
Event-based spacecraft landing using time-to-contact

Olaf Sikorski, Dario Izzo, Gabriele Meoni

Advanced Concepts Team, European Space Research and Technology Centre

Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands

olaf.sikorski@gmail.com

{dario.izzo, gabriele.meoni}@esa.int

Abstract

We study event-based sensors in the context of spacecraft

guidance and control during a descent on Moon-like ter-

rains. For this purpose, we develop a simulator reproducing

the event-based camera outputs when exposed to synthetic

images of a space environment. We find that it is possible

to reconstruct, in this context, the divergence of optical flow

vectors (and therefore the time to contact) and use it in a

simple control feedback scheme during simulated descents.

The results obtained are very encouraging, albeit insuffi-

cient to meet the stringent safety constraints and modelling

accuracy imposed upon space missions. We thus conclude

by discussing future work aimed at addressing these limita-

tions.

1. Introduction

Conventional strategies for autonomous spacecraft land-

ing rely on velocity and altitude estimation using, for ex-

ample, laser or radar altimeters for guidance. Despite the

robustness of those methods, there has been much inter-

est in lightweight and low-power solutions based on alter-

native neuromorphic sensors [32, 33] coupled to emerging

computer vision algorithms particularly suitable for future

smaller crafts [18].

Visual guidance is commonly observed in nature, insects

for example are extremely effective at safe landing in a va-

riety of dynamically changing scenes [3, 31]. This fact has

drawn much interest from researchers investigating both the

structure of the sensor and the control strategy employed

by living creatures leading to some of the findings being

translated to bio-inspired systems, both at the software and

hardware level. This study builds on two particular devel-

opments in the field of bio-inspired, neuromorphic descents

and specifically event-based sensors for visual data [28] and

time-to-contact (TTC) landing [17].

Event-based cameras (or event cameras) are a rela-

tively novel class of vision sensors that introduced a whole

paradigm shift in visual information acquisition [12,28]. As

opposed to conventional cameras, these devices completely

depart from the concept of frames sampled at regular inter-

vals and instead work by asynchronously reporting singular

events registered within the observed scene. The output is

a stream of events each consisting of an x, y address of

the pixel on the imager matrix, an ON or OFF polarity of

the events (indicating either the increase or decrease of il-

lumination) and a timestamp indicating when the event was

received and processed by the interface. Performances of

event cameras are characterized by low latencies of single

pixels (translating to high effective frame-rate) and a great

dynamic range. While high frame rates are certainly achiev-

able using conventional imager technology, they require a

powerful backend to even collect the data, never mind being

able to process it in real-time. This issue is further exac-

erbated with dynamically changing scenes: a frame-based

camera continues to generate overwhelmingly useless data

in a static scene while waiting for some rapid event, while

an event-based sensor will only report the essential informa-

tion from selected pixels when something happens. Finally,

event-based computation has demonstrated to be suitable

for applications on the edge having real-time constraints be-

cause of its low-power properties [12]. This represents an

interesting feature for spacecraft, given their strict power

and energy constraints [11, 26].

This work proposes the use of event-based sensors in au-

tonomous visual-based landing techniques that rely on op-

tic flow measurements such as that of the time to contact

(TTC). The final aim is that of achieving a self-contained,

low power, lightweight descent system. Measuring TTC

alone has been proven sufficient to control the flight of the

craft and the properties of this strategy have been described

in depth in [17]. Landing using TTC was also performed us-

ing conventional cameras and corner detection algorithms

for TTC estimation on board micro-air vehicles [16]. We

show how those same necessary quantities can be estimated

from the output of an event-based camera with sufficient

precision to control the spacecraft descent thus paving the

way to a purely neuromorphic landing system [18] [32].

The paper is structured as follows: Section §2 presents

the dynamic model of the craft and demonstrates the prin-

ciple of TTC usage for automated landing guidance. Sec-

tion §3 introduces the model of an event camera used in

this study and show event data produced from frames gener-

ated by a “regular” camera. Section §4 introduces the algo-

rithm used to estimate TTC from the event stream. Section

§6 presents closed-loop simulations of landings over nine

different moon-like sites and discusses the results. Finally,

Section §7 discusses our work and proposes possible future

investigations.

2. TTC based landing

We consider here the same vertical descent dynamics

studied in [17], modelling a spacecraft descending verti-

cally in the final phase of a planetary landing. The space-

craft camera and thrust are both assumed to be oriented ver-

tically and thus no modelling of the spacecraft attitude is

necessary. The exact set of equations thus are:

v̇z = uth

m
− g

ż = vz
ṁ = − uth

Ispg0

(1)

where Isp is the specific impulse of the spacecraft propul-

sion system, g0 = 9.81 [m/s2] the value of the Earth accel-

eration at sea level and g denotes the gravitational acceler-

ation, which assumed constant during the modelled descent

phase. The spacecraft upward thrust is indicated with uth.

All quantities are in a frame of reference attached to the

planet with z = 0 considered to be at the surface. Fol-

lowing [17] we introduce the time to contact (TTC) as the

quantity:

τ = −
z

vz

the minus sign accounts for the fact that under our assump-

tions, for a descending craft vz < 0 and z > 0. This def-

inition ensures the TTC is a positive quantity representing

the time left before reaching a zero altitude when assuming

a uniform motion from z with velocity vz . We will study

constantly decreasing TTC landing where, ideally, the con-

troller is set to track a target τ∗ which obeys a simple rela-

tion:

τ̇∗ = −c2

Where c is a free parameter used to control the landing du-

ration. Previous studies [21] [17] have used the value of

0.5 for c2 and the same will be done throughout this paper.

A simple proportional controller with gain Kp is applied to

regulate the spacecraft thrust as follows:

u = Kp(τ
∗ − τ)

Note that during the entire landing sequence engine thrust

needs to also counter the gravitational pull as well as track-

ing τ∗. Therefore the final feedback law used for uth is:

uth = u+mg = Kp(τ
∗ − τ) +mg (2)

The success of this control feedback is guaranteed whenever

perfect sensing is assumed, but in a real application it re-

quires a precise enough estimation of the parameter τ along

the landing sequence. If successful, the resulting landing

scheme can safely drive the spacecraft to land without the

need for any further exteroceptive sensors.

3. Event-based camera model

3.1. Dynamic pixel

The sensor simulated in this study was modelled after

the Dynamic Vision Sensor (DVS) [22], the earliest prac-

tical prototype of an event camera. Other more sophisti-

cated sensors have been developed since [5, 27] showing

an increased interest in the technology. The original DVS

we here use has a 128x128 pixels matrix and outputs only

events, as opposed to some camera designs that enable a

hybrid combination of frame&events output data [27]. A

more recent version of the sensor allows for more pixels,

but are not studied here. The basic building block of the

event camera is the “dynamic pixel” [10], an analogue elec-

tronic circuit around a photodiode that tracks the change in

illumination and decides when to signal an event. Arrang-

ing many such pixels in a grid and connecting them with an

interface handling the events constitutes the imaging matrix

of the sensor. The circuitry of a single-pixel can be split into

3 stages: the photoreceptor circuit, the differencing circuit

and the thresholding circuit. The photoreceptor circuit con-

sists of a photodiode generating photocurrent from incident

light and a transimpedance loop that converts it to a voltage

through a logarithmic law:

Vp =
kTp

q
ln(I/I0) + const

where k is the Boltzmann constant and Tp is the tempera-

ture. The differencing circuit is sensitive to temporal con-

trast (TCON) changes, which it integrates to track the devi-

ation of Vp from the Reset Level:

TCON =
d(ln(I(t)))

dt

∆Vdiff = −α

∫ t+∆t

t

TCON(t′)dt′

Where α is a proportionality constant determined from

physical parameters. Finally, the thresholding circuit con-

sists of the ON and OFF comparators that switch state when

∆Vdiff deviates far enough from Reset Level. A switching

of either of the comparators triggers a series of events that

start with the pixel indicating a new event to the AER in-

terface and end with the differencing circuit resetting and

“zeroing” the voltage corresponding to the pixel illumina-

tion at that time. The principle of operation and a detailed

analysis of the circuits can be found in [10, 22].

3.2. Parametrizing the camera

The above process can be abstracted with 2 main param-

eters: pixel latency T and contrast threshold θ. Pixel latency

is the shortest time that needs to pass between 2 consecutive

events that a single pixel can report. If the scene changes too

rapidly then some information will inevitably be lost. The

contrast threshold is the fraction by which pixel illumina-

tion has to change in order to trigger an event. It is a dimen-

sionless quantity that regulates how sensitive the camera is

to changes.

For the DVS the value of T is 15µs, though it might in-

crease in low-light conditions depending on the hardware

interfaces and sensors current biases from hundreds of mi-

croseconds to few milliseconds [22]. In any case its a time

scale by far shorter than anything that would be expected in

a planetary landing context, hence it is not a limiting factor

and has little impact. The value of θ is adjustable in hard-

ware and can be set between 0.1 and 0.6 [22] (typically, a

lower θ leads to a very high number of events and higher θ
suffers from a non-uniform response from pixels across the

matrix). In this study, θ was set to be 0.1 for all experiments

reported.

3.3. Framestoevent conversion

Emulating the behaviour of a dynamic pixel and gener-

ating event data is done by rendering a sequence of frames

in third-party software and comparing intensities of corre-

sponding pixels between them. To this aim, a specialised

software called PANGU (Planet and Asteroid Natural Scene

Simulation Utility) [2] was used. PANGU offers a set of

tools allowing users to generate models of extraterrestrial

objects or surfaces and render images of them under a va-

riety of conditions as they would be captured by imaging

instruments on-board probes. It allows the user to adjust

a range of physical parameters of the imager and request

output in a “raw”, high-precision format that, essentially,

corresponds to the photocurrent induced by incident light,

including a modelled noise. For that reason, it is very well

suitable for the purpose of our simulations.

Each frame, a 128x128 array of pixel photocurrents, then

has an element-by-element logarithm operation applied to

it. This causes the value in the newly formed array to es-

sentially correspond to Vp, the voltage exiting the photore-

ceptor stage. It is important to note that the values obtained

this way, will represent a pseudo-voltage Ṽp = c0 + c1Vp

where the offset c0 and the factor c1 will be constant be-

tween frames. Since the next stage looks only at propor-

tional differences we may use Ṽp directly. Such is the sim-

plicity of abstracting the operation of the pixel using the

contrast threshold θ.

At this point having a frame F at time t and a subse-

quent frame at t + ∆t we determine which pixels reported

any events in between. The condition for spiking and the

corresponding event polarity p is:

|Ft+∆t(x, y)− Ft(x, y)| > (1 + θ)Ft(x, y) (3)

p(x, y) = sign(Ft+∆t(x, y)− Ft(x, y))

The problem with implementing directly the approach

above is, especially in our case where the overall dynamics

happens in rather large timescales, that it requires to gen-

erate many samples of the frames as to mimic the asyn-

chronous nature of an even camera (instead of producing

planes of events every ∆t) and to avoid missing events if

the illumination change corresponds to a contrast change of

2θ or more. To overcome this issue we interpolate between

frames, assuming that the illumination of a pixel varies lin-

early between them and thus recursively seeking crossings

with thresholds until a threshold is found that does not sat-

isfy the condition from (3). This way it is possible to gen-

erate all events, with polarity and time of occurrence infor-

mation, while only sampling at a much lower rate and thus

with a much lower computational cost.

The frames-to-event conversion algorithm we developed

works exactly as explained above: after being initialised

with the first frame it can be updated with a new frame

and return all the events that would have been generated up

to this point (assuming a linear interpolation between pixel

values). Interestingly this method allows the frames them-

selves to be captured in intervals having a varying distance,

though all simulations described here use a fixed ∆t. Fi-

nally, the algorithm needs to be mindful not to violate the

minimum latency of the pixel, however, as mentioned ear-

lier, landing scenes evolve too slowly for that to be a real

constraint. Nevertheless, this feature was included in the

codebase developed.

The code is available as an open-source package and can

be found at [1]. Some visualisation of the synthetic event

data is presented in Figure 1 and Figure 3. On the former, it

can be seen what elements within the observed scene trigger

pixel response in the event camera, particularly how edges

of darker regions result in trails of pixels reporting events

of the same polarity (red and blue lines). While understand-

able for a human this form of presenting event data is mis-

leading as it ignores the enhanced temporal resolution of

event data. It is more realistic to view a 3D scatter of the

registered data points as shown in Figure 3. Notice how

Figure 1. Comparison of conventional and event camera scene registrations over 0.5s. Images rendered in PANGU and converted using [1]

Top: lunar-like scene as would be captured by a camera mounted on a probe during lunar landing. Bottom: same scene registered by an

event camera. colouring indicates which pixels fired at least a single positive or negative event since previous frame.

the most distinct features produce trails of events over time.

Light-blue indicates the time period and data corresponding

to Figure 1 and Figure 4. A rather complete, albeit different,

camera to event conversion software called v2e [9] was also

made recently openly available by the Sensors Group, at

the Institute of Neuroinformatics of the University of Zurich

and ETH. Compared to v2e, our codebase must be consid-

ered as an idealized model of an event-based sensor as it im-

plements less of the specific mechanics of the dynamic pixel

while offering a simplified, straightforward, low-level API.

The approach taken is, in this sense, closer in philosophy to

previous work such as rpg vid2e [14]. Image interpolation

approaches such as slomo [19] are not integrated and left to

the user together with any other possible manipulations of

the input, including luma conversion and sensor noise mod-

elling which, in our case, is taken care of by PANGU and

is thus to be considered as an idealized abstraction for an

event camera.

4. Divergence estimation

Recent works [13, 25] proposed frameworks able to es-

timate optic flow quantities, including divergence, from

event-based sensors and show its use during flying drones

landings. The type of events streams one can expect from

the applications considered in this recent literature are,

though, quite different from the ones produced during a

spacecraft landing scenario, which suggests that the ap-

proach to optic flow estimation has to be tailored to this

particular application. In this section we present an algo-

rithm to estimate the divergence, and thus the TTC, from

event data generated during simulated landings over solar

Figure 2. a) Abstraction of the pinhole camera and b) projection of

lengths and distances between feature during descent.

system bodies and in particular developed using moon sur-

face surrogates.

4.1. Divergence estimation from sparse tracked fea
tures

As mentioned earlier, TTC is related to the rate of per-

ceived expansion of the observed scene as the observer de-

scends: the optic flow divergence. The relation between

TTC and the optic flow divergence D is rather straight for-

ward:

D = −
1

τ
=

vz
z

(4)

Consider a simple model of a pinhole camera (see Figure

2) with focal length f that observes a scene with identified

features (marked by red dots in the figure). The real dis-

Figure 3. 3D scatter plot of “OFF” events registered by an event
camera observing the surface during a simulated descent. The time
interval betweent = 2 :5s andt = 3 :0s (coloured in light-blue)
was used for producing Figures1 and4

tance between a pair of features is denoted byL and the
distance on the image plane is denoted byl. Assume that
over a time� t the camera moves from an altitudeZ t � � t to
an altitudeZ t . In the Figure, the panel b) shows the geomet-
ric relationship between the lengths and distances between
two randomly selected features. Using properties of similar
triangles we may write:

L
Z t � � t

=
l t � � t

f
;

L
Z t

=
l t
f

Eliminating L from these relationships yields:

Z t

Z t � � t
=

l t � � t

l t
(5)

The divergence D can be approximated as:

D =
Vt

Z t
=

Z t � Z t � � t

� tZ t
=

1
� t

�
1 �

Z t � � t

Z t

�
(6)

substituting Equation5 into Equation6 we may then derive
the following relation:

D =
1

� t

�
1 �

l t
l t � � t

�
(7)

which can be used to estimate the divergence of the optic
�ow and hence the TTC once features can be tracked across
time. In practice, using only two features for estimation
makes this method extremely prone to noise, so the diver-
gence �ow is, instead, estimated for allP pairsij of tracked

Figure 4. Sequence of transformations in the centroid initialising
stage. a) Cloud of stored events. b) Projection of events on a 2D
plane. c) Projection image after blurring d) Same image with the
located peaks marked in blue.

and identi�ed features and the �nal value is assumed to be
the mean of those separate estimations.

D =
1
P

PX

ij =1

1
� t

"

1 �
l ij
t

l ij
t � � t

#

(8)

4.2. Feature extraction

In order to use Equation8 with event-based data, we
need to identify features in the event stream that correspond
to static objects on the target planet surface. Some objects
are particularly suitable for that, such as craters and tall
rocks, because they cast dark shadows that contrast sharply
with the light grey regolith of the moon. As their represen-
tations move in the image plane they leave a dense stream
of events that produce a trail pattern such as that shown in
Figure3. As visible in the Figure, after adjusting the con-
trast threshold� these trails are clearly visible with little
accompanying noise.

At a given epocht all the events within a time interval are
considered for processing. An event is de�ned by its times-
tampt j and the coordinate in the camera plane where it hap-
pens. Given the nature of event data, the same coordinate
(x j ; yj) appears frequently in the batch at different times-
tampst j . The events are stored in a �rst-in-�rst-out (FIFO)
queue according to their timestamps. The FIFO queue only

