) to describe an object

using multiple viewpoints. However such methods do not

provide any 3D shape information or lighting control.

Another method [42] proposed to tackle view-dependent

effects such as surface specularity by adding an auto-

encoder network to learn and predict those artifacts using

a depth map as input. Yet, these methods fail at producing

valid images from very different viewpoints than the inputs,

making them sensitive to cases with sparse observations.

Recent progress has been made using differentiable ren-

dering for learning-based novel view synthesis [49, 19] and

pose estimation [36]. By calculating the gradients at each

point during ray-marching, a neural network can optimize

the 3D representation based on 2D projections alone.

Explicit scene representation. A scene can be repre-

sented explicitly using discrete elements such as meshes,

voxels or point clouds. Mesh-based methods are considered

for 3D reconstruction [19, 45, 26] although they are limited

in terms of topology. Those methods produce a realistic out-

come but they have a high computational cost and they are

limited in the number of vertices which can be predicted by

a neural network. This hinders their ability to represent fine

details, which require a high amount of mesh elements.
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Voxel-based novel view synthesis [49, 43, 14] involves

taking a set of images as input to a network, which predicts a

discrete volumetric representation. However, these models

have poor scaling properties with regards to memory usage,

because they grow cubically with spatial resolution.

Point cloud representations use collections of points to

model shapes in the 3D space. Their major downside is that

they do not contain any topological information. They can

be integrated into neural networks and are now a common

choice for data representation [24, 48]. Point cloud-based

approaches have a lower computation cost than the meth-

ods previously introduced but they fail to properly render

surface information such as the color of a rendered pixel in

case of occlusion.

Implicit scene representation. Since NeRF [31], im-

plicit volumetric representations have been gaining atten-

tion in the computer vision community [30, 52, 28, 38, 35].

In this paradigm, the scene representation is learned in a

parametrized manner in a neural network.

For each point in 3D space, the neural network can ei-

ther be trained to model the presence of an object [30], or

it can be trained to model the local density of light emitting

particles, as in NeRF [31]. The training is self-supervised

using multi-view images. Like explicit learning techniques,

pixels of input views are projected in a 3D volume along

rays cast from the camera. Neural implicit representations

model the scene as a continuous function. A major asset of

NeRF is its ability to handle view-dependent effects such

as surface specularity. The properties of NeRF and the re-

sults that it achieved in previous work make it of particular

interest for our application.

Generative Adversarial Networks. Generative Adver-

sarial Networks (GANs) [13, 2] are another way to render

representations of a scene. They have received increased

attention in the last years achieving remarkable results in

generating realistic high resolution images. Their adversar-

ial learning scheme has led to significant progress in various

tasks, such as authentic looking data generation [39, 17, 18],

inpainting [23, 50], image-to-image translation [16, 53] and

image super-resolution [22, 46]. Their advantage over clas-

sic computer graphics methods is the ability to generate re-

alistic images that appear very different from the ones pro-

vided in the training images. This is enabled by the discrim-

inator, which encourages the generator to produce plausible

images, according to what it has learned about the training

data distribution. However, most current GAN-based im-

age synthesis methods currently do not provide 3D shape

information. They also do not allow for explicit control of

camera parameters such as the viewpoint and for fine con-

trol over the scene materials or lighting conditions.

Previous work in 3D-aware GAN training, such as Pla-

tonicGAN [14] and HoloGAN [32], are based on voxel

grids to characterize either the object or the feature rep-

resentation, and are therefore constrained by the scaling

limitations mentioned earlier. GRAF, on the other hand,

uses a NeRF as a 3D implicit representation of the scene

and thanks to the discriminator, it has the ability to learn

this representation without the information of the pose of

the input images. However, Schwarz et al. [40] do not di-

rectly compare NeRF and GRAF and therefore do not study

the posed vs. unposed aspect. Besides the dataset differ-

ences, our paper investigates under which sampling condi-

tions generative methods can replace the need for pose in-

formation.

3. 3D aware image synthesis

We compare NeRF and GRAF on their ability to learn

a 3D representation of a satellite from 2D supervision us-

ing multi-view images. Both methods are trained without

any 3D prior on the target which is an interesting aspect

for space applications. NeRF needs the information of the

position and orientation of the camera in relation to the ob-

ject. For the same purpose, GRAF does not require any

additional input information and has therefore a significant

advantage when it comes to identifying non-cooperative

spacecraft.

3.1. Neural Radiance Fields

The Neural Radiance Field (NeRF), introduced by

Mildenhall et al. [31], is a neural network that represents

a scene as a continuous mapping of 3D locations and 2D

viewing directions to an RGB color and a density value.

The radiance field is represented using a Multilayer Percep-

tron (MLP) optimized to map each input 5D coordinate to

its corresponding density and emitted color. NeRF param-

eters are trained using precomputed camera rays extracted

from the pixels of the images composing the dataset along

with their corresponding view directions.

In the literature, NeRF and its derivatives have been used

to perform novel view synthesis using using mainly syn-

thetic data [31, 52, 38] but also using real-world data [31,

28, 35]. Previous studies showed that NeRF is able to learn

scene with complex geometry such as a boat rigging [31],

virtual characters in various poses [38], or an object with

thin parts [52] from the ShapeNet reference dataset [8]. An-

other asset of NeRF is its ability to faithfully learn and gen-

erate detailed texture. NeRF relies on ray tracing, a ren-

dering technique in computer graphics that simulate light

behavior based on geometrical optics theories [29]. This is

an important feature which allows NeRF to handle view-

dependent effects such as specularity on reflective surfaces

as shown in Figure 1.

For the specific case of a close-proximity operation, the

spacecraft that attempts the approach is considered as the

camera, while the targeted object in space represents the

scene to reconstruct. Challenges are in the diffraction-free

3



lighting conditions which cause strong shadow masking on

the object surface [20]. This is a major difference with

datasets used in previous work which consider scenes with

ambient light where shadows have a limited impact, if any.

Moreover, spacecraft are typically covered with highly re-

flective material such as foils used to protect from the Sun’s

heat.

One natural limitation of the standard NeRF training is

the reliance on pose information. In this work we investi-

gate a different training procedure based on generative ad-

versarial learning, that enables volume reconstruction with-

out explicit pose information.

3.2. Generative Radiance Fields

Generative Radiance Fields (GRAF) [40] use an adver-

sarial training scheme to train a NeRF with a set of unposed

images. The internal NeRF representation and the physics-

inspired rendering equation are identical to [31].

The generator of the GRAF is composed of a radiance

field conditioned on several parameters. It takes as input a

requested pose that will be used to synthetize an image rep-

resentation of the scene from that viewpoint during infer-

ence. It can optionally be conditioned on shape and appear-

ance codes to enable application to unposed datasets with

many different objects. The generator also considers loca-

tions of pixels corresponding to a patch. A patch represents

a square array of pixels in an image and offers control on

the scale of detail that is being learned. The patch position

and the distance between the considered pixels in it are used

by the generator to synthesize patches of images during the

training. Indeed, predicting a color value for every pixel in

the target image (in the same batch) is too memory-intensive

and restricts application to high-resolution images.

The patch-based discriminator of the GRAF then com-

pares the generated patches to a patch of a real image. It

differentiates the real patches from the generated one and

this information is used to update the weights of the gener-

ator and optimize its loss function. This way, as the training

progresses, the generator tries to fool the discriminator by

producing pixels matching the probabilistic distribution of

the ones located on the real images. Thanks to the discrimi-

nator, the NeRF weights are updated to match this distribu-

tion by making abstraction of the pose of the images. The

size of the receptive field of the patch is decreased during

the training to start capturing global contours and progres-

sively improve local details.

During inference, the generator predicts an image of the

scene from a specified viewing angle. Changing the shape

and appearance codes will correspond to a change in the

volume density and color, respectively. While not explored

here, this optional feature allows us to consider datasets

with a large number of unposed images from slightly dif-

ferent objects.

4. Experiments

We propose two experiments to assess NeRF and

GRAF’s capacities to generate novel views and learn a 3D

representation of a spacecraft using the synthetic data gen-

erated for this study. In the first experiment, we evaluate the

performance of both models using a densely sampled scene

of 100 images, in what we would consider ideal conditions.

In the second study, we evaluate their performance using

sparsely sampled scenes of 5, 10, and 50 images. In real

space applications, the number of viewpoints for a given

target is often limited. The purpose of this experiment is to

assess both methods when trained using a sparsely sampled

scene.

4.1. Dataset

Real space datasets are scarce and often come with lim-

ited metadata to supervise the training of learning algo-

rithms. Using synthetic data allows us to produce a large

dataset in a controlled environment which eases the produc-

tion of annotations. We generate the data with the 3D en-

gine Unity using models of two different satellites: a Cube-

Sat and the Soil Moisture and Ocean Salinity (SMOS) [3]

satellite. The generated datasets are publicly available [1].

CubeSat is a small satellite based on a 3U CubeSat plat-

form. It is a rectangular cuboid shaped of 0.3× 0.3× 0.9 m

depicted in Figure 1. Its main structure is made of alu-

minum and black PCB panels on its sides. For this satel-

lite model, we place the camera at 1 meter to render the

datasets’ images. The near and far bounds are fixed at 0.1

m and 2 m.

SMOS has a more complicated and elongated shape

shown in Figure 1. The main platform has a cubic shape of

0.9 × 0.9 × 1.0 m with solar panels attached on two sides,

each 6.5 m long. The payload is a 3-branch antenna of 3

meters each placed at 60 degrees. The structure is covered

by golden and silvered foils, which are highly reflective ma-

terials. For this satellite model, we place the camera at 10

meters to render the images. The near and far bounds are

fixed at 3 m and 17 m due to the solar panel length.

The scene is composed of one satellite, SMOS or Cube-

Sat, with one directional light source fixed with regards to

the targeted object. The images are rendered using view-

points sampled on a full sphere with a unified black back-

ground. The images are rendered with a resolution of

1024 × 1024 pixels. For each image, the distance to the

camera, azimuth and elevation angles are saved as metadata

and a depth map is rendered for testing the predicted shape.

We generate training and validation sets containing resp.

5, 10, 50 and 100 images to evaluate the model during train-

ing. We also generate a test set of 100 images from differ-

ent viewing directions than the ones used in the training and

validation sets. This common test set will be used to evalu-

ate our models regardless of the number of training images.
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Figure 2: Novel view synthesis and silhouette comparison for NeRF and GRAF trained with training sets of 5, 10, 50 and

100 images of SMOS satellite model. GT stands for ground truth. The top two rows show the reconstructed RGB images

for different size of training set for both models. The two last rows show the difference between the true silhouette of the

satellite and the presence prediction by the models.

4.2. Metrics

We use two quantitative metrics to measure the image

reconstruction performance: the Peak to Signal Noise Ratio

(PSNR) and the Structural Similarity Index (SSIM) [47].

The PSNR quantifies the performance of the reconstructed

image at pixel level. The SSIM calculates the similarity

between two images based on perceived changes such as

luminance or contrast.

NeRF and GRAF both learn an implicit representation

of the shape of the scene during the training step. Thus it

is possible to produce depth maps along with RGB images.

We use the Intersection over Union (IoU) metric between

the predicted object mask and the reference object mask.

This expresses the completeness of the learned shape in a

binary detection/non-detection way. To measure the accu-

racy of the predicted depth, we use the Mean Absolute Error

(MAE), expressed in meters, for pixels correctly predicted

as the object against their true distances given by our refer-

ence 3D model.

4.3. Model comparison

NeRF and GRAF are trained using certain aspects of the

spatial configuration, in particular the distance between the

camera and the object has to be determined along with the

near and far bounds defining the volume in which the ob-

ject is located. NeRF also requires the viewing direction

information depicted as elevation and azimuth angles. The

images were downsampled with anti-aliasing to a size of

256 × 256 pixels for computational reasons. For both

models, the MLP network is composed of 8 fully-connected

layers of 256 channels using ReLU activation functions.

4.3.1 Comparison after training with 100 images

Figure 1 compares images generated by NeRF and GRAF

models trained with 100 training images of SMOS and

CubeSat satellites. The images for our qualitative study are

chosen to show poses distributed over the camera sphere,

highlighting representative view-dependent effects. Quali-

tatively, NeRF generates results similar to the test images.

GRAF also achieves good quality results while allowing for

explicit camera control, although it is only provided with

unposed images without additional information. Symme-

tries of an object appear to encourage the use of the axis

of the natural coordinate system (X, Y, Z) as symmetry

planes during the training of the GRAF. Table 1 confirms

that NeRF leads to a better rendering than GRAF on the

generated images as it shows higher PSNR and SSIM val-

ues on both SMOS and CubeSat datasets.
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SMOS

PSNR ↑ SSIM ↑ IoU ↑ MAE ↓

NeRF
mean 29.79 0.94 0.94 3.60

std 2.15 0.02 0.01 0.23

GRAF
mean 25.61 0.90 0.94 3.81

std 3.16 0.02 0.01 0.27

CubeSat

PSNR ↑ SSIM ↑ IoU ↑ MAE ↓

NeRF
mean 27.62 0.93 0.97 0.53

std 2.67 0.01 0.03 0.11

GRAF
mean 19.77 0.84 0.94 0.47

std 3.25 0.01 0.01 0.01

GRAF - mean 21.05 0.86 0.15 0.52

overfitting std 3.59 0.02 0.16 0.05

Table 1: Metric values (MAE in meters) comparing RGB

and depth predictions with ground truth on the SMOS and

CubeSat datasets - NeRF and GRAF are trained with 100

training images.

The scene’s simple lighting conditions are learned by

both models and rendered correctly on unseen views of the

satellite, according to the ground truth. The models prop-

erly capture view dependent effects, for instance surface

specularity. However, as shown on the two last rendered

poses of CubeSat in Figure 1, GRAF can sometimes gener-

ate relatively accurate view-dependent effects, as seen on

the last image of the line. Sometimes, GRAF generates

materials with a blurry aspect. Generally speaking, NeRF

generates better quality results regarding lighting conditions

and view dependent effects. On the other hand and unlike

NeRF, GRAF renders an image of the object even when the

scene is dark. Even in that case, it can distinguish and learn

the shapes of the object.

The training of the GRAF is monitored qualitatively, by

progressively rendering images of the object, and with the

computation of the Fréchet Inception Distance (FID) [15]

and the Kernel Inception Distance (KID) [5] values. On the

CubeSat dataset, GRAF renders less accurate images than

NeRF. We had to reach a higher number of iterations before

it could render the surface specularity as it does in Figure 1.

However, reaching such a high number of iterations means

overfitting the dataset. As shown in Table 1, it leads to the

generation of a heavily under-regularized depth map which

contains many floating artefacts in the background, decreas-

ing the value of the IoU. When the training is stopped after

a smaller number of iterations, the depth map is more accu-

rate but the model renders a blurry non-detailed RGB image

of the CubeSat. A trade-off has to be made between a high

number of iterations, leading to a more faithful novel view

Figure 3: The 3D representation can be extracted as a depth

map. NeRF captures fine details of the shape but presents

artifacts, while the GRAF rendering is coarse but overall

more accurate.

synthesis, and a small number of iterations leading to the

generation of a more accurate depth map. The results of

this last trade-off are detailed in the line “GRAF” in Ta-

ble 1 while “GRAF - overfitting” line shows the metrics

of a training with a higher number of iterations. On the

SMOS dataset, the training of the GRAF was stopped after

only 9000 iterations as the model was already capturing de-

tails and as we could render accurate images. Both the FID

and KID values had almost reached the minimum we could

usually observe during training. On the CubeSat dataset,

after 80000 iterations, GRAF renders accurate RGB images

but performs poorly compared to NeRF who could almost

perfectly learns how to distinguish the spacecraft from the

background. If we stop the training after 12000 iterations,

the IoU score equals 0.94 on the same test images and the

MAE of the depth prediction is 6 cm lower than NeRF’s.

GRAF is also more consistent in its shape estimation as

shown by its lower standard deviation.

On the SMOS dataset, NeRF and GRAF reach a simi-

lar performance while learning to distinguish the contours

of the spacecraft. As shown in Table 1, they have the same

IoU meaning that they have the same completeness for ob-

ject detection. Figure 3 shows an example of depth esti-

mation for both model on the same viewpoints. Overall,

GRAF’s depth prediction captures the shape relatively ac-

curately, although the pose is not precise, which shifts it

from the ground truth. This explains why the IoU is the

same as NeRF although it has a more plausible shape. On

the other hand, we notice that in general, NeRF more ac-

curately estimates the distance of the object to the camera

explaining why Table 1 shows a slightly better mean MAE

on the values of the correctly predicted pixels.
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4.3.2 Limiting the amount of training data

In this second study, we assess the performance of GRAF

and NeRF when trained on 5, 10, 50, and 100 images of the

SMOS dataset.

Figure 2 compares two poses generated by models

trained on respectively 5, 10, 50, and 100 images. The first

two rows display the RGB image generated by both models.

The last two rows show the difference masks between the

true silhouette of the satellite, depicted in the ground truth

column, and the predicted presence of the satellite for both

models. For these two last rows, green, white, blue and red

pixels represent respectively true positives, true negatives,

false positives, and false negatives.

The results presented in Section 4.3.1 demonstrate that

NeRF produces sharper images than GRAF when trained

on 100 images. Figure 2 shows that the same is true with

smaller training set sizes. The score for PSNR and SSIM

shown in Table 2 for both models corroborate these obser-

vations. As expected, for both GRAF and NeRF, the RGB

reconstruction scores increase when trained on an increas-

ing amount of data as shown in Table 2. The use of more

data also provides more stable results as the standard de-

viation of the PSNR and SSIM decrease. NeRF is more

impacted by sparse views, which cause a difference of al-

most 4dB for the PSNR and 5% for the SSIM between the

model trained with 100 images and the one trained with 5

images. For GRAF, this difference is only of 1.8 dB for the

PSNR and 3% for the SSIM. Overall, training with fewer

input views considerably deteriorates, for both models, the

quality of the novel views and the estimated depth.

For models trained using 5 images, the generated views

appear blurry, and entire parts of the satellite are not re-

constructed. This can be better observed on the difference

in silhouettes Figure 2. For both NeRF and GRAF, the

results generated when trained on 10 images show fewer

missed parts, but the number of false positive increases sig-

nificantly. Table 2 shows that both models reach a higher

IoU when trained on 5 data rather than 10, with similar

PSNR and SSIM scores. For the training set with 10 im-

ages, the image generated by NeRF for the first pose shows

a hole in the central structure and in the left solar panel of

the satellite. Those artifacts do not appear in the predicted

silhouette. For this pose, we believe the model is not able to

estimate the color correctly because of the lack of training

data. This can also be observed for images generated with

NeRF trained with 5 images, and to a lesser extent with 50

and 100 images.

The best results for all of the metrics and for both models

are obtained with the models trained on 100 images. How-

ever, the results generated by the models trained on 50 im-

ages looks very similar in terms of quality. The SSIM score,

which is a human perception-based metric, shows similar

values when using 50 or 100 training data for both NeRF

and GRAF. For GRAF, the PSNR and IoU scores are also

very similar when trained on either 50 or 100 data. On the

other hand, NeRF scores for these two metrics still improve.

By looking carefully at the Figure 2, we can observe that us-

ing 100 training data allows NeRF to find a better estimation

for the color and to sharpen the contour of the satellite. This

is also shown on the images of differences in silhouette, we

can see that the number of false positives decreases when

using 100 training data.

The MAE scores in Table 2 show that both NeRF and

GRAF struggle to capture the real distance between the tar-

get and the camera regardless of the training set sizes.

NeRF shows its ability to cope with highly specular ef-

fects, even with few images for training. In particular, we

observe in Figure 2, on the second pose, that starting from

using 10 images, the specular effects begin to appear on the

golden foils on the bottom part of the model. For GRAF,

we can observe that these effects appear when trained with

50 images.

The main asset of GRAF compared to NeRF is that it

does not need prior knowledge of the pose for training. Fig-

ure 2 demonstrates that when trained with 5 images, GRAF

is not able to reconstruct coherent images for the required

viewpoints. This issue tends to disappear when more data is

used for training. However, a slight shift in the pose can still

be observed, which penalizes the PSNR and SSIM scores

measured for GRAF.

5. Discussion

We have compared NeRF and GRAF models to per-

form 3D aware image synthesis from images. The pur-

pose of this work was to quantify the difference of per-

formance between NeRF and GRAF on a space-related

application. Through our experiments, we observed that

NeRF outperforms GRAF when assessed with quantita-

tive metrics. When training was stopped earlier to avoid

under-regularization effects in the background, it is interest-

ing to notice that GRAF generates depth maps as accurate

as NeRF. From a qualitative point of view, both methods

have different strengths and weaknesses: NeRF generally

produces sharper images, GRAF achieves better results in

darker conditions.

The latter observations do not surprise us as NeRF mod-

els, unlike GRAF models, are provided also with informa-

tion on the object pose with respect to the camera. As a

consequence, NeRF models have the ability to directly min-

imize the error between a predicted pixel color and a true

value. On the other hand, GRAF learns the object 3D repre-

sentation by reproducing the probabilistic distribution of the

pixels of the images, and optimizes its loss depending on the

ability of the discriminator to distinguish real images from

generated ones. This confirms our expectation that GRAF

would be less accurate at reconstructing a specific pose, as
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5 10 50 100

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

NeRF
mean 25.81 0.90 25.46 0.90 28.35 0.93 29.79 0.94

std 3.37 0.02 2.87 0.02 2.68 0.02 2.15 0.02

GRAF
mean 23.26 0.85 23.64 0.86 25.58 0.89 25.61 0.90

std 3.17 0.03 2.80 0.02 3.42 0.02 3.16 0.02

5 10 50 100

IoU↑ MAE↓ IoU↑ MAE↓ IoU↑ MAE↓ IoU↑ MAE↓

NeRF
mean 0.88 3.75 0.72 4.54 0.86 3.71 0.94 3.60

std 0.03 0.45 0.04 0.93 0.04 0.46 0.01 0.23

GRAF
mean 0.85 3.83 0.81 4.10 0.94 3.81 0.94 3.81

std 0.03 0.48 0.04 0.45 0.01 0.29 0.01 0.27

Table 2: PSNR (higher is better), SSIM (higher is better), IoU (higher is better), and MAE in meters (lower is better)

computed for both NeRF and GRAF trained on 5, 10, 50, and 100 images of the SMOS dataset.

its loss function is not optimized based on a difference be-

tween a generated value and a true value at a given pose.

This can also explain why GRAF succeeds in representing

shadowed parts more accurately than NeRF: reproducing a

probabilistic distribution allows us to evaluate the plausi-

bility of the images while NeRF would still evaluate them

considering shadows as, essentially, black pixels.

The results on sparse training sets show that the mod-

els do not accurately reproduce specular effects or the 3D

shape of the spacecraft. Using more images in the training

set greatly improved the results for the novel view synthesis

but did not enhance the depth estimation. This latter is a

requirement for space applications such as close-proximity

operations which demand highly accurate measurements of

the spacecraft’s surrounding environment. For both exper-

iments, the datasets used contained viewpoints evenly dis-

tributed on a sphere around the target. It could be interest-

ing to test both models focusing the viewpoints sampling

on a single hemisphere of the target. In such a scenario, the

video of the spacecraft approaching the target could be used

to provide densely sampled viewpoints of a sub-part of the

target.

Training NeRF required access to the relative pose of the

camera to the targeted scene. In a simulated environment,

this information is easily captured, but it is not trivial to

get when dealing with real-world data. In theory, this in-

formation could be inferred using Machine Learning meth-

ods [37, 12] which usually rely on the detection of key-

points and thus requires extensive annotation for training.

However, those methods are ill-suited for highly specular

surfaces like foils. As an extension of this work, it could

be interesting to train NeRF with noise-corrupted poses to

evaluate its sensibility to the accuracy of the viewing angles.

Observing that GRAF reaches a performance similar to

NeRF when generating depth maps of an object, although

no pose information is provided, is notable. With the ap-

propriate number of iterations and a sufficient number of

training images, GRAF reaches an IoU score comparable

to NeRF. This observation puts GRAF as a strong choice

due to this unposed particularity which is a crucial advan-

tage for an observing satellite. As GRAF defines its own

internal coordinate system, and as it tends to use the natu-

ral coordinate system (X, Y, Z), it could be used to create

a continuous 3D representation of the object when no pose

information is available and initialize a shape with inter-

nal labels. The trained GRAF could be inverted to predict

the pose associated to the different angle views in the same

way as iNeRF [51]. More traditional training could then

simply be used to refine the rendering using a NeRF. This

last idea could be investigated to perform pose estimation

while rendering an accurate 3D representation of a space-

craft. It would be particularly useful for simultaneous local-

ization and mapping (SLAM) during an operational satellite

approach situation.

6. Conclusion

We proposed the use of Neural Radiance Fields and Gen-

erative Radiance Fields in the context of novel view synthe-

sis of orbiting spacecraft and compared their performances.

We find that both NeRF and GRAF are able to learn 3D dif-

ferentiable representations of two orbiting spacecraft hav-

ing a very distinct geometry. Overall, NeRF achieves bet-

ter performance on our datasets, but GRAF is surprisingly

competitive, allowing to control the spacecraft pose when

rendering new images, while trained with unposed images.

The two datasets produced and used in this work con-

tained scenes of orbiting satellites rather different from the

ones traditionally used by the computer vision community.

This introduced several small challenges and opportunities,

such as dealing with highly specular materials, strong view-

dependent effects, a mostly black background and sharp

shadows, that both NeRF and GRAF were able to handle.
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