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Abstract

In an environment of increasing orbital debris and re-

mote operation, visual data acquisition methods are be-

coming a core competency of the next generation of space-

craft. However, deep space missions often generate limited

data and noisy images, necessitating complex data analy-

sis methods. Here, a state-of-the-art convolutional neural

network (CNN) pose estimation pipeline is applied to the

Hayabusa2 Minerva-II2 rover deployment; a challenging

case with noisy images and a symmetric target. To enable

training of this CNN, a custom dataset is created. The de-

ployment velocity is estimated as 0.1908 m/s using a projec-

tive geometry approach and 0.1934 m/s using a CNN land-

mark detector approach, as compared to the official JAXA

estimation of 0.1924 m/s (relative to the spacecraft). Addi-

tionally, the attitude estimation results from the real deploy-

ment images are shared and the associated tumble estima-

tion is discussed.

1. Introduction

In the current era, the utility of satellites cannot be over-

stated; civil welfare, defence agendas, commercial enter-

prises, and academic pursuits all rely greatly on satellite

technologies. Unfortunately, the maintenance of the current

level of utilization and the enabling of future innovations

are at risk due to the well-admitted problem of increasing

orbital debris [10, 14, 28, 30]. Observing the growth in

orbital debris described in [30], combined with the recent

rapid expansion of the commercial market [29], it is clear

that the likelihood of in-orbit collisions will increase dra-

matically in the coming years.

In the context of this orbital debris problem, guidelines

[11], mitigation standards [27], and independent recom-

mendations [25]1 have been written. Additionally, a num-

1Murtaza et alia’s paper provides an excellent summary of the current

state of affairs regarding orbital debris [25].

ber of capture demonstration missions have already flown

(e.g., ETS-VII [13]) or are scheduled to fly [33]. (e.g.,

Clearspace-1 mission [16]).

1.1. Satellite Pose Estimation

Regardless of the orbital debris removal mission

specifics, the capability to remotely obtain target inertial

and spatial information remains a core technological com-

petency for all non-cooperative target interactions (e.g., de-

bris capture). Consequently, research into the development

of vision-based pose-estimation systems has grown rapidly

and drawn heavily upon more mature fields (e.g., automated

cars, factory robotics).

One particular pose-estimation benchmark for monoc-

ular systems was the Satellite Pose Estimation Challenge

[15, 38]. The dataset was produced at Stanford University,

using OpenGL synthetic images to supplement real images

of the PRISMA mission TANGO spacecraft [34]. The pose

estimation challenge resulted in a number of high accuracy

pose estimation pipelines [6, 7, 31].

However, deep space missions provide uniquely chal-

lenging circumstances. Images are often characterized by

high dynamic ranges and non-diffuse lighting, resulting in

highly noisy images with minimal surface texture informa-

tion. Additionally, the challenges of remote operation re-

quire a high degree of onboard autonomy and intelligence

for performing observation and capture tasks [26].

1.2. Objective

Similar to many institutes, we desire a generic pose es-

timation algorithm capable of handling varying geometries,

varying lighting conditions and that works autonomously.

As early work towards this goal, we selected one of the

satellite pose estimation challenge pipelines and applied it

to a real-world case study: the deployment images of the

Minerva-II2 rover (example images shared as figures 1 and

2). The lessons learned provided valuable insight into work-

ing with such noisy images.
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Although the Minerva-II2 deployment was not an orbital

debris case, the circumstances were similar. The images

were taken from deep space and depicted a noncooperative

free floating object with unknown trajectory and unknown

inertial state. The images also contained significant noise

artifacts, which are discussed in section 2. Furthermore, the

trajectory estimation is of value as it was used to estimate

where the rover landed on the Ryugu asteroid [5].

Figure 1. Deploy. im.2 Figure 2. Deploy. im.3

The reader is encouraged to watch the accompanying

anonymized paper-summary video. The original contribu-

tions of this paper may be summarized as follows:

• The validation of JAXA’s rover deployment velocity

estimation work [5] using two independent methods.

• The application of a spacecraft pose estimation

pipeline to real images (not lab-curated). We provided

a roadmap containing our lessons learned while work-

ing with the noisy images of a symmetric target (a ma-

jor challenge for pose estimation pipelines).

• The development and sharing of a new dataset, Syn-

thetic Minerva-II2 [32], designed to replicate the

Minerva-II2 deployment images. The dataset was used

for training the pose estimation pipeline. The dataset

contains renders of the Minerva-II2 spacecraft with

dominant noise artifacts inserted. It is expected that

a future general solution to the pose estimation prob-

lem will need to be able to work with similarly noisy

images.

2. Minerva-II2 Deployment

The MIcro Nano Experimental Robot Vehicle for As-

teroid (MINERVA) rovers are small exploration rovers de-

ployed from the Hayabusa2 space probe to explore the

surface of the asteroid Ryugu [39]. Unfortunately, the

Minerva-II2 rover experienced technical difficulties before

deployment and was thus deployed as a visual object to

track for microgravity observations. The Minerva-II2 rover

was deployed on October 2nd, 2019 [5]. Images of the de-

ployment were captured using the Hayabusa2 Optical Nav-

igation Camera (ONC) Wide Angle number 2. The ONC-

Parameter Specification

Sensor Type CCD

Resolution 1024 x 1024
Sensor Size 13µm x 13µm
Focal length 10.38mm

FoV 68.89◦

Distortion ǫ1 2.893E−7[pixel−2]
Distortion ǫ2 −1.365E−13[pixel−4]

Table 1. Hayabusa2 ONC-W2 Camera Specifications [37]

Figure 3. Minerva-II2 rover. Courtesy of JAXA [5]

W2 camera specifications and calibrated distortion parame-

ters are shared in table 1. The undistorted image, r in pixels

from the image center can be expressed as

r = rdistorted + ǫ1r
3 + ǫ2r

5 (1)

to correct for distortion. The ONC-W2 camera captured

deployment images every 3 seconds (FPS of 1

3
).

Two example images of the Minerva-II2 deployment are

shared as figures 1 and 2. For context, an image of the

Minerva-II2 rover is shared in figure 3 in standard dif-

fuse lighting conditions. The Minerva-II2 is an octagonal

prism with six of the eight rectangular faces nearly iden-

tical; the top and the bottom faces nearly identical; and the

remaining 2 rectangular faces —containing the Minerva-II2

cameras— are inverted, but quite similar as well. From the

perspective of attitude estimation, the Minerva-II2 presents

an extremely challenging target for a monocular system.

The Minerva-II2 surface textures are primarily com-

posed of solar cells, antenna structure, cables, and a reflec-

tive yellow surface coating. As demonstrated in deployment

image 3 (figure 2), the highly variable reflectivity resulted

in high dynamic range pixel intensities and consequently

overloaded the image sensor. Reproducing these image ar-

tifacts for the synthetic dataset is discussed in section 3. The

specific spectral properties of the surface materials, such as

reflectance and emissivity, were unknown to us.

The Minerva-II2 deployment mechanism design resulted

in a large release velocity uncertainity of 0.054 to 0.254

m/s. Consequently, Oki et al. performed a number of
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Monte Carlo simulations to select the optimal release at-

titude for the Hayabusa2 [5]. After release, JAXA maneu-

vered Hayabusa2 to observe several orbits of the Minerva-

II2 rover about Ryugu, using the ONC-T (telescopic) cam-

era. Oki et al. then back calculated the Minerva-II2 or-

bit propagation to estimate the initial deployment veloc-

ity and shared the magnitude as 0.1924 m/s relative to the

Hayabusa2 (camera fixed frame) [5].

2.1. Projective Geometry Velocity Estimation

Since the geometry of the Minerva-II2 is known, it

was possible to estimate the initial release velocity of the

Minerva-II2 rover using the ONC-W2 deployment photos

(two of which are shared as figures 1 and 2), using projec-

tive geometry methods.

The estimation proceeded as:

(1) Selected two vertices.

(I) Method A: Hand selected two vertices.

(II) Method B: Assumed a model of a sphere

with low oblateness. As the Minerva-

II2’s geometry may be described as a regu-

lar octangonal prism, two vertices opposite on

each [X,Y, Z]bodyFrame will be the same dis-

tance apart as two other vertices opposite on

[X,Y, Z]bodyFrame. For clarity, two such oppo-

site vertices have been labeled as ”A” in figure 3.

Vertice selection was automated to select the two

pixels furthest apart on the ”sphere”, resulting

in the two opposite [X,Y, Z]bodyFrame vertices.

Pixel intensity was incorporated into the distance

calculation. Outliers were identified manually.

(2) Projected the model geometry. Once two vertices of

a known distance apart were selected, the distance was

compared to the image’s projected distance. As the at-

titude of the Minerva-II2 was unknown for each image,

reprojection accuracy was limited.

(3) Performed least-squares fitting of the linear veloc-

ity across the various deployment images. The least-

squares fit was to the linear polynomial

~̂Xk = ~X0 + ~αtk (2)

where ~̂Xk =
[

X̂k, Ŷk, Ẑk

]T
is the projective geometry

measured target location for image k;

~X0 =
[

X0, Y0, Z0

]T
is the target location at 0 s;

~α =
[

VX , VY , VZ

]T
is the parameter to be fitted;

and tk is the time at which image k was recorded.

Bisquare weighting on the residuals and the MATLAB

fit function [22] were used.

Figure 4. Least-squares R2 progression. (higher is better)

Parameter Hand Selection Oblate Selection

Velocity mm
s

[6.7, 19.8, 188.8] [6.8, 19.8, 189.7]
Velocity Norm m

s
0.1900 0.1908

R2 (↑ better) 0.9888 0.9943
RMSE (↓ better) 0.3385 0.2477

Table 2. Projective geometry velocity estimation results

Originally, it was assumed that the earlier deployment

images (target closer to the camera) would produce higher

quality vertice selections and thus data from earlier im-

ages should be weighed higher. However, the Coefficient

of Determination (R2) improved with the inclusion of later

images (target further from the camera) for both methods.

Consequently, a total of 19 images were utilized in the least-

squares fit. R2 versus the number-of-images-used can be

observed in figure 4.

The results of the projective geometry approach have

been shared in table 2. The low-oblateness model selec-

tion exhibited better fit statistics and resulted in a slightly

closer estimation to the JAXA velocity norm of 0.1924 m/s.

3. Synthetic Minerva-II2 Dataset

A dataset was required in order to train a pose estimation

neural network. Work began by constructing a 3D model of

the Minerva-II2 rover in Solidworks. As the Minerva-II2

photos were primarily dominated by image noise artifacts,

it was deemed sufficient to use the Solidworks Photoview

360 ray-tracing rendering software [9] for the intitial ren-

der. The dataset was focused on developing a realistic noise

reproduction function for the post-Photoview 360 render.

3.1. Photoview 360 Rendering

Photoview 360 contains a library of different surface

materials including fabrics, glasses, metals and ceramics.

Appropriate surface materials and their associated spec-

tral properties were selected for each Minerva-II2 surface.

Additionally, the Hayabusa2 ONC-W2 camera parameters,

shared in table 1, were utilized as the perspective rendering

parameters.
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To simulate lighting conditions, the sun-camera angle

vector was required. Without specifics of the Hayabusa2

compensation maneouver during release [5] and without the

relative velocity with respect to Ryugu, it was not possi-

ble to estimate the Hayabusa2 attitude with respect to the

sun. However, inspired by the light source detection work

of Lopez-Moreno et al. [18], the sunlight angle was visually

estimated and then verified in simulated renderings com-

pared to the real images. A light source angle range of +/- 6◦

was applied resulting in various light source renderings on

the range of approximately [58, 70]◦ longitude and [6, 18]◦

latitude. Other potential light sources (e.g., surface reflec-

tions) were assumed negligable and not simulated.

As the rover’s attitude and tumble progression were un-

known, it became necessary to render a sampling of all pos-

sible orientations. Selecting an orientation is akin to se-

lecting a point on the surface of a unit sphere. In his the-

sis [34], Sharma describes the optimal orientation rendering

sampling solution as ”...solving for a minimum-energy con-

figuration for charged particles on a sphere...” also known

as the ”Thomson problem” aiming to find the minimum en-

ergy, E, described as

E =

n−2
∑

i=1

n
∑

j=1+1

1

|sj − si|
(3)

for each particle (i.e., orientation vector) separation |sj −
si|. In this way, should 100 images with equally spaced

orientations be desired, minimizing equation 3 with n =
100 will ensure a uniform spread of orientations. Here, the

approximate solution developed by Markus Deserno [4] is

adopted; please refer to the reference for the algorithm.

Finally, the target distances were sampled from the range

[0.5, 2.5] m based on the projective geometry velocity esti-

mation and the ONC-W2 FPS of 1

3
, discussed in section 2.

Using the above defined configuration, three datasets

were rendered:

• SetA: 10,000 renderings of the realistic Minerva-II2

model. This dataset was used in tandem with the real

Minerva-II2 deployment images (section 5 case 2).

• SetB: 10,000 renderings of a fictitious Minerva-II2

model. The fictitious model was created by strategi-

cally removing solar panels to ensure all 10 faces were

uniquely identifiable. This dataset was used in tan-

dem with the Tumble dataset as part of the proof-of-

concept case (section 5 case 1).

• Tumble: 300 renderings of the fictitious Minerva-II2

model with the attitudes defined by integrating Euler’s

rigid body rotation equations. The integration was

completed in MATLAB using a self-coded ”Runge-

Kutta 4th order” integrator. Based on the Minerva-II2

mass, an arbitrary axi-symmetric inertia matrix of

I =





0.002785 0 0
0 0.002785 0
0 0 0.002533



 kg ·m2 (4)

was utilized for the tumbling integration. An arbitrary

initial rotation speed of ~w =
[

0.2,−0.1, 0.4
]T rad

s

was also used. The integration utilized timesteps of

0.001 s and the system energy was monitored as con-

stant to 12 decimal places, thus ensuring the integra-

tion validity. Images were rendered at 1 s intervals.

We share two example renderings as figures 5 and 6.

Figure 5. SetA render Figure 6. SetB render

3.2. Dataset Noise Filtering

The output of the Photoview 360 ray tracing render soft-

ware resulted in perspective realistic renderings with cor-

rect attitudes. However, the renderings did not exhibit the

various sources of noise and image artifacts seen in figures

1 and 2. Consequently, post-processing filtering was com-

pleted in MATLAB. Our custom filter function contained a

number of steps and will be itemized for brevity. Note that

here pixel intensities are referred as 0 for black and 1 for

white. MATLAB functions are identified where applicable.

(1) RGB to Grayscale: The ONC-W2 camera is a CCD

intensity camera. The conversion coefficients were

0.2989Red + 0.5870Green + 0.1140Blue.

(2) Contrast Adjustment: To assist in the replication of

the high dynamic range scenario, render image inten-

sities < 0.4 were set to 0.

(3) Gaussian Blur: To replicate a slight defocus, 2D

Gaussian filtering was used; the Gaussian distribution

(σ) and filtersize were scaled proportional to target dis-

tance. The MATLAB function imgaussfilt() was used.

(4) Motion Blur: Motion blurring was applied along a

random vector using the MATLAB fspecial(’motion’)

filter kernel.
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(5) Artificial Bloom: CCD pixels are often arrayed se-

quentially with anti-blooming drains at the end of a

row or column. When the charge capacity of a pixel

cell is saturated, it may overflow into adjacent cells

[1]. Based on our observations, the ONC-W2 pixels

are vertically sequential and thus 1D column Gaussian

blurring was applied to intensities > 0.67. σ and filter-

size were scaled proportionally to target distance.

(6) Random Artifact: Although not readily observed in

figures 1 and 2, polygon image artifacts of intensity ∼1

dominated several deployment images. Thus a func-

tion was coded to produce a random polygon of 10-20

vertices, scaled based on target distance. The function

was passed 5 times over an image with a probability of

0.5 to add a polygon.

(7) Artificial Streaking: Streaking is another potential ar-

tifact caused by CCD pixel saturation [1]. 20% of the

time, a vertical line of intensity 0.4 was added to the

image at an arbitrary column that intersected with the

rover. A form of streaking is observable in figure 2.

(8) Random Particles: Also observable in figure 2, are

spherical artificts. The artifacts may be background

stars (depending on ONC-W2 automatic contrast ad-

justment) or particles released during the Minerva-

II2 deployment. In anycase, for 50% of the images,

rand[5−50] particles were added at random locations.

(9) Poly Bloom: Observable in figure 1, some high inten-

sity locations developed sharp looking edges as a satu-

ration effect. This function replicated such behaviour.

(10) Sensor Saturation: Observable in figure 2, ONC-W2

automatic contrast adjustment sometimes resulted in

higher intensity backgrounds. This function globally

increased the image intensity by +rand[0, 0.1].

(11) Speckle Noise: The Photoview 360 renders resulted

in homogeneous backgrounds (intensity precisely = 0)

whereas the deployment images contained slight in-

consistencies. The MATLAB function imnoise(image,

’speckle’, 0.001) was used here.

(12) Intensity Reduction: When the ONC-W2 camera

was overloaded, the camera dynamic range became

limtied. For 40% of the images, a similar dynamic

range reduction was applied.

Continuing our rendering example, post-processing modi-

fied outputs are shared as figures 7 and 8.

Although significant effort was expended to reproduce

the noise artifacts of the real deployment images, this

dataset still posed a large domain adaptation challenge;

our synthetic dataset did not have comparable surface tex-

ture fidelity as that of Stanford University’s SPEED dataset

Figure 7. SetA mod. Figure 8. SetB mod.

Figure 9. Pose estimation pipelines. Adapted from [15]

[34, 38]. However, by focusing on replicating the dominant

noise artifacts, we were successful in developing a dataset

suitable for training a neural network to work with the real

deployment images. Similarly, for future space mission ap-

plications, it is worth considering and focusing on which

aspects of an image are the most dominant (e.g., texture,

geometry, noise, lighting).

4. Satellite Pose Estimation Methodology

Most Convolutional Neural Network (CNN) architec-

tures can be roughly grouped into two categories: straight-

shot and landmark matching as shown in figure 9. The pri-

mary difference is that the landmark matching approach ex-

plicitly utilizes knowledge of the target’s geometry.

While there are merits to both approaches, the landmark

matching approach exhibited higher accuracy for pose esti-

mation in the satellite pose estimation challenge benchmark

[15]. With the Minerva-II2 geometry available, we adopted

a landmark matching approach here. Additionally, as we

did not have hardware or real-time operation constraints,

a larger CNN pipeline could be used. Consequently, we

adopted the satellite pose estimation pipeline developed by

Dr. Chen [7], which uses the HRNet backbone [36].

4.1. Landmark Regression CNNs

HRNet was initially developed for the Microsoft COCO

dataset [17]; both top-down (object → landmarks) and

bottom-up (landmark → object grouping) versions exist [2].

For our case, a bottom-up network could be selected with
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the last fully connected layers removed to maintain the 2D

landmark feature maps.

A common characteristic of CNN-architectures used in

feature point detection is the reduction, and later recov-

ery, of feature map resolution (variants of ResNet [12] and

feature pyramids [40]). The HRNet team have continu-

ally demonstrated the value in maintaining higher resolution

feature maps throughout the CNN [8].

One common domain adaptation approach is to train the

network on a large general dataset and then freeze the early

layer weights [23]. Next, the final layers are trained on the

target-specific dataset. We initially experimented by im-

porting weights from HRNet trained on the COCO dataset

[2], but initial findings indicated that training from scratch

yielded similar results.

5. Pose Estimation Case Studies

We applied our pose estimation pipeline to two case stud-

ies: 1) a fictitious Minerva-II2 model with a simulated tum-

ble velocity and 2) the real Minerva-II2 deployment photos.

The first case was completed as a proof-of-concept.

5.1. Case 1: Tumble Simulation

We trained on the SetB fictitious model dataset and

then tested on the Tumble dataset. It may be noted that

these datasets contained a non-symmetric target and thus

the landmark estimator could preserve correspondences.

5.1.1 Case 1: Training

We trained for 200 epochs from scratch with the Adam

optimizer. The output of our model was a tensor of 16

heatmaps, one for each annotated landmark. We reduced

the heatmap resolution to 512 x 512 (previously 768 x 768

[7]) and trained the model minimizing the sum squared er-

ror loss as

L(x, y) =

N
∑

i=1

(hi − h∗

i )
2 (5)

between the predicted heatmaps hi and the ground truth

heatmaps h∗

i . The ground truth heatmap, h∗

i was gener-

ated as a Gaussian normal with a standard deviation of σ.

We found that varying the standard deviation throughout the

learning process first helped the network identify the land-

marks and later improved the accuracy. A σ of 10 at epoch

1 was adopted and decreased piecewise to a σ of 2.

5.1.2 Case 1: Pose Estimation

The initial pose was first estimated using the MATLAB P3P

function estimateWorldCameraPose() [21]. Next, the

MATLAB bundleAdjustment() function [20] was run.

Figure 10. Tumble dataset pose estimation

Figure 11. Body rotation vector progression. Ground truth (GT)

compared to estimate (Est.)

With the estimated poses (examples shared in figure 10),

the body rotation vector could be calculated. The quater-

nion differential equation was numerically differentiated us-

ing the MATLAB angvel() function [19]; the results are

shared in figure 11.

Thus we confirmed the pose estimation pipeline method-

ology was valid for estimating the tumble velocity of a non-

symmetric target.

5.2. Case 2: Real Deployment Images

For the real images, we trained on the SetA dataset, we

then tested on JAXA’s real Minerva-II2 deployment images.

5.2.1 Case 2: Addressing the Minerva-II2 Symmetry

Due to the symmetry of the Minerva-II2 rover, HRNet was

unable to identify independent correspondences. Conse-
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quently, the unorthodox step of dropping the correspon-

dence identification was adopted. Instead of outputing 16

heatmaps (one for each correspondence landmark), a single

heatmap was output. The ground truth heatmap was cre-

ated by superimposing 16 heatmaps (a gaussian normal with

standard deviation σ for each correspondence landmark).

As an additional post-processing step, a findpeaks

function identified the highest scoring local peaks to assign

as landmark locations. A minimum distance of σ
2

was en-

forced between peaks to ensure a single global maximum

landmark was not assigned multiple times. It is worth not-

ing that at great distances, 2D landmarks will be closely

spaced; thus the performance of this findpeaks function

dropped off significantly after 10 metres.

5.2.2 Case 2: Training

The network performance on the target (real) dataset

decreased for extended training sessions (the network

was overfitting to the training dataset). We thus

trained 8 models for different durations to compare

([1, 3, 5, 10, 15, 25, 50]epochs). Other training parameters

were kept the same as for case 1.

With additional training, a tradeoff was observed. Low

epoch models provided more landmark estimations while

high epoch models provided fewer outliers. Outliers were

identified by network confidence and by recursive error re-

duction of subsequent pose estimation functions (e.g., P3P).

An example of the number of identified points for each

model in the first 20 images during a training cycle is pro-

vided in figure 12.

It appeared that the low epoch models relied more on

high contrast and obtuse angle geometry, while the high

epoch models began to rely on more localized features. An

example (deployment image 7) of these different landmark

detections is shared as figure 13 for model 1 (1 epoch) and

as figure 14 for model 8 (50 epochs). Model 1 provided

11 landmarks, 2 of which appeared to be outliers. Model

8 provided 5 landmarks, none of which appeared to be out-

liers. Additionally note that neither model provided land-

mark locations of nonvisible vertices. This is possibly due

to the findpeaks function step. The findpeaks function

prioritized higher weighted local peaks (peaks with higher

confidence).

5.2.3 Case 2: Pose Estimation Results

CNN output/landmark correspondences were first initiated

manually and initial poses were validated with iterative

uses of estimateWorldCameraPose() [21]; with more

images, perhaps a RANSAC algorithm would be a robust

way to autonomously reassign correspondences (we worked

with only 10-12 images). In this way, the pose attitude was

restricted to 16 possible orientations (a regular octogonal

Figure 12. Number of identified landmarks vs training duration

Figure 13. Real image 7;

model 1 landmarks

Figure 14. Real image 7;

model 8 landmarks

Parameter CNN Landmark Oblate Selection

Velocity mm
s

[4.0, 30.5, 191.0] [4.2, 19.7, 189.7]
Velocity Norm m

s
0.1934 0.1908

R2 (↑ better) 0.9813 0.9943
RMSE (↓ better) 0.3333 0.2477

Table 3. Velocity estimation results

prism can be oriented 16 ways to produce the same image

projection).

As the number of images with estimated poses was rather

limited (10-12 images), the bundleAdjustment() [20] Ja-

cobian to be optimized was rather sparse. Additional poses

from the SetA estimatitons were incorporated into the bun-

dle adjustment to improve the algorithm’s repeatability.

For the linear velocity estimation, similar to the projec-

tive geometry method (equation 2), a least-squares approach

was adopted [22]. Conversely to that of the projective ge-

ometry method, the velocity estimation confidence (R2) de-

creased with the inclusion of later images (the network per-

formance decreased as the target distance increased).

The velocity estimation results are shared in table 3. The

low-oblateness projective geometry velocity estimation is

included for comparison. Again, the JAXA velocity norm

estimation was 0.1924 m/s.

Finally, we discuss the attitude estimation. Again, due

to the dropped and reassigned correspondences, 16 possible

attitudes exist for each image. However, we were able to

estimate the axis of symmetry and the associated 16 possi-

ble attitudes in the majority of the early deployment images.

Example results are shared in figure 15.
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Figure 15. Attitude estimation results

There were insufficient images to constrain

[wX , wY , wZ ] and the uknown 9 parameter inertia

matrix; Euler’s equations of motion could not be estimated

using the previous least-squares approach or MATLAB

angvel(). We are currently investigating an iterative

harmonic approach wherein we integrate Euler’s equations

of motion with different parameters to find a best fit.

6. Discussion

Solving for the target tumbling motion (pose derivative)

begins to encroach upon the solution space of Simultaneous

Localization And Mapping (SLAM) methods. A monocu-

lar ORB-SLAM approach [3, 24] was intitially investigated

but quickly discarded. The keypoint detection functions

were not sufficient to reliably locate landmarks on the noisy

Minerva-II2 images.

Many SLAM algorithms benefit from high framerates

for loop-closure queries [24] and/or extrapolate between

timesteps using physics based algorithms [35]. However,

many spacecraft pose estimation applications (such as the

Minerva-II2) are characterized by low framerates and thus

information must be supplemented using the physics-based

solutions (e.g., an Extended Kalman Filter (EKF) tuned to

Euler’s rigid body equations of motion).

It is also interesting to note the performance of the HR-

Net on landmark detection in section 5.2.2; the HRNet

delivered workable results with minimal training. Conse-

quently, as a follow up to this work, we intend to focus on

the development of a smaller network suitable for spacecraft

hardware. Implementing a similar performing algorithm on

spacecraft sized hardware is a non-trivial task. However,

with the future generation spacecraft’s increased degree of

required autonomy [26], we expect smaller network perfor-

mance to be of immense value.

From this work, we expect valuable next steps for the

general spacecraft pose estimation system will be to 1) Per-

form a similar case study with a much smaller CNN back-

bone; 2) Assess methods of miniaturizing networks for real-

time hardware; 3) Incorporate an overhead pose tracking al-

gorithm (e.g. EKF); and 4) Expand the study to more space-

craft, more geometries and more types of image noise.

An additional challenge will be how to autonomously se-

lect landmarks. Many texture based keypoint detectors were

not designed for the saturated dynamic ranges and noise as-

sociated with deep-space imagery.

7. Conclusion

In this paper we investigated the deployment of the

Minerva-II2 rover from the Hayabusa2 space probe as a pre-

curser study to the development of a generic satellite pose

estimation system. We developed and shared a new dataset,

Synthetic Minerva-II2 [32]. The dataset was specifically

crafted to emulate the noise artifacts of the real Minerva-II2

deployment photos, which are representative of real chal-

lenges for deep space missions. It is argued here that simi-

lar noise artifacts should be included in the development of

future pose estimation pipelines or we risk such algorithms

only being usable in ideal conditions.

We presented a simple projective geometry approach to

estimate the position of the rover then moved onto a higher

complexity CNN solution to estimate both the position and

attitude of the rover. The velocity was estimated in both

cases and validated the independent JAXA orbital back-

propagation estimation. It is clear that monocular pose esti-

mation accuracy has advanced significantly and can be uti-

lized as an additional investigation tool for deep space mis-

sions.

The challenges of the Minerva-II2 deployment images

were discussed. The Minerva-II2 represents a highly sym-

metric body, with limited high-noise deployment images

and no means of independent data acquisition or validation.

Working with such limited data is likely to continue to be

the norm for deep space missions. This paper provides an

example roadmap for future deep-space trajectory and pose

estimation problems.
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