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Abstract

In astronomy, age is one of the most difficult stellar prop-
erties to measure, and gyrochronology is one of the most
promising techniques for the task. It consists in dating
stars using their rotational period and empirical linear re-
lations with other observed stellar properties, such as stel-
lar effective temperature, parallax, and/or photometric col-
ors in different passbands, for instance. However, these ap-
proaches do not allow to reproduce all the observed data,
resulting in potential significant deviations in age estima-
tion. In this context, we propose to explore the stellar dat-
ing problem using gyrochronology from the Al perspective.
Technically, we replace other linear combinations and tra-
ditional techniques with a machine learning regression ap-
proach. For doing so, we introduce a thorough benchmark-
ing study of state-of-the-art Al regression models trained
and tested for stellar dating using gyrochronology. Our ex-
periments reveal promising results, where some models re-
port a mean average error < 0.5 Gyr, which can be con-
sidered as an outstanding breakthrough in the field. We
also release a dataset and propose a set of simple assess-
ment protocols to aid research on Al for dating stars as part
of this study. Code and data to reproduce all our results
are available at https://github.com/gramuah/
ai4datingstars.

1. Introduction

The accurate estimation of stellar ages is critical to study
many different astrophysical problems. For example, in
searching for life outside our solar system, we know that
the impact of life in the atmosphere of the hosting exoplanet
evolves with time, making it potentially detectable through
biomarkers. Therefore, dating detected exoplanets is criti-
cal, and it can only be done via dating its hosting star. In
Galactic archaeology, or how our galaxy evolves with time,
dating stars is the only way for mapping this evolution.

Among all the stellar characteristics, age is the most dif-
ficult variable to be obtained, since it is the only one that
cannot be directly observed in any case. It must be inferred
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using diverse methods. Soderblom presented two excellent
surveys describing most of these techniques [54, 55].

Within the group of approaches for stellar dating, one of
the most promising statistical techniques is gyrochronology
or dating stars using their rotational period. Stars are born
with a range of rotational velocities for different physical
reasons, see [0]. Then, the process called magnetic braking
reduces the rotational velocity of the star with time [49].
Since late 60’s [10, 26, 37, 38, 59], we know that rotational
braking, or braking law, is a function of the rotational pe-
riod. That is, the larger the rotation, the larger the braking.
Therefore, with time, all the stars tend to converge to a sim-
ilar rotation velocity for a given age and mass. This effect
was empirically shown for the first time by Skumanich [53].
Gyrochronology is the stellar dating technique that exploits
this fact [9, 54]. Traditionally, gyrochronology has been ap-
plied by fitting a linear expression containing the stellar age,
its rotational period and some proxies of its mass, to obser-
vations. In recent works, Angus et al. [2, 4] have proposed
novel classic linear relations for gyrochronology combined
with other dating techniques, such as isochrones fitting or
stellar kinematics, in a Bayesian framework for a more ac-
curate age estimation.

However, possibly because of the difficulty of collect-
ing data samples that are sufficient and accurate, no attempt
has been made to approach the problem of age estimation
of stars as a regression exercise using artificial intelligence
techniques. In this work, we explore this novel perspective,
and our main contributions are as follows.

First, we have gathered a dataset for gyrochronology. In
general, our knowledge about gyrochronology rests mainly
on the shoulders of stellar clusters, the only systems with
a large number of stars with an accurate age determination.
For this work we have constructed a comprehensive and ac-
curate sampling with stars coming from clusters but also
from asteroseismology [, 39, 56]. The appearance of the
asteroseismology as an efficient tool for dating stars has al-
lowed us to add a large number of field stars to the sample.
All of the stars have precise effective temperature (Teg),
metallicity ([Fe/H]), logarithm of the surface gravity (log
g), luminosity (L), mass (M), radius (R), age, and rota-



tional period (Pyot). Section 3 details how the data sam-
ple has been constructed, analyzing its strengths and weak-
nesses. We are facing a major challenge when we want
to estimate stellar ages using gyrochronology, mainly be-
cause we do not fully understand the physics and the physi-
cal dependencies of the rotational braking phenomenon yet.
However, we believe that this is an interesting problem for
machine learning techniques to offer their best.

Second, we present, for the first time, a benchmarking
study of state-of-the-art Al regression models using our
dataset (see Section 4). We include in the analysis an het-
erogeneous and complete set of approaches, covering: clas-
sical kNN and linear or bayesian regression; ensemble mod-
els (Random Forest, Stacking); decision trees; Support Vec-
tor Regression machine; Gaussian process; and Neural Net-
works. We propose up to three different benchmarks, where
all these models are compared, to understand their preci-
sion, robustness and generalization capabilities.

Finally, in Section 5 our experiments reveal promising
results, where some models achieve a mean average error
< 0.5 Gyr dating stars, which can be considered a signifi-
cant advancement in the field. Moreover, so as to encourage
further research into this problem, we publicly release the
data sample, the codes to reproduce our experiments, and
all the evaluation protocols designed.

2. Related work

Gyrochronology The main benefit of gyrochronology
is that the required observational inputs are quite easy to
obtain: photometric or spectroscopic proxies to the stellar
mass and the rotational period. On the other hand, it has
a number of uncertainties that makes it a not very accurate
dating technique, and it has a relatively narrow application
range in terms of stellar mass. In [0, 7], the authors pub-
lished, for the first time, an empirical equation for the esti-
mation of the stellar age as a function of its rotational pe-
riod and its color index. This can be regarded as the origin
of gyrochronology as a practical technique. This empirical
relation has been revised, as in [31], [8], and [1], the latest
using an asteroseismic data sample.

But real life is usually not that simple. Rotational brak-
ing is theoretically linked to the existence of a bipolar stellar
magnetic field. The best candidate for the dynamo gener-
ating this field is a well developed outer convective zone.
Therefore, only stars with masses below the so-called Kraft
limit [28], around 1.3 M, can reduce its rotational velocity
with time following known breaking laws. But [61] showed
that A stars also have rotational velocities evolving with
time. This can be thanks to the fact that strong magnetic
fields, or at least their signatures, can also be found in these
stars [5] and, therefore, above the Kraft limit, the rotational
braking may still exist. In this mass range, above 1.3 Mg,
the exact braking mechanism is almost unknown.

For young stars, gyrochronology can only be applied to
stellar clusters or moving groups [18]. For individual stars,
the uncertainties make it only possible a general statement
like “this star is/isn’t young”. On the other hand, [56] found,
comparing a set of 21 stars dated using asteroseismology
with rotational braking models [57], that from a certain
value of the Rossby number, the rotational braking seems
to stop and the rotational velocity remains in a steady-state,
making traditional gyrochronology almost useless. In any
case, this change in the rotational braking regime is still un-
der debate, with works following the line of its confirmation
[23, 27, 39, 40, 58], and some others concluding that it is
not observed, especially in the case of solar-twins in terms
of mass and metallicity [9, 30]. In any case, the existence
of an age range where the convergence is not reached yet,
and the existence of this change in the braking law, makes
classical linear relations for gyrochronology a simplistic ap-
proximation to a complex and heterogeneous problem. It is
precisely in this context where machine learning can help.

Al for dating stars models We can find few works that
address the problem of age estimation using artificial intel-
ligence [3, 4, 19, 48]. Sanders and Das introduce in [48] a
catalogue with distances, masses, and ages for ~ 3 million
stars from the second Gaia data release. Ages are estimated
following a Bayesian fitting to stellar structure and evolu-
tion models, to characterize their probability density func-
tions. Angus et al. [3, 4] propose a combination of linear
relations for gyrochronology with isochrones fitting under
a Bayesian estimation framework. Their approach uses a
Markov Chain Monte Carlo process to infer the ages. It is
in [48] where we find for the first time a Bayesian Neural
Network applied to the problem of age estimation. Techni-
cally, Sanders and Das [48] train a multi-layer perceptron,
with a single hidden layer (using 10 neurons), to generate
predictive posterior distributions for the mass, age, and dis-
tance of the stars. This way, their model is able to replace
the reliance of isochrones technique. The differences of all
these works with our own are the following. All previous
models address the problem from a Bayesian perspective,
focusing on the predictions of posterior distributions of the
ages. Instead, we propose here a pure regression problem,
where models are faced with the estimation of a particu-
lar value for the age, and they are evaluated accordingly.
Moreover, for this reason, a direct comparison with these
previous works is not an easy task. Finally, with our study
we offer the community clear benchmarking scenarios to-
gether with a data sample, so that others can compare with
our approaches.

3. The Data

We have gathered a sample of 1464 stars with accurate
ages coming from asteroseismology or cluster belonging.
The asteroseismic sample consists of 312 entries for which



accurate fundamental stellar observables (effective temper-
ature Tig, logarithm of the surface gravity log g, mass M,
radius R, and stellar Iron to Hydrogen content [Fe/H]) have
been inferred from a combination of photometric and spec-
troscopic observations and asteroseismology. The most sig-
nificant contribution comes from [50], with 224 entries.
Others were obtained from [15, 17, 51, 52].

In terms of rotational periods (Fiy), of the 312 en-
tries obtained from asteroseismology, 293 periods were
taken from [20]. The remaining periods were taken from
[15, 32, 33, 34, 42, 46]. All of them are Kepler’s tar-
gets. The autocorrelation function (ACF) method is used
in [32, 33, 34] for obtaining the rotational period. Garcia
et al. [20] analyzed the surface rotation rate in the subset of
Kepler solar-like stars studied in [17]. The same analysis
methods implemented in [20] is adopted in [15]. In [42],
on the other hand, Nielsen et al. computed a Lomb-Scargle
(LS) periodogram. They chose as P, the median value of
all the recorded peaks of maximum power measured over
several quarters of Kepler’s data (quarters 2 through 9, cor-
responding to two years of observations in total). In [46]
also the LS periodogram is used, but restricting the analysis
exclusively to Kepler’s quarter 3 long cadence data.

We complemented the sample with studies from clusters
performed by the Kepler/K2 mission. We collected a total
of 1152 entries taken from [9, 22, 35, 36, 45]. In [9, 22] the
authors studied the 4.240.7 Gyr old cluster M67, analyzing
data of Kepler/K2 Campaign 5 light curves. M67 is an in-
teresting target for gyrochronology, given that it is about the
same age, and shares a similar chemical composition, as the
Sun. M67 is also the oldest cluster in our sample. Barnes et
al. [9] derived surface rotation periods using a combination
of four methods: phase dispersion minimization, minimum
string length, the Bayesian period signal detection method,
and the autocorrelation function. In [22] the Lomb-Scargle
periodogram analysis method was used. The age of the clus-
ter was settled by [9] and it agrees with the chromospheric
[21] and isochrone [ | 1] derived ages. Meibom et al. in [35]
studied NGC 6811 (1.0 £ 0.2 Gyr, see [24]) and in [36],
they reported periods for stars in NGC 6819 (2.5 £ 0.3 Gyr,
see [25]). These two clusters bridge the gap in age between
Praesepe and M67. These authors used the LS periodogram
method for obtaining the rotational periods. In addition, for
all reported P, they visually examined the periodogram
and light curves, and they also checked the periods inde-
pendently using the CLEAN algorithm. Praesepe was ob-
served during Kepler/K2 Campaign 5. In [45] the authors
identified the surface rotation periods applying the Lomb-
Scargle periodogram. They took the period corresponding
to the strongest peak in the periodogram as the rotation pe-
riod (with some exceptions). The study produced periods
for over 80% of all Praesepe light curves. The age estima-
tion of this cluster has been a subject of some debate, with

Feature Unit Description
id - Star ID
N K Stellar effective temperature
logg dex Logarithm of the surface gravity
M Solar masses ~ Stellar mass
R Solarradii  Stellar radius
[Fe/H] dex Stellar Iron over Hydrogen content
Prot days Stellar rotational period
Age Gyr Stellar age

Table 1: Features provided in our sample for every star.

the most recent value set at 790 &= 60 Myr by [12].

In order to work with the highest accuracy and preci-
sion, we have completed the clusters’ sample with masses
and radii derived with a machine-learning Random Forest
model of the empiricalRelationsMR R-package [41].

Our sample is, therefore, a mix of four clusters with ages
0.79, 1, 2.5, and 4.2 Gyrs gathering a total of 1152 stars,
with masses and radii estimated using machine learning and
empirical data, on the one hand. And 312 stars with masses,
radii, and ages determined using asteroseismology, and pre-
cise rotational periods, on the other. Finally, we have se-
lected those FGK and Main Sequence stars with rotational
periods below 50 days. The reason of this filtering is that the
physics behind gyrochronology occurs mainly in these stel-
lar types, and therefore is limited to a mass range of [0.7, 2]
Mg . In addition, rotational periods larger than 50 days can
be hardly explained by current stellar structure and evolu-
tion models. Table 1 shows all the features that we release
for every star.

We are going to set aside 32 non-clustered stars (includ-
ing the Sun) dated using asteroseismology for testing pur-
poses (See Benchmark C in Section 4.2 below). Therefore,
we work with a final sample consisting of 397 stars in clus-
ters plus 240 stars studied using asteroseismology, that is, a
total of 637 stars.

Unfortunately, this sample exhibits two important biases:
1) the asteroseismic sample is biased to massive and old
stars; and 2) the cluster-based sample is age-quantified and
biased towards young ages. We show in our experiments
that, despite these biases, machine learning techniques are
able to extract reliable information from the dataset for es-
timating stellar ages. With time, specially with current
and future space missions, these biases will be progres-
sively mitigated, with the consequent improvement on es-
timations.

3.1. Understanding the sample

In Fig. 1 we show the position in the HR diagram of
all the selected MS stars. We also show which of them are
members of a cluster and which of them have been charac-
terized using asteroseismology. Here we can see that aster-
oseismic stars cover the more massive and/or evolved zone



3.67 L]

L.
:4_07 .' o. ° o - 0. Met:od
S o - ol 7Y st
- s o .‘u‘ ‘. ® Clust
L] ‘ 9" L]
. y y | ') . (d
441 « Aoy @ ® o ® .
'o L Y4 3
L] &
L]
0’“,". e
8000 7000 6000 5000
Ten (K)

40- °
. ° o. ° LI
_307 % "a'.' . °* . N
@ »
E o8 .': ": esn’ N C." Method
< 20 Re® o oATH S dmab s o és‘
o : £ Tad Seg s &l Clust
o ° 3 o '..' e :. .
o TRARRE I NI
K o ..'.\.: L
0 . 'ﬂ.‘b" %Duooo ee o
0.75 1.00 1.25 1.50 1.75
M (Solar)

Figure 2: M - P, for the selected stars.

of the HR diagram, and cluster stars are younger and also
cover the low mass region.

The classic idea of gyrochronology is to estimate stel-
lar ages using any proxy of the stellar mass, and the stellar
rotational period. Since we have a mass estimation for all
our training sample, we can directly represent M vs. Pyt
(Fig. 2) avoiding using that proxy. In this plot, we also
differentiate between asteroseismic and cluster stars. There
are no clear differences between them except the already
mentioned bias of the asteroseismic sample towards more
massive stars. The Kraft limit is clear around 1.2Mg,.

If we add the information of the stellar age to the M vs.
P,ot plot we obtain Fig. 3. Here we can see that, with a
large dispersion, the larger the P,., the older the age. It
is remarkable that it is also true for massive stars, above the
Kraft limit. That is, even in the absence of a developed outer
convective envelope, the reduction of the rotational velocity
with time also occurs.

If we represent the stellar age vs. its rotational period,
we obtain Fig. 4. In general, we confirm that the largest the
age, the largest the rotational period, with a large dispersion,
mainly for stars in clusters due to the mass dependence of
the rotation braking. We have also fit a linear regression
to this relation, differentiating between asteroseismic and
cluster stars to guide the eye. Here we can see one of the bi-
ases of the sample. These linear relations have the same ten-
dency but they are barely different for each subgroup. In any
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Figure 3: M - P, for the selected stars. The age is shown
in color scale.
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Figure 4: Age - P,y for the selected stars. The asteroseis-
mic and cluster stars are shown in different colours. We
also present the linear regression obtained using these two
groups.

case, the dispersion is really large and we cannot ensure that
these regressions can be used for age estimation purposes.
This is the reason why we move to more sophisticated Al
based analysis methods for generating models suitable for
stellar age estimations.

4. Benchmarking Al regression models for dat-
ing stars

Previous works in dating stars from gyrochronology data
and machine learning models suffer from non-standard test-
ing and training paradigms, making direct comparisons of
certain algorithms difficult (e.g. [3, 4, 19, 48]).

In this section we detail all the regression models trained
to predict the age of the stars (see Section 4.1). Later, in
Section 4.2 we introduce the designed benchmarking pro-
cedure using the data described in Section 3.

4.1. Models

Linear regressor We first train a star dating model as-
suming that the age is a linear combination of the features
provided in the data sample. Let a be the predicted age
value, then

a(w,x) = wy + w1z1 + ... + wpxp , €))



where x and w encode the input feature vector and the co-
efficient of the linear regressor, respectively. We follow
the least squares approach for learning the model, solving
a problem of the form: miny, || Xw — a||2. X is a matrix
containing all the training vectors, and a is ages vector.

Bayesian Regression We implement here a Bayesian
Ridge regression to estimate a probabilistic model of the
stellar dating estimation problem with the form:

palX,w,a) = N(a]Xw,a), 2)

where the output age a is assumed to be a Gaussian distri-
bution over Xw. « is estimated directly from data being
treated as a random variable. The regularization parame-
ter is tuned to the data available, introducing over the hy-
per parameters of the model, i.e. w, the following spherical
Gaussian p(w|\) = N (w|0,\"11p).

Decision Tree Regressor We use a decision tree model
for regression [ 14]. During learning, we let our model to op-
timize its internal hyperparameters via a grid search process
with cross validation. Specifically, we adjust: the strategy to
choose the split at each tree node (best or random); the min-
imum number of samples required to be at a leaf node (5,
10, 50, 100); and the function to measure the split quality
(mean squared error, mean squared error with Friedman’s
improvement score for potential splits, mean absolute error
or reduction in Poisson deviance to find splits).

Random Forest Regressor This regression model is
implemented following the original work of Breiman [13],
where the decision trees are built from data samples drawn
with replacement from the training set. We again use a grid
search plus cross validation process to tune the following
hyperparameters: number of trees (5, 10, 50, 100); mini-
mum number of samples required to be at a leaf node (5,
10, 50, 100); and the function for measuring the quality of
the split (mean squared error or mean absolute error).

Support Vector Regression We include in our study
this regression model, based on the LibSVM implemen-
tation for regression [16], following the e-SVR approach.
We employ the RBF kernel, and perform a grid search with
cross validation to adjust parameter C' (1, 10, 100, 1000).

Gaussian Process We train a Gaussian Process re-
gressor [44], where the prior mean is assumed to be con-
stant and zero. For the prior’s covariance we use a ker-
nel that is the sum of the following three kernels. RBF,

. )2 .

%), where d(-,) is the Eu-
clidean distance, and [ is the length-scale parameter. Dot
product, k(x;,x;) = 02 + x; - x;. It is a non-stationary
kernel that is obtained from linear regression by putting

k) — s~

priors on the coefficients of x;(i = 1,...,N) and a
prior of N(0,02) on the bias. And finally, White kernel,
k(x;,x;) = noiselevel if x; == x; else 0. The White

kernel’s key application is as part of a sum-kernel, where it

Layer 1 Layer2 Layer3
(50 units) (50 units) (50 units)

Input

Output

@__Q99)
000)

@

Figure 5: Architecture of the neural network implemented.
3 hidden layers have been used, with 50 units each of them
followed by a ReLU. The output layer has no activation
function, to directly perform the star date estimation.

describes the input’s noise component. Tuning its parame-
ter corresponds to estimating the noise-level then.

kNN We include also in the benchmarking a kNN re-
gressor. We basically tune k parameter (1, 5, 10, 15, 20,
50) and the type of weight function used to scale the con-
tribution of each neighbor. Two types of weight functions
are explored: a) uniform, where all points in each neighbor-
hood are weighted equally; and b) distance, which weights
points by the inverse of their distance to a query point.

Neural Network The architecture implemented is de-
picted in Figure 5. It consists in a multi layer perceptron.
Our model includes an input layer, a set of 3 hidden fully-
connected layers with 50 units each, and the output layer
in charge of the regression of the ages of the stars. Ev-
ery hidden unit is followed by a ReLU activation function.
We use as loss function the square error, Loss(a,a, W) =
1lla—al|3+ 2[|W||3, where W encodes the weights of the
network, and « is the regularization parameter. Backprop-
agation [29] is used for learning the model with SGD [47]
optimizer. During learning we fix a = 0.01, and use an
adaptive learning rate policy, starting with a value of 0.1.

Stacking Finally, we use a machine learning ensemble
method known as stacked generalization (or stacking) [60].
In a regression problem like ours, the predictions of each
individual regressor (at level 0) are stacked and fed into a
final estimator (at level 1), which calculates the age pre-
diction. For this work, in level 0, we integrate: the neural
network, and the Gaussian process. For the last layer (level
1), we incorporate a linear regressor. During training, and
to generalize and avoid over-fitting, the final estimator of
level 1 is trained on out-samples (taken from the training
set), following a cross-validation methodology.

4.2. Benchmarks

Our data sample, detailed in Section 3, offers more than
600 stars, with precise ages, where we propose to construct



the following experimental evaluation scenarios.

Stellar dating regression problem (Benchmark A) In
this setup, we propose to evaluate the different regres-
sion models following a classical training/test data splitting
scheme. From the data sample distribution, we release a
training set and a testing set, where 80 % and 20 % of the
stars have been randomly included, respectively.

Generalization capability (Benchmark B) We first
provide a generalization study for the models, where we
train the approaches on young stars, and evaluate their per-
formance on old stars. This scenario, named Benchmark
B1, is interesting in order to evaluate the ability of artificial
intelligence models to work with stars whose age range falls
outside that of the training set. The training and testing age
ranges are [0.4, 4.2] and [4.2, 13.8] Gyr, respectively.

We propose a second scenario to evaluate the general-
ization capability of the models when they are trained only
with stars belonging to clusters. In practice, gyrochronol-
ogy is used to date individual stars that can have any pos-
sible age. Stars in clusters are usually dated thanks to its
belonging to the cluster. In this Benchmark B2, we propose
to train our models only using stars in clusters. The rest of
the stars are included in the test set. In total, this scenario
leaves us with 397 and 240 samples for training and testing,
respectively.

Stellar dating regression in a control data sample
(Benchmark C) We propose here to examine the age esti-
mation performance of all the models on a control data sam-
ple composed only of stars not belonging to any cluster, and
with a more realistic age distribution. Specifically, we eval-
uate in this Benchmark C how the models trained using all
our data sample perform over a set of novel non-clustered
32 stars, including the Sun. This independent control set
has been obtained from the same asteroseismology based
sources used to gather the information for the sample de-
scribed in Section 3. We have set aside 32 stars from these
sources, before building the sample. The age range in this
set spans from 1.2 to 10.1 Gyr. This range overlaps with the
age range used in the training sample ([0.4, 13.8] Gyr), and
includes some novel and unobserved ages. We will focus
our attention on the precision of the models for the estima-
tion of the age of the Sun (4.6 Gyr) in the experiments.

5. Experiments

We present the experimental setup and report results of
benchmarking all the stellar age prediction models detailed
in Section 4.1. This benchmarking is carried out through
the 3 described scenarios: the effect of the different models
(Benchmark A); the generalization behavior (Benchmark
B); and the performance in a control data sample (Bench-
mark C);

5.1. Experimental setup

Implementation In order to better perform apples-to-
apples comparisons, we have built all the regression models
in Python, using the excellent scikit-learn library [43]. We
publicly release all the codes (from training to testing) to
reproduce the detailed experiments'. We use the follow-
ing acronyms to identify the different models implemented:
Neural Network (nnet), Linear regressor (Ir), Decision Tree
(dtr), Random Forest (1), Support Vector Regressor (svm),
Bayesian Regression (bayes), kNN (knn), Gaussian Process
(gp) and Stacking (stacking).

Evaluation metrics The main evaluation metric used is
the Mean Absolute Error, M AE = W, where
a; and a; are the age provided in our dataset, and the age
estimated by a regression model, respectively. Since our
dataset provides information on the precision of the age of
each star, in the form of error bounds, we also propose to
use as a precision evaluation metric the percentage of star
age predictions that fall within the confidence interval pro-
vided by our dataset.

5.2. Benchmark A: Stellar dating problem

Figure 6a shows the performance of all the models, com-
paring their corresponding MAE. In this scenario it is inter-
esting to note that we have 2 models, plus their stacking,
that present the best results, establishing a margin with re-
spect to all the others. They are the Neural Network and
the Gaussian Process. Their stacking slightly reduces the
best MAE of the Neural Network from 0.405 to 0.400. Fig-
ures 6b—06f offer a detailed analysis of the predictions for
the top-5 methods for all the test samples®. Interestingly,
most models present difficulties in age estimation for older
stars. Also relevant in this benchmark is the result provided
by a model as simple as a kNN, with a MAE of just 0.53
Gyr. A possible explanation is that the database has a lot of
elements concentrated in 2 very specific age vales, which al-
lows models such as kNN to make very accurate estimates
on testing stars with these ages. This fact is corroborated
in Table 2, where it is observed that the best precision is
achieved by the kNN model, followed by the neural net-
work. Overall, except for Ir and bayes, all models offer a
MAE below 0.86 Gyr, which is a breakthrough in the field
of stellar dating.

5.3. Benchmark B: Generalization behaviour

We here analyze the generalization capability of all the
models for the problem of stellar dating. Figures 7a and 7b

"https://github.com/gramuah/aiddatingstars
2In the supplementary material we provide these graphs for all the mod-
els
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are the Neural Network (nnet) and the Gaussian Process (gp), and therefore their stacking. (b)-(f) Detailed prediction for the
top-5 models. We show the ground truth age (in blue), the prediction of the models (in orange), and the corresponding error

(in red).
Benchmark ‘ nnet Ir dtr f svm  bayes knn gp stacking
A 7323 3543 6378 60.63 4646 3228 7795 6220 6299
B1 59.84 2992 51.18 48.03 37.79 2835 5591 5197 n/a
B2 2845 3096 21.34 2594 33.05 29.71 2552 30.96 n/a
(o} 3437 21.87 937 21.87 1250 21.87 1562 40.62 3437

Table 2: Precision of all the methods in the different bench-
marks. Precision is measured as the percentage of age es-
timations that fall within confidence margin offered in the
dataset for each star.

show the performance in the benchmarking scenarios B1
and B2, respectively.

Recall that benchmark B1 focuses on analyzing how ac-
curate the models are when they must estimate the ages of
stars older than the ones they have seen during training. Ob-
viously, the average error reported by all methods has in-
creased. Best performance is reported here by our neural
network, with a MAE of 1.47 Gyr. Its detailed estimations
can be seen in Figure 7d, where it is worth noting how the
neural network is able to generalize up to 6 Gyr, casting
stellar age estimations that mostly fall within the confidence
margin. Table 2 confirms this fact, where the Neural Net-
work also exhibits the highest precision for B1 benchmark.

The story is completely different in Benchmark B2. The
neural network is not able to generalize the best. Its error
rises up to 1.85 Gyr, being surpassed by Ir, rf, svm, knn, gp
and bayes. The latter turns out to be the best model now,
with a MAE of 1.48 Gyr. From Figure 7e we conclude that
a bayesian regressor is able to provide accurate ages in the
range from 1 Gyr to 5 Gyr, that is, the range covered by the

training sample in this case. In terms of precision, Table
2 reveals that the svm for regression is the winner, closely
followed by both gp and Ir. The bayesian model, although
has the lowest MAE, reports a precision of 29.71 %.

Finally, in both scenarios we have observed that all mod-
els tend to underestimate the ages, although that effect is
more pronounced in the second benchmark. This is not a
surprise since in both cases ages above 4.2 Gyrs are not
covered by the training samples. We encourage the reader
to consult the supplementary material, where more details
for all the models have been included.

5.4. Benchmark C: Performance in a control sample

We show the MAE and the precision for every method
for this control benchmark in Figure 7c¢ and Table 2, respec-
tively. Who is the winner here? The three best methods are
gp, nnet and their stacking. Among these three, the one that
excels is the Gaussian process. In Figure 7f we can inspect
our stellar age predictions using this method vs reference
ages for the stars in this set. gp is the method with the high-
est precision: 40.62% of the predictions fall within the con-
fidence margin of the data set. For the Sun, gp predicts an
age of 3.88 versus an accepted age of 4.6 Gyr, underestimat-
ing it. Actually, the model tends to slightly underestimate
most of the ages. We have observed in the experiments that
this is the common behaviour for all the models, except for
kNN and dtr. In the supplementary material we extend the
results by providing more details for all models.

With respect to the accuracy of our estimations for the
age of our Sun, 4.6 Gyr, we provide in Table 3 the specific



2.00- 1923 19435 Les3a

1.7099 1.724
175 1621
1.50- L4759
$1.25-
e
w1.00-
<
=075
0.50-
0.25-
0.00- -

nnet dtr svm  bayes  knn nnet
odels

(a) Benchmark B1

19014 ) gosy

175-
16057 g’ 15616
1.50-
T125-
e
w 1.00-
<
s075-
0.50-
0.25-
0.00- :
Ir

15074 1484

(b) Benchmark B2

18412 28

2.00-
1624
1.75- 1734
_150-
5 1.25- 1.2972 1.2788 1.2972
% ’ s 1.0063 0.9917
< .00 0 8375
=0.75-
0.50 -
0.25-
0.00-
ap f vm

svm  bayes knn

Models Mode\s

(c) Benchmark C

Margin Margin

P ]

Prediction (Gyr)

i

[ TP =t wi -ttt
Prediction (Gyr)

OHNW IO NEOSERG RS BES

1 Margin

Prediction (Gyr)

4 s 6 7 8 10 11

9 12 13 14
Age (Gyr)

(d) Best model in Benchmark B1 (nnet)

0 1 2 3 4 5 6 7
Age (Gyr)

(e) Best model in Benchmark B2 (bayes)

8 9 10 11 12 13 14

5 6
Age (Gyr)

(f) Best model in Benchmark C (gp)

Figure 7: Results for Benchmarks B1, B2 and C. We report the MAE for all the models in figures (a), (b) and (c). Figures (d),
(e) and (f) show the detailed performance for the best performing method for every benchmark. Note in figure (f) the yellow

dot where we depict the age estimation for the Sun.

Methods [mnet Ir dr of
Sun (4.6 Gyr) ‘ 402 392 449 476 381 391

svm bayes knn  gp
4.49 3.88 4.02

stacking

Table 3: Sun age estimates in Gyr. The most precise method
is rf.

age reported by all the models. All methods do underesti-
mate, like we just pointed above, and our Random Forest
obtains the closest prediction, followed by dtr and kNN.

Comparing results of Benchmarks A (Figure 6a) and C
(Figure 7c) one can conclude that: a) winning models are
common (nnet, gp and stacking); b) kNN and dtr suffer a
considerable degradation of their performance, as they are
highly dependent on the data distribution used during their
training; and c) bayes and Ir go hand in hand, showing a
similar increase in their corresponding MAEs, but at the
same time offering some stability between scenarios.

6. Conclusion

We have presented a thorough benchmarking study of
state-of-the-art Al regression models trained and tested for
stellar dating using gyrochronology. Based on this study,
we report the following findings on the performance and
generalization capability of the stellar age estimation re-
gression models analyzed.

First, is there a winning model? Our study demonstrates
that a model for stellar dating based on a neural network
such as ours, provides results that are remarkable in terms of
trade-off between generalization and accuracy. The experi-

ments reveal that the performance of the nnet model is good
in Benchmarks A and C, but also in B1, where it has to gen-
eralize to unseen ages. It is a simple model, an MLP with
3 hidden layers, which could be extended (e.g. using 1D
CNN layers) possibly offering better results. We leave this
door open for future research. If practitioners look for the
solution with the lowest error, then our take-home message
is: use a stacking model combining Gaussian processes and
neural networks. Finally, we recommend a Bayesian Ridge
regression if the available training data belong mostly to
stellar clusters. Second, all models tend to underestimate
in general, and not only in Benchmark B1, where it would
be natural. Therefore, we think that an interesting line of
future work is to reduce this bias. And third, the study re-
veals promising results for this stellar dating problem. An
error < 0.5 Gyr can be considered as an outstanding break-
through in the field.

For this study, we have released a dataset and proposed
a set of evaluation protocols to assist the research on Al for
dating stars. We hope that our study may help to improve on
the state of the art for robust star dating Al based solutions.
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