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Abstract

Autonomous spacecraft critically depend on on-orbit in-

spection (i.e., relative navigation and inertial properties es-

timation) to intercept tumbling debris objects or defunct

satellites. This work presents a practical method for on-

orbit inspection and demonstrates its performance in simu-

lation using NASA’s Astrobee robotic free-flyers. The prob-

lem is formulated as a simultaneous localization and map-

ping task, utilizing IMU data from an observing “chaser”

spacecraft and point clouds of the observed “target” space-

craft obtained via a 3D time-of-flight camera. The relative

navigation between the chaser and target is solved via a

factor graph-based approach. The target’s principal axes of

inertia are then estimated via a conic fit optimization pro-

cedure using a polhode analysis. Simulation results indi-

cate the accuracy of the proposed method in preparation for

hardware experiments on the International Space Station.

1. Introduction

The accumulation of debris and defunct satellites in

Earth orbit poses a serious problem for spacecraft opera-

tions. There are several missions in development to address

this issue, ranging from servicing existing satellites [16, 26]

to actively de-orbiting defunct satellites and space junk [6].

As the scope of these missions continues to expand, they

will increasingly rely on highly autonomous spacecraft to

intercept the target object prior to servicing or de-orbiting

operations [4]. This intercept maneuver is especially com-

plex when the target is tumbling in an unknown manner, a

common occurrence for uncontrolled space objects. An ex-

ample of this case is Envisat, a large, inactive satellite whose

size poses a risk for on-orbit collisions [13].

As such, it is important to obtain accurate and reliable so-

lutions to the relative navigation problem between the tar-

get and the servicing spacecraft (i.e., the “chaser”). Fur-

thermore, for the tumbling object case, the target’s inertial

properties must be estimated to predict its motion and plan

an intercept trajectory [9, 24]. Together, estimating the rela-

tive navigation and inertial properties of the target formulate

the on-orbit inspection problem.

There has been a steady progression in recent years

regarding relative navigation for autonomous spacecraft.

Early techniques can largely be grouped into the cooper-

ative, model-based category. Cooperative scenarios refer

to the case where the target spacecraft is actively faciliat-

ing the relative navigation problem, such as exhibiting dis-

tinct patterns for visual sensors or retroreflectors to assist

active sensors. Model-based techniques assume that there is

a computer-aided design (CAD) model of the target space-

craft readily available (i.e., the target is known). As an ex-

ample, Howard et al. [10] successfully tested relative nav-

igation in space via the Orbital Express mission, utilizing

active laser sensing with retroreflectors on the target along-

side visual imagery to estimate the target’s pose.

Generalizing to the case where the target is non-

cooperative, the RAVEN (space-based) NASA mission

has tested model-based estimation using visual imagery in

space [25], using the visiting vehicles to the International

Space Station (ISS) as “non-cooperative” targets. This

method first detects edges and features in a visual image,

then aligns them with a 3D CAD model projected onto the

image to measure the relative pose (which is subsequently

passed to a navigational filter). Sharma et al. [21] developed

a related method that utilizes more robust feature detection

techniques and does not require an accurate initial guess for

the alignment problem.

For relative navigation via 3D point cloud data (which

can potentially be more robust to lighting variability), Ruel

et al. [17] utilized a Light Detection and Ranging (Li-

DAR) sensor to generate point clouds of the target and align

them with the known CAD model using the iterative closest

points (ICP) method [2]. This method was also validated in

space using the Space Shuttle as the chaser and the Interna-

tional Space Station as the “non-cooperative” target. More

recently, Aghili and Su [1] developed a robust, filtering-

based approach for relative navigation that also utilized the

ICP method for registering point cloud data of the target
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with a CAD model.

Recent advances in simultaneous localization and map-

ping (SLAM) techniques have removed the need for a CAD

model of the target and can thus address situations where the

target is unknown. Often formulated for terrestrial robotics

applications, these methods are focused in the idea of creat-

ing a map of the environment and simultaneously localizing

the robot (i.e., estimating pose) within that map using esti-

mated landmarks [22, 14]. These ideas have been extended

towards spacecraft relative navigation. Tweddle et al. [29]

formulated a factor graph-based SLAM approach to resolve

both the chaser’s relative pose and the target’s inertial prop-

erties for the case of a stationary observer, thereby being

able to remove the need of a known target model, but un-

able to run in real-time due to the high time complexity of

the approach. Setterfield et al. [19] built upon this approach

and extended it to cases where the chaser exhibits arbitrary

motion (e.g., following an inspection trajectory relative to

the tumbling target). However, the estimation of the target’s

inertial properties was removed from the factor graph to ad-

dress the computational bottleneck, and instead solved for

via a batch optimization method based on polhode1 analy-

sis [20]. Terán-Espinoza [27] improved the computational

tractability of these approaches by exploiting the underlying

Bayes tree structure of the incremental smoothing and map-

ping problem and preserving the joint estimation of both the

chaser’s relative pose and the target’s inertial properties as

a single online algorithm. It is important to note that while

the previous approaches have been demonstrated using real

world data acquired inside the ISS by the SPHERES and

VERTIGO testbed [8, 30], an on-orbit inspection approach

capable of dealing with unknown and uncooperative targets

is yet to be demonstrated as part of a real-time system.

The purpose of this work is to formulate a practical on-

orbit inspection SLAM approach utilizing advances from

[27] and [20], and to demonstrate its practicality on NASA’s

Astrobee robotic free-flyers. The approach incorporates

chaser IMU measurements and target pose odometry mea-

surements obtained via a 3D time-of-flight (ToF) camera

into a factor graph, which is solved via incremental smooth-

ing and mapping to yield a solution to the relative naviga-

tion problem. The target state estimates are subsequently

utilized for polhode analysis to determine the target’s prin-

cipal axes of inertia. Astrobee simulation results demon-

strate the accuracy and reliability of the proposed method

of on-orbit inspection. Hardware demonstrations on the As-

trobee ground testbed and the International Space Station

(ISS) are scheduled in the near future.

The structure of this paper is as follows: Section 2 out-

lines the on-orbit inspection problem and provides a brief

description of the Astrobee robots. Section 3 presents the

1The polhode is the path traced by the angular velocity vector of a ro-

tating body on its inertia ellipsoid.

Figure 1. Overview of coordinate frames and variables for on-orbit

inspection.

front-end measurements to the SLAM problem. Section 4

outlines the factor graph approach for relative navigation

along with the conic fit optimization used to estimate the

principal axes of the target. Section 5 provides details on

the ISS Astrobee simulation environment and software im-

plementation of the full algorithm. Section 6 shares results

obtained for a sample on-orbit inspection trajectory in the

simulator. Finally, Section 7 provides a conclusion and dis-

cussion of future work, including planned hardware testing.

2. Problem Overview

The on-orbit inspection problem is defined as estimat-

ing the states of both the chaser and target in the world

frameW as well as the target’s inertial properties. The state

of the chaser is defined as x
W
C ,

(
T
W
C ,v

W
C ,ωC

)
, where

T
W
C ∈ SE(3) is the homogeneous transformation repre-

senting the chaser pose (orientation and translation) w/r to

the W frame, vWC ∈ R
3 is the velocity w/r to the W frame,

and ωC ∈ R
3 is the chaser angular velocity expressed in

the chaser body frame C. The state of the target is defined

as x
W
T ,

(
R
W
T ,ωT

)
, where R

W
T ∈ SO(3) is the target

orientation w/r to the W frame and ωT ∈ R
3 is the target

angular velocity expressed in the target frame T . The T
frame is aligned with the target’s principal axes of inertia.

It is assumed that the target is stationary (with respect

to translation) with its center of mass located at the origin

of the W frame. The H frame is the camera frame of the

chaser’s sensor that generates point clouds of the target. The

G frame, termed the geometric frame, is an arbitrary frame

attached to the surface of the target. The target’s inertial

properties that must be determined are defined as the ori-

entation of its principal axes with respect to the G frame,

R
G
T , and its inertia ratios J1 = Ixx/Izz and J2 = Iyy/Izz ,

where I = diag(Ixx, Iyy, Izz) are the moments of inertia

expressed in principal axes (diagonalized). These frames

are depicted in Figure 1.

The NASA Astrobee robots are a set of robotic free-

flyers operating on the ISS with the purpose of (a) astro-
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naut assistance, and (b) microgravity autonomy research [3]

[23]. As such, they provide a suitable testbed for experi-

ments involving autonomous, on-orbit inspection in a real-

istic micro-gravity environment. Astrobee utilizes two im-

pellers which use vents to release pressurized air to provide

full, holonomic propulsion capabilities on the interior of the

ISS [23]. For this work, one Astrobee robot represents the

chaser and follows a pre-programmed inspection trajectory.

Another Astrobee robot acts as the target and follows a tum-

bling trajectory.

3. Front-end Measurements

Astrobee is outfitted with several sensors that provide

front-end measurements to the SLAM problem. The “Haz-

Cam” is a 3D ToF camera on the chaser used to generate

point clouds of the tumbling target; in simulation, it oper-

ates at 1 Hz with a resolution of 224 × 171 pixels. Point

clouds are truncated to remove excess background data and

isolate the target. The IMU is utilized to provide chaser ac-

celeration and angular velocity measurements at a rate of

62.5 Hz.

The geometric frame G is defined at the point cloud’s

centroid in the first keyframe (i.e., first available point cloud

measurement) (Figure 1). This places it roughly on the sur-

face of the target with a constant but unknown translation

vector tGT that relates it to the T frame. The orientation be-

tween the G frame and the principal axes, RG
T , is initially

undetermined. The orientation of the G frame is arbitrarily

initialized relative to the chaser as RG
C0

= I3×3, since it is

impossible to define a non-arbitrary target frame until the

target’s principal axes are determined.

Relative target-chaser pose odometry is provided by reg-

istering successive point cloud measurements. For a pair of

target point clouds zνi and z
ν
j obtained at keyframes i and j,

the registration process follows a three-step pipeline: 1. de-

tecting 3D features in z
ν
j using fast point feature histograms

(FPFH) as the feature descriptor [18]; 2. matching the

3D features between z
ν
i and z

ν
j using the Fast Library for

Approximate Nearest Neighbors (FLANN) search method

[15]; and finally 3. registering the correspondences to a

relative pose estimate between the two point clouds via the

Teaser++ robust registration solver [31].

The result is a pose odometry measurement

z
ν
ij =

{
z
ν
Rij

, zν
tij

}
∈ SE(3) (1)

of the chaser with respect to the target’s G frame. A de-

piction of the feature matching and registration process is

shown in Figure 2.

The HazCam is also used to provide range and bearing

measurements between the point cloud centroids and the

chaser at each keyframe j. This measurement is defined

Figure 2. Depiction of the target point cloud matching and registra-

tion process in the ISS Astrobee simulator. The white point cloud

is the raw HazCam data. Blue points indicate matched 3D fea-

tures between succesive frames. The red point cloud is produced

by applying the obtained pose odometry measurement to the pre-

vious frame; close alignment with the raw data indicates accurate

odometry.

as

z
ρ
j =

{
zρdj ∈ R

+, zρbj ∈ S2
}
, (2)

where zρd and z
ρb are assumed to be range and bearing

measurements to the target’s center of mass, respectively,

with S2 representing the 2-sphere manifold.

Since Astrobee’s IMU operates at a much faster rate than

the HazCam, IMU preintegration theory [7] is leveraged to

bundle the set of measurements z
ψ
ij = {zaτ , zωτ }

j

τ=i as a

single measurement between keyframes i and j:

∆x
W
Cij

=
{
∆T

W
Cij
,∆v

W
Cij
,∆bij

}
(3)

where ∆x
W
Cij

represents the odometry of the chaser’s navi-

gational state and b is the estimate of the IMU biases.

4. Relative Navigation via Factor Graphs and

Conic Optimization

A factor graph for the relative navigation problem con-

nects all relevant variables via probabilistic factors that arise

from the available measurements. The goal is to find the

maximum a posteriori state history that best satisfies the

graph’s factors. This nonlinear optimization problem is ef-

ficiently solved using incremental smoothing and mapping,

yielding online navigational state updates at each keyframe.

In this work, the factor graph largely consists of two pose

chains that are connected by various measurement factors.
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The target pose chain consists of unknown target poses

at each keyframe connected by relative pose factors that

arise from the target odometry measurements in equation

(1). Each relative pose factor between the pose variables

T
G
Ci

and T
G
Cj

(chaser w/r to G frame) at keyframes i and j
is written as

νij ∝ exp

{
−

1

2

∣∣∣∣
∣∣∣∣
(
T
G
Ci

)−1
T
G
Cj

⊖ z
ν
ij

∣∣∣∣
∣∣∣∣
2

Σν

}
(4)

where ⊖ denotes on-manifold subtraction and ||(·)||2
Σν

is

the weighted Mahalanobis distance using the noise model

parameter Σν .

Loop closures in target odometry can also be added to

the factor graph in the same manner when i and j are non-

subsequent keyframes. At each time step, loop closures

are attempted by randomly selecting a previous point cloud

from a moving window of past frames and attempting to

find 3D feature matches. If the number of matches is above

a design threshold, the loop closure is successful and an ad-

ditional factor is added to the graph between the matched

keyframes.

The range and bearing measurements between the chaser

and the (approximate) target center of mass, defined in

equation (2), are implemented as binary factors between the

chaser’s navigational state x
W
Cj

and a variable representing

a constant target center of mass offset tWT . Since the target

center of mass is assumed to be centered at theW frame ori-

gin, this extra variable simply accounts for any errors while

modeling. The range and bearing factor is formulated as

ρj ∝ exp



−

1

2

∣∣∣∣∣

∣∣∣∣∣

[
hd(x

W
Cj
, tWT )− zρdj

hb(x
W
Cj
, tWT )⊖ z

ρb
j

] ∣∣∣∣∣

∣∣∣∣∣

2

Σρ



 (5)

where hd and hb are the measurement models for range and

bearing, respectively, and Σρ is the noise model.

Chaser pose odometry factors between subsequent

keyframes i and j are formulated from the preintegrated

IMU measurements in equation (3). This factor is defined

as

ψij ∝ exp



−

1

2

∣∣∣∣∣

∣∣∣∣∣

(
r
⊤

∆TW
Cij

, r⊤
∆vW

Cij

, r⊤∆bij

) ∣∣∣∣∣

∣∣∣∣∣

2

Σψ



 (6)

where r are the residual error vectors for the respective com-

ponents of the chaser navigational state and Σψ is the noise

model.

Additional factors, termed rotation kinematic factors, are

added to the graph in order to link the target and chaser

pose chains and disambiguate the relative motion between

the two spacecraft. These factors represent a zero sum vec-

tor addition constraint between chaser/target poses in sub-

sequent key frames, given the assumption that the target is

Figure 3. Depiction of the rotation kinematic factors that link the

otherwise separate target and chaser pose chains. The bold vectors

in the image must sum to zero to satisfy the factor’s constraint.

The wireframe chaser and target indicate the poses at the previous

keyframe, whereas the solid chaser and target indicate the poses at

the current keyframe.

unperturbed and stationary in terms of translation (Figure

3). Note that this factor utilizes the constant but unknown

variable tGT relating the G frame to the T frame. This factor

is implemented as

κij ∝ exp

{
−

1

2

∣∣∣∣∣

∣∣∣∣∣R
W
Ci

(
R
G
Ci

)⊤ (
t
G
Ci

− t
G
T

)

+R
W
Cj

(
R
G
Cj

)⊤ (
t
G
T − t

G
Cj

)

+
(
t
W
Cj

− t
W
Ci

) ∣∣∣∣∣

∣∣∣∣∣

2

Σκ

}
(7)

where Σκ is the noise model.

The factor graph is now complete and contains enough

factors to solve for the relative navigation variables. Fig-

ure 4 displays how the factors defined in equations (4 - 7)

connect the variables at each subsequent keyframe. The ac-

tual online solution to optimize the graph is computed us-

ing a different, but directly related, data structure called

the Bayes tree [12]. By recycling computations at each

time step, a full SLAM solution is efficiently and accurately

computed every time new information is received.

The final step for relative navigation is to compute the

angular velocities of both spacecraft using the estimated ori-

entations between successive time steps i and j:

ωGj =
1

∆tij
Log

((
R
W
Ci
(RG

Ci
)⊤

)⊤
R
W
Cj

(
R
G
Cj

)⊤
)

(8a)

ωCj =
1

∆tij
Log

(
(RW

Ci
)⊤RW

Cj

)
(8b)

where ∆tij is the time length in between keyframes and

Log is shorthand for the SO(3) logarithimic map log :
SO(3) −→ so(3) follow by the inverse skew symmetric ma-

trix operator ∨ : so(3) −→ R
3. The target’s angular ve-

locity estimates are naturally noisy as a consequence of the
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Figure 4. Full factor graph for relative navigation. Green indicates

the target pose chain, blue indicates the chaser pose chain, red in-

dicates the rotation kinematic factors, and grey indicates the range

and bearing factors. Large squares are prior factors that initial-

ize each pose chain, circles represent the variables to be estimated,

and small squares are factors that encode local constraints between

adjacent variables.

point cloud odometry. Thus, smoothed estimates ω̄Gj are

obtained via a recursive algorithm:

β = exp(α− 1) (9a)

γj =
β
[
1− βj

]

1− β
(9b)

ω̄Gj =
β

γj
(γiω̄Gi + ωGi) (9c)

where α ∈ (0, 1) is a constant design parameter termed the

“forgetting factor”.

Note that the target’s orientation and angular velocity

estimates are with respect to the arbitrarily initialized G
frame. While the t

G
T variable is solved for in the factor

graph, the orientation R
G
T is still undetermined. This issue

is resolved by estimating the principal axes of the target’s

inertia tensor and establishing a non-arbitrary T frame. Us-

ing the smoothed angular velocity measurements from (9c)

of the target object with respect to the arbitrary frame G,

the procedure outlined in [20] is followed to rotate this mis-

aligned polhode such that the curve’s new orientation pro-

duces central conic projections onto the XY, YZ, and XZ

planes (see Figure 7).

The specific combination of conic types for each plane

further specifies the convention and estimate for the princi-

pal axes orientation. For instance, a tumbling target with a

tri-axial inertia tensor and low rotational energy will result

in two ellipses and one hyperbola [20]. The final result is an

optimized orientation R
G
T that best aligns the measured an-

gular velocity values into the newly defined T frame based

upon the target’s principal axes of inertia. As such, it is now

possible to determine the target’s orientation with respect to

the W frame and its angular velocity with respect to the T

frame:

R
W
T = R

W
C

(
R
G
C

)⊤
R
G
T (10a)

ωT =
(
R
G
T

)⊤
ωG (10b)

Once the angular velocity profile has been correctly

aligned with the principal axes, it is possible to proceed with

the estimation of the target’s inertia ratios. By leveraging

the closed-form solution for rigid body motion based on the

Jacobi elliptic functions [11], a second procedure from [20]

can be employed to create a constrained nonlinear optimiza-

tion problem and solve for physically consistent values for

the inertia ratios J1 and J2. This would allow for the predic-

tion of the target’s tumbling motion, thus enabling the plan-

ning of an intercept trajectory [24] and the communication

between the chaser’s estimation and guidance modules [28].

5. Implementation on Astrobee

The Astrobee free-flyer is a cube-shaped robot, measur-

ing 32 cm per side [3]. Its holonomic propulsion system

draws in air through two central impellers, which is ex-

pelled precisely through 12 exhaust nozzles for thrust [23].

The Astrobee Robot Software uses the Robotic Operating

System (ROS) as middleware for communication, with 46

nodelets grouped into approximately 14 processes running

on two ARM processors [5]. The Astrobee Robot Soft-

ware also contains a Gazebo-based2 simulator, which en-

ables testing of developed algorithms before implementa-

tion on hardware. This simulation environment includes ex-

tensive modeling of Astrobee including its impeller propul-

sion system, onboard visual navigation, environmental dis-

turbances, and many more true-to-life models [5].

The proposed framework for relative navigation and in-

ertial property estimation was tested in the ISS Astrobee

simulation prior to eventual hardware testing. The chaser

was commanded to follow a sample inspection trajectory

consisting of a) a lateral arc maneuver, b) a vertical arc

maneuver, and c) an approach/recede maneuver along the

viewing axis. Chaser attitude commands kept the target

in the HazCam field of view. Meanwhile, the target was

commanded to follow attitude setpoints representing a tum-

ble produced by the tri-axial inertia tensor of the Envisat

satellite. The chaser started its inspection trajectory 1.5

meters away from the target. The target’s initial orien-

tation was R
W
T = I3×3 with an initial angular velocity

ωT = [0, 3.53, 3.53] deg/s. Figure 5 shows the chaser

stationed at its initial condition in the simulator, ready to

begin the inspection maneuver of the tumbling target.

The relative navigation framework was packaged as a

ROS nodelet to interact with Astrobee and the simulator.

The main computational bottleneck was the point cloud reg-

istration pipeline; as such, voxel grid filtering of the raw

2http://gazebosim.org/
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Figure 5. The chaser (yellow) waiting to begin its inspection tra-

jectory as the target (blue) begins its tumble in the ISS simulation

environment. While Astrobee’s inertia tensor is nearly spherical,

the target can simulate the tumble of an arbitrary rigid body.

HazCam data was implemented to significantly improve

computational performance. The Georgia Tech Smoothing

and Mapping (GTSAM)3 library was used for efficiently

building and solving the factor graph. Inertial property es-

timation was performed by post-processing the estimated

target angular velocity data.

6. Simulation Results

Figure 6 shows the estimated chaser navigational state

throughout the inspection trajectory. Truth values from the

simulator serve as a metric to evaluate the proposed ap-

proach and provide estimation error statistics. The esti-

mates were smooth and closely corresponded to the true val-

ues, demonstrating the ability to disambiguate chaser mo-

tion from the tumbling target motion. Slight oscillatory drift

on the order of 5 mm/s is evident. This is likely due to

the slight oscillation of the point cloud’s centroid that arises

during from the target Astrobee’s tumbling, cubic shape.

The target orientation and angular velocity estimates

were estimated in the factor graph with respect to the ar-

bitrary G frame. As such, there is a coordinate frame off-

set between the initially estimated values and the simulator

truth values. These “unaligned” values were used to per-

form the polhode analysis in order to determine the princi-

pal axes of the target and its inertia tensor ratios (see Fig-

ure 8, where ”Measured” denotes ”unaligned”).

Figures 7, 8, and 9 show the results for the principal axes

estimation portion of the pipeline. The optimized value of

R
G
T produced the best conic projection fits shown in Fig-

ure 7. Since the Envisat’s inertia tensor is tri-axial, the

projection of the polhode produced central ellipses in the

3https://github.com/borglab/gtsam

Figure 6. Chaser state estimation results for the simulated inspec-

tion trajectory. Solid lines indicate estimates, dashed lines indicate

truth values. R/G/B indicate the x/y/z axes, respectively, and black

indicates the scalar part of the attitude quaternion.

XY and YZ planes, and a hyperbola in the XZ plane. This

orientation is then used to rotate the “measured” target an-

gular velocity values (defined in the G frame) into the T
frame (polhodes shown in Figure 8). The corresponding

time history representation for the same three curves from

Figure 8 is subsequently shown in Figure 9, along with the

per-measurement error between the estimated alignment us-

ing R
G
T and the ground truth alignment of the angular veloc-

ity measurement. The value of RG
T also allows us to obtain

target attitude estimates in the R
W
T frame, thus completing

the relative navigation problem.

Table 1 shares estimation error statistics for the navi-

gational states. The low magnitude of these values indi-

cate successful performance of the on-orbit inspection task,

which in turn would enable the subsequent motion planning

and trajectory tracking phases that are required to intercept

the target.

In summary, the proposed approach demonstrates suit-

able estimation accuracy that compares well with existing

methods. Moreover, the only major assumption that this

approach makes is the lack of external forces acting upon

the target object (that is, that the target is stationary with

respect to translation and tumbling with torque-free dynam-

ics); otherwise, the target is truly unknown and no shape

models are required. Finally, this method is specifically de-

signed for experiments on hardware: the full pipeline can

reliably run faster than 1 Hz on embedded processors.
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Figure 7. Resulting polhode after alignment to the target’s esti-

mated principal axes. The polhode’s plane projections produce

central conics (not rotated nor displaced from their respective ori-

gins). Solid circles indicate the polhode, open circles indicate the

projected conics.

t̃
W
C 4.1 cm

ṽ
W
C 5.3 mm/s

ã
W
C , θ̃ [−0.1°, 0.001°, 0.61°]⊤, 1.00°

ω̃C 0.08 °/s

ã
W
T , θ̃ [6.26°, − 4.24°, 0.85°]⊤, 7.25°

ω̃T 0.6199 °/s

Table 1. Estimation error statistics for the navigational states.

All error values are the median L2 norm between the estimated

and true values, except for ã, which is computed as ã =
Log(R̄⊤

R̂) = [δax, δay, δaz]
⊤ and θ̃ = ||ã||, where R̄ and

R̂ correspond to true and estimated orientations, respectively.

7. Conclusion

This work presents a complete, practical algorithm for

performing autonomous on-orbit inspection of an unknown,

tumbling target. Utilizing the Astrobee robotic free-flyer’s

ToF camera and IMU measurements, the factor graph-based

approach with conic fit optimization efficiently solves for

the navigational states of both the chaser and target. De-

signed practically with the eventual goal of actual hard-

ware testing, the algorithm was successfully tested in a sam-

ple inspection trajectory within the realistic ISS Astrobee

simulator. Despite a complex, tri-axial target tumble, the

chaser is able to accurately estimate the target’s state while

also maintaining a clear estimate of its own dynamic state

throughout the trajectory. Future work will demonstrate the

algorithms introduced in this paper on the Astrobee robots

Figure 8. Top: polhode comparison between the measured (blue,

in geometric frame), aligned (red, after rotating by the estimated

orientation from geometric to principal axes), and ground truth-

aligned (orange) curves. Bottom: visual comparison of the offset

between the ground truth principal axes (bold RGB triad) against

the estimated orientation (thin, longer RGB triad).

onboard the International Space Station, thus validating the

method in a real, 6-DOF, microgravity environment.

References

[1] Farhad Aghili and Chun Yi Su. Robust relative navigation

by integration of ICP and adaptive Kalman filter using laser

scanner and IMU. IEEE/ASME Transactions on Mechatron-

ics, 21(4), 2016. 1

[2] Paul J. Besl and Neil D. McKay. A Method for Registration

of 3-D Shapes. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 14(2), 1992. 1

[3] Maria G. Bualat, Trey Smith, Terrence W. Fong, Ernest E.

Smith, and D. W. Wheeler. Astrobee: A new tool for ISS

operations. In 15th International Conference on Space Op-

erations, 2018, 2018. 3, 5

[4] Angel Flores-Abad, Ou Ma, Khanh Pham, and Steve Ulrich.

A review of space robotics technologies for on-orbit servic-

ing. Progress in Aerospace Sciences, 68, 2014. 1

7



Figure 9. Top: per time step magnitude error of the estimated angu-

lar velocity in principal axes. Bottom: measured (blue), estimated-

aligned (red), and ground truth-aligned (orange) time history view

of the polhodes, separated into its individual components.

[5] Lorenzo Flückiger, Kathryn Browne, Brian Coltin, Jesse

Fusco, Theodore Morse, and Andrew Symington. Astrobee

Robot Software: Enabling Mobile Autonomy on the ISS.

Technical report, 2018. 5

[6] Jason L. Forshaw, Guglielmo S. Aglietti, Nimal Navarathi-

nam, Haval Kadhem, Thierry Salmon, Aurélien Pisseloup,
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