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Abstract

Deep learning has quickly become a necessity for self-

driving vehicles on Earth. In contrast, the self-driving ve-

hicles on Mars, including NASA’s latest rover, Persever-

ance, which is planned to land on Mars in February 2021,

are still driven by classical machine vision systems. Deep

learning capabilities, such as semantic segmentation and

object recognition, would substantially benefit the safety

and productivity of ongoing and future missions to the red

planet. To this end, we created the first large-scale dataset,

AI4Mars, for training and validating terrain classification

models for Mars, consisting of ∼326K semantic segmenta-

tion full image labels on 35K images from Curiosity, Oppor-

tunity, and Spirit rovers, collected through crowdsourcing.

Each image was labeled by ∼10 people to ensure greater

quality and agreement of the crowdsourced labels. It also

includes ∼1.5K validation labels annotated by the rover

planners and scientists from NASA’s MSL (Mars Science

Laboratory) mission, which operates the Curiosity rover,

and MER (Mars Exploration Rovers) mission, which op-

erated the Spirit and Opportunity rovers. We trained a

DeepLabv3 model on the AI4Mars training dataset and

achieved over 96% overall classification accuracy on the

test set. The dataset is made publicly available.1 2

1. Introduction

NASA’s Mars rovers have possessed an autonomous

driving capability, called AutoNav, for more than a decade

[3] on the Spirit and Opportunity rovers, which started ex-

ploration of the red world in 2004, and later on the Curiosity

rover, which landed in 2012. Substantial enhancements of

1©2021. California Institute of Technology. Government sponsorship

acknowledged.
2https://data.nasa.gov/d/cykx-2qix

AutoNav were implemented for the latest rover, Persever-

ance, which is on the way to Mars at the time of writing

[18, 26]. Still, its perception system remains purely based

on classical machine vision algorithms, consisting of stereo

matching for 3D reconstruction and obstacle detection, and

visual odometry for state estimation [26]. This means that

AutoNav assesses the traversability of the terrains solely

based on geometric information. However, like vehicles on

Earth, we empirically know that terrain types have substan-

tial implications for traversability. For example, the Spirit

rover was immobilized by a sand trap; the Curiosity rover,

too, was nearly embedded when driving on a sandy surface

at Hidden Valley; the aluminum wheels of Curiosity were

punctured when it drove on pointy rocks on hard surfaces.

In fact, human rover drivers on Earth heavily rely on

semantic information from rover images to plan a path.

The manually planned drives by human rover drivers are

able to use this semantic information about terrain types to

drive over longer distances and over challenging terrain that

would otherwise cause faults when using AutoNav and en-

danger the rover’s hardware. For this reason the vast major-

ity of Mars rover driving on existing missions is performed

through manual terrain assessment and path planning by hu-

mans, while the usage of AutoNav has been limited to sit-

uations where manual control of drive path is impossible

[19].

Had there been an ability to identify terrain types on-

board, the rovers would be able to predict slip [8], plan

a path for minimizing driving energy [12, 17] or localiza-

tion error [13] (both which depend on terrain type), and

autonomously identify promising targets for scientific ob-

servations [17]. The foundation for such terrain-aware

autonomy is the ability to classify terrain from on-board

images. For this reason, Rothrock et al. developed a

machine learning-based terrain classifier for Mars named

SPOC (Soil Property and Object Classification)[20], which

has been deployed on the ground operation system of Cu-



(a) Original MSL NAVCAM image. (b) A high rated AI4MARS label.

Figure 1: Kimberley region, imaged by Curiosity’s NAVCAM on Sol 574 (March 18, 2014). Image Credit: NASA/JPL

riosity and field-tested on Earth with a test rover. While

the results from these terrestrial deployments are highly

promising, to further elevate SPOC’s level of reliability

and meet the highly demanding standard for on-board al-

gorithms, a large-scale, high-quality labeled dataset is nec-

essary.

Not surprisingly, Earth is the only planet on which a vari-

ety of public large-scale datasets for deep learning are avail-

able to humans. Previously we asked in-house experts to

create Mars training datasets, but the number of labels that

we could collect was severely limited (up to a few thousand)

due to the availability of the experts. More recently, ESA’s

LabelMars project successfully ran a crowdsourcing effort

and collected semantic segmentation labels on 5,000 im-

ages from Spirit, Opportunity, and Curiosity [23]. Their la-

bels involve ∼20 geological/geomorphological terrain cat-

egories, such as “concretions/nodules,” “dark-toned mag-

matic outcrop,” and “light-toned sedementary float rock.”

Such categorization can only be interpreted by trained ex-

perts, hence posing a challenge to scale the dataset to the

volume needed for highly accurate deep learning models,

whose accuracy seems to scale logarithmically with dataset

size [24]. This sharply contrasts to terrestrial datasets for

autonomous driving such as KITTI [10], Cityscapes [7],

nuScenes [5], Berkeley DeepDrive [27], and Oxford Robot-

Car [14], which mostly consist of common objects that are

interpretable by non-experts such as people, animals, vehi-

cles, and road signs.

Our key observation is that, while the geomorpholog-

ical terrain categorization as in LabelMars is needed for

planetary science, a substantially simpler and intuitive cat-

egorization, such as “sand,” “rock,” and “soil,” suffices for

traversability assessment of rovers on Mars, including the

prediction of slip, driving energy, and wheel wear. A sim-

plified terrain categorization allows the general public to

participate in crowdsourcing with minimal training, which

can be provided by a short web-based tutorial. At the same

time, a high-quality dataset is necessary for system vali-

dation to meet stringent requirements for space missions.

For this reason, we also collected a substantially smaller

(∼1.5K labels) holdout dataset for model testing, labeled

by about ten domain experts consisting of experienced Mars

rover drivers and project scientists on MSL and MER mis-

sions. To summarize, the curation approach of the AI4Mars

dataset is to gather a large-scale, focused dataset for train-

ing through crowdsourcing, combined with a high-quality,

expert-labeled dataset for testing.

2. Related Works

We are not the first to utilize crowdsourcing for collect-

ing labels on planetary images. There are many exciting

space-bound citizen science projects created to find scien-

tific features of interest on orbital images. For example,

Moon Zoo [4] mobilized citizen scientists to identify and

characterize impact locations of craters and other geologi-

cal features on high resolution images of the moon obtained

from NASA’s Lunar Reconnaissance Orbiter (LRO) space-

craft. The project successfully used an online citizen sci-

ence platform called Zooniverse, which allows web-based



annotation of images by the general public. As for Mars,

the Planet Four [2] project successfully used citizen sci-

ence to identify a number of scientific features of interest

on 221 high-resolution images on the southern polar re-

gion of Mars, taken by the Mars Reconnaissance Orbiter

(MRO). Planet Four focused on intuitively recognizable fea-

tures, such as fans and blotches, that are indicative of sea-

sonal changes on Mars. The COSMIC project [9] developed

an algorithm that detects changes on the Martian surface,

such as fresh impact craters and avalanches. It also utilized

Zooniverse to collect a training data set from citizen sci-

entists. These projects were highly successful partially be-

cause macro-scale scientific features on orbital images of-

ten exhibits distinctive patterns that can be intuitively ex-

plained for non-experts, such as “Swiss cheese terrain”[25]

and “spidery channels”[2].

In contrast, citizen science projects on planetary surface

images are relatively rare, even though there are a substan-

tial number of images taken on Lunar and Martian surfaces.

This is perhaps because in-situ geology often requires anal-

yses with expert knowledge, such as the interpretation of

stratigraphy and classification of rock types. To the best of

our knowledge, LabelMars [23] is the only large-scale la-

bel collection effort from citizen scientists on planetary in-

situ images. Using their own website (www.labelmars.net),

it accumulated terrain classification labels on five thou-

sand images gained from Martian rovers, such as Curiosity

and Spirit, with plans to expand the data set using images

from the Opportunity and Perseverance rovers. Their la-

bels involve ∼20 geological/geomorphological terrain cat-

egories, such as “concretions/nodules,” “dark-toned mag-

matic outcrop,” and “light-toned sedementary float rock.”

Since such classification requires expert knowledge, labels

are collected from qualified experts, mostly consisting of

undergraduate students in geology majors.

While AI4Mars uses the same data source as LabelMars,

our data set is distinct from LabelMars in two aspects: i) the

number of labels is two orders of magnitude greater than

LabelMars (we have collected ∼ 326K labels at present),

and ii) we employed a substantially simpler, four-way cat-

egorizaion of terrain: sand, soil, bedrock, and big rocks,

which are intuitively understandable by non-experts and

highly informative for assessing the traversability of Mars

rovers. The purpose of the data set is also distinct from the

data sets mentioned above in that AI4Mars is not for plan-

etary science, geology, or geomorphology studies, but for

training deep learning models to enable safe self-driving on

Mars. To the best of our knowledge, this work is the first to

successfully collect more than 100K semantic segmentation

labels for images taken on the surface of any celestial body

other than the Earth.

Dataset Images Train Test

MSL NAVCAM 17K 160K 943

MSL Mastcam 9K 82K TBD

Opportunity NAVCAM 6K 54K
573

Spirit NAVCAM 3K 30K

Total (Combined) 35K 326K 1.5K

Table 1: Dataset summary. MER (i.e., Spirit and Oppor-

tunity) labels use a joint test set as the rovers are identical.

Merged label counts as described in Section 3.3 are equal to

the number of images. Production of a Mastcam test set is

future work.

(a) Soil (b) Bedrock

(c) Sand (d) Big rock and sand

Figure 2: Representative examples of each class. Note that

there are few if any images of big rock by itself.

3. The AI4Mars Dataset

The AI4Mars dataset includes the majority of the exist-

ing high-resolution images taken on the surface of Mars.

It is comprised of ∼35K images sourced from the Plane-

tary Data System3 (PDS), covering the grey-scale naviga-

tion camera (NAVCAM) and color mast camera (Mastcam)

images from the Curiosity (MSL), as well as the grey-scale

NAVCAM images from Opportunity (MER), and Spirit

(MER) Mars rovers, as noted in Table 1 (note that dataset

counts pertain to the Nov. 2020 initial release). Notable ex-

clusions from the dataset are microscopic images from Mars

Hand Lens Imager (MAHLI) and telescopic images from

3https://pds-imaging.jpl.nasa.gov/index.html



Figure 3: Composition of MSL NAVCAM labels by class.

Chemistry and Camera (ChemCham) because these images

are not usually helpful for traversability assessment. The

images from fish-eye Harzard Avoidance Cameras mounted

on the rover’s body are also not included because NAVCAM

and MASTCAM images are better suited for terrain classi-

fication due to its higher mounting point and better angular

resolution. The images from Panoramic Cameras (Pancam)

of Spirit and Opportunity are planned to be included in the

future. Since multiple labels were collected for each im-

age, the number of labels greatly exceeds the actual num-

ber of images; this is discussed further in Section 3.1. The

dataset is split into four different label types, these are: Soil,

Bedrock, Sand, and Big Rock. Results relating to each of

these classes is discussed in Section 4. The dataset also pro-

vides rover time and location data, camera parameters, and

depth data when available.

Depth All provided MSL NAVCAM images and many

MER NAVCAM images have associated stereo range data.

The stereo ranging error for images increases linearly as

function of distance. For distances of 1-30m, the MSL

NAVCAM has an error of 0.0005-0.4m as noted in [16].

For the same range of 1-30m, the MER NAVCAM images

have an error of 0.001-0.5m as noted in [15].

3.1. Collection

Training Set Our approach to label collection involved

collecting 3 or more full image labels from different label-

ers for the same image. A single ”label” will consist of all

regions and classes identified within a single image. 93% of

images have 9 or more associated labels. This single-image

multi-label approach ensures that all images will likely in-

clude at least one quality label and extra labels may be used

for some model training experiments (more discussion in

Section 4.1).

Labels were primarily sourced from volunteer citizen

scientists on Zooniverse 4 who were given a concise, yet

complete, web-based training. When a labeler logged into

the Zooniverse project page, they were presented images

with a randomized order and asked to provide labels on

each image. It was completely voluntary; there were no

obligations or compensations. The collected labels went

through algorithmic and manual acceptance review (Section

3.2), followed by label merging (Section 3.3) to enhance

the overall quality of the dataset. A model trained by this

dataset resulted in 96% overall accuracy, evaluated against

the expert-labeled test set after label merging, as described

in detail in Section 4.

Test Set A small “golden standard” test set was addition-

ally created by a group of expert labelers in order to eval-

uate the model performance against a trusted reference, as

well as to compare to final model performance on unseen

data. Due to the highly limited availability and the high la-

bor cost of the domain experts, the number of images in the

test set needed to be small so that it could be labeled in a rea-

sonable amount of time. We targeted a test set of approxi-

mately ∼1% of the images of training set. To ensure the test

set properly represents the diversity of terrains contained

within the training set, we sampled the images from loca-

tions distributed over all the major terrain classes mapped

from orbital images, as shown in Table 2. Unlike the four-

way local classification employed in the labeling, these or-

bital terrain classes represent large-scale geological units,

each of which have unique composition and appearance for

the four local terrain classes. This orbital terrain mapping

had been generated manually by MSL project scientists [1]

with an emphasis on geological terrain classes relevant to

rover mobility near Curiosity’s traverse path. Orbital terrain

classes were correlated with rover locations during the mis-

sion. From these locations, approximately the same number

of unique NAVCAM images were selected from the loca-

tions representing each orbital terrain class. The test set

was then manually pruned of images of low quality (typi-

cally acquired near dusk), highly similar images, and those

with large amounts of rover hardware. This resulted in a

total 323 images for Curiosity’ NAVCAM images and 205

Spirit/Opportunity’s NAVCAM images (larger “Test” num-

bers in Table 1 are raw counts before the merging process

discussed in Section 3.3).

Each orbital terrain class was assigned 3 expert label-

ers, with labelers being assigned to no more than 2 classes.

Expert labelers were given the same general classification

guidance as the Zooniverse participants with some modifi-

cations. The expert labelers only generated labels of high

confidence and label coverage of all the terrain in an image

4https://www.zooniverse.org/projects/hiro-ono/ai4mars



Orbital Terrain Class

Quantity of

NAVCAM Images

Smooth Terrain 38

Ridged Terrain 45

Pitted Terrain 57

Highly Dissected Terrain 57

Fractured Terrain 41

Sandy Pits and Ripple Fields 46

Sand Dunes 39

Table 2: Distribution of NAVCAM test set images within

orbital terrain classes. Each image was labeled multiple

times.

was not treated as a priority. This meant that some images

had only a small fraction of the terrain labeled. Labeling

was performed individually by the experts meaning that the

set of labels collected for a specific image could vary from

expert to expert.

3.1.1 Preprocessing

Before images were labeled, some preprocessing was ap-

plied to the images to make it easier for labelers to provide

quality labels. Figure 4 shows an example of a preprocessed

image. The white trapezoid-shaped marker in the center

serves as a scale bar, where its width is always 50 cm in

Curiosity images and 20 cm in Spirit/Opportunity images.

These sizes are particularly relevant to the Big Rock class,

which was defined as rocks which stand more than 30 cm

high and are at least 50cm in width. This class definition

was introduced because rocks higher than ∼30 cm are con-

sidered potentially risky for rovers to drive over. The tuto-

rial stated that the labelers may ignore features smaller than

the width of the scale bar. Note that the top portion of Figure

4 is darkened out; it indicates the portion of the image that

is more than 30 m in distance from the cameras. Labelers

were instructed to ignore features beyond 30 m. This dis-

tance was chosen to ensure only closer and clearer features

needed for autonomy would be trained upon. The prepro-

cessing was performed using the range product of the im-

ages, which were created from the stereo processing of im-

ages (all full-resolution NAVCAM in this dataset and many

of the Mastcam images are stereo pairs).

3.1.2 Labeler Training

The classification categories of the AI4Mars dataset were

designed so that those as young as fourth grade students

can properly label with a quick, web-based tutorial. The

tutorial, which is shown automatically when opening the la-

beling site for the first time, provides basic guidelines for la-

Figure 4: An example of the preprocessed image presented

to labelers on Zooniverse; the image is taken by the Spirit

rover on Sol 9 (9th Martian day after the landing).

beling (e.g., no overlapping between labels) and intuitively

explains the four terrain categories with examples. Before

the launch of the citizen science project, we performed a

beta test, participated by 138 volunteers, to get feedback on

the tutorial and the user interface. For the expert labelers, in

addition to the web-based tutorial, we held a series of meet-

ings to build a consensus on our labeling policy and ensure

the consistency of the test set.

3.1.3 Post-processing

After images were labeled, masks were applied to remove

any annotations which overlapped with the rover itself (if

it was in the image) and annotations which covered regions

further than 30 m.

3.2. Cleaning & Label Acceptance

To enhance the overall quality of the training set, we per-

formed algorithmic and manual review of the labels sub-

mitted by the citizen scientists. Labels which contained

no valid annotations after post-processing were thrown out.

Each label was compared with other labels for the same im-

age to provide an “agreement score” that is based on the

well known Jaccard Index/mIoU noted in Equation 1.

J(A,B) =
|A ∩B|

|A ∪B|
(1)

We define the set of all labels for an image as L and all pair-

wise combinations of those labels (without replacement) as

C per Equation 2.

C =

(

L

2

)

(2)



(a) MSL NAVCAM Training Set, labeled by citizen scientsts (b) MSL NAVCAM Test Set, labeled by domain experts

Figure 5: A histogram comparing agreement scores of the coarse train set and fine-grained test set.

The agreement score of some label i ∈ L is then defined as

the mean of the Jaccard Index for all pairs in C containing

label i and any other label per Equations 3 and 4. For ex-

ample, given 3 labels where we want to find the agreement

score of label 1, we find all combination pairs containing

label 1: (1,2) (1,3). We then find the Jaccard Index for pair

(1,2) and for pair (1,3). These numbers are summed and

then divided by the total number of pairs (2).

Ci = {(x, y) ∈ C|x = i} (3)

A(Ci) = J(Ci) (4)

Labels with low agreement scores (bottom 20% of distribu-

tion of all labels) were then preferentially reviewed by our

team; preliminary investigation suggests that low agreement

scores are correlated with poor reviews. The team reviewed

labels by providing a rating from 1-5 regarding the quality

of each label. Labels given a rating of 1 are thrown out. Pos-

sible usage of the remaining ratings is discussed in Section

5.

The histogram of agreement scores for the test set and

training set shown in Figure 5 provides a quantitative re-

view of the agreement between labels in the test set. Based

on notable shift between the coarse training labels and fine

test labels, we hypothesize that higher agreement scores are

strongly correlated with higher quality labels. It is possible

that other projects with the unique problem of having more

labels than data may be able to make use of agreement as a

quality metric.

3.3. Label Merging

Given an image still has multiple quality labels after data

cleaning and acceptance, there is some question as to how

the remaining labels should be used, much of which is dis-

cussed in Sections 4.1 and 5. One approach considers the

idea of merging existing labels where they agree and where

other labels were left blank (most labels are sparsely an-

notated on purpose). To that end, a merged label dataset

is provided which uses a majority rule to determine which

annotations or parts of annotations to include.

To merge multiple labels for a single image into a sin-

gular label, two criteria were used. The first was that for

an individual pixel to be accepted, the most commonly la-

beled class for that pixel had to be labeled by at least three

different labelers. The second was that for each pixel, the

accepted class had to have over 65% agreement out of the

total number of labels for the pixel. Note that the pixel-wise

“agreement” noted here refers to pixel-wise label overlap,

which is not the same as the “agreement score” defined in

Section 3.2. Unlabeled pixels are ignored for this calcula-

tion. As an example of this, Pixel X was within an image

that was labeled by 10 labelers. The breakdown was: 2 un-

labeled, 6 soil, 1 sand, and 1 bedrock label. The merged

class for Pixel X will be soil as it received 6 labels and a

75% agreement. As another example, Pixel Y was within

an image annotated by 9 labelers. The breakdown was: 3

unlabeled, 3 soil, 2, sand, and one bedrock label. There are

3 soil labels but it only has a 50% agreement, so Pixel Y

will be unlabeled within the merged annotation.

For the gold standard test set, each image was annotated

by three different expert labelers. Due to the reduced num-

ber of labelers and increased confidence of the labels, dif-

ferent merge parameters were used. Three different gold

standard test sets were generated. All three required 100%

agreement for a label of a specific pixel, but the sets varied

based on the minimum number of labeled pixels required to

accept a label using 1, 2, and 3 total labels per pixel. The

gold test set that contains a merged label with a minimum

of 3 labels per pixel and 100% accuracy is the most con-

fident set and the accuracy of a model should be the best.

However, this will also be the sparsest test set and therefore

the other sets are useful to gain a better understanding of

performance in the less confident regions of the image.

A summary of pixel-wise agreement between experts on

each image in the MSL test set is shown in Figure 6. Classes

like Big Rock and Bedrock which have a higher proportion

of pixels where there was only agreement between two la-

belers or one labeler (no agreement) suggest that the defini-

tion of the classes or the method of labeling them has some



(a) Soil (b) Bedrock

(c) Sand (d) Big rock

One label Two labels Three labels

Figure 6: Breakdown of proportions of how many expert

labelers labeled a pixel a specific class for the MSL test set.

inherent ambiguity as compared to other classes.

4. Experiments

For all of our experiments we made use of DeepLabv3+

with a ResNet-101 backend pretrained on ImageNet [6, 11,

21]. DeepLab was selected due to the maturity of its code-

base and the state of the art semantic segmentation perfor-

mance it maintains.Training was done on machines with ei-

ther two NVIDIA GeForce GTX TITAN X or two NVIDIA

Tesla P100 GPUs. Images were resized from 1024x1024

pixels to 513x513 in order to match the settings of the pre-

trained model. Batch size was chosen to be as large as

possible before running into GPU memory issues as rec-

ommended by DeepLab documentation.

All experiments shown here were done using MSL data.

This dataset is the largest and was completed first, so there

was more time for analysis. Hyperparameters were deter-

mined experimentally; the same hyperparameters were used

for all experiments with the exception of label weights. La-

bel weighting was chosen to be 1 − composition where

composition refers to the percent taken up by each class in

the training set. Composition numbers for all MSL NAV-

CAM labels are shown in Figure 3. In our experiments,

it was found that using no label weight or incorrect label

weights resulted in slower model convergence, but increas-

ing the number of steps in these situations resulted in similar

mIoU scores and class accuracy as models trained using the

weighting approach mentioned previously.

Better performance on all metrics is likely possible given

further testing. The experiments noted here are intended to

serve as a baseline to improve upon. A number of possible

variations on this approach which could provide improved

performance are discussed further in Section 5.

Figure 7: Overall mIoU scores calculated against random

validation sets for variants of MSL data. The NAVCAM

variants are defined in Section 4.1

Predicted

Soil Bedrock Sand Big Rock

A
ct

u
al

Soil 96.00 0.31 3.69 0

Bedrock 6.15 90.87 2.54 0.44

Sand 0.25 3.23 96.51 0.01

Big Rock 11.67 0.03 5.48 82.83

Table 3: MSL NAVCAM-Random confusion matrix percent-

ages calculated with respect to the 3 label agreement test set.

Overall accuracy is 94.97%.

Predicted

Soil Bedrock Sand Big Rock

A
ct

u
al

Soil 99.10 0.32 0.57 0.01

Bedrock 3.64 94.90 0.37 1.09

Sand 0.88 5.62 93.45 0.05

Big Rock 6.76 0 0 93.24

Table 4: MSL NAVCAM-Merged confusion matrix percent-

ages calculated with respect to the 3 label agreement test

set. Overall accuracy is 96.67%

4.1. Label Merging Versus Random Selection

To examine the effectiveness of label merging versus

random selection of available labels, a number of experi-

ments were done with data that was merged as described in

Section 3.3 and randomly selected data (e.g. given an image

has 10 labels, we randomly pick one of those to use). The

best results we were able to achieve for each approach are

noted in Figure 7 and Tables 4 and 3. Initial results indicated

a clear benefit to label merging, but amended results after

fixing implementation errors are inconclusive. We provide

them for completeness and discuss possible improvements

in Section 5.



Figure 8: The process required to project and tile images.

Depth is used both for projection and to mask distant areas

out. In this case the top half of the raw image is removed be-

fore projection. Tiling shown is exaggerated; many images

require as many as 100 tiles.

4.2. Tiling & Orthographic Projection

One idea for integrating depth data into training a model

and improving our performance on the Big Rock class is to

make use of orthographic projection, which is a well estab-

lished technique in the domain of computer graphics [22].

This approach was used in [20] and replicated in this work

using a nearly identical implementation for projection and

tiling. This process is summarized in Figure 8.

The mIoU scores we were able to achieve as noted in

Figure 7 are objectively poor; it is unclear whether the cause

of this poor performance was an issue with our implementa-

tion or the approach itself. We hypothesize that the method

used for tiling causes too much image context to be lost on

average, such that the model is not able to consistently de-

termine differences between similar classes.

5. Discussion and Future Work

There is a plethora of future work which can be done to

improve upon experiments done with this dataset as well

as autonomy efforts on other planets. This paper provides

a snapshot of the dataset as it currently stands. We have

plans to continue making improvements and additions to

the dataset, including the images from the new Mars rover

Perseverance.

We believe performance on Big Rock class included in

the dataset can be greatly increased by making use of exist-

ing depth data (when available) or by using a separate rock

instance classifier. Other work is ongoing which identifies

rock faces via an instance detector, and then uses stereo data

to estimate the rock height. Using this model approach in

the future, it would be possible to train a three class seman-

tic segmentation approach with the rock detector filling in

the big rock class. Additionally, a panoptic segmentation

model could be explored to combine the two networks.

The label merging approach we used in Sections 3.3 and

4.1 is not the only way of handling extra labels, and it is cur-

rently unclear what the precise benefit of label merging is.

The use of label metrics could be used to create a confidence

score for labels which neural networks could integrate in or-

der to improve training accuracy. A couple of metrics which

might be used are the label ratings and computed agreement

scores mentioned in Section 3.2.

Another avenue of future work is the utilization of the

automated terrain classifier, trained by this dataset. For

example, we empirically know that slip and driving en-

ergy is highly correlated with terrain type [8]; rovers could

choose energy-optimal paths by knowing the terrain type

[17]; while the AI4Mars dataset does not employ geological

terrain categories, it could help rovers to support scientific

exploration because most scientific observations focus on

evidences found in bedrocks, where geological contexts are

much better preserved than sand, soil, or float rocks. Highly

accurate Martian terrain classification, enabled by AI4Mars,

would be a foundation for these advanced applications.

6. Conclusions

We have presented AI4MARS, a large dataset for terrain-

aware autonomy on Mars. We provided an extensive

overview of our process for collecting and handling the

data, statistics on its composition, and approaches for using

data which has more labels than images. Our experiments

provide baseline results for this data and ideas for how to

handle it in order to achieve the best possible model per-

formance. We hope this dataset will foster future work on

extraterrestrial autonomy and look forward to reading stud-

ies that make use of it.
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