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Abstract

We present a new framework for detecting telescope op-

tics aberrations in real-time. The framework divides the

problem into two subproblems that are highly amenable to

machine learning and optimization. The first involves mak-

ing local wavefront estimates with a convolutional neural

network. The second involves interpolating the optics wave-

front from all the local estimates by minimizing a convex

loss function. We test our framework with simulations of the

Vera Rubin Observatory. In a realistic mini-survey, the al-

gorithm reduces the total magnitude of the optics wavefront

by 66%, the optics PSF FWHM by 27%, and increases the

Strehl ratio by a factor of 6. The resulting sharper images

have the potential to boost the scientific payload for astro-

physics and cosmology.

1. Introduction

The signal to noise ratio of most astronomical analy-

ses critically depends on image quality. To maintain opti-

mal image quality throughout their operation, modern tele-

scopes deploy active optics systems, which sense aberra-

tions in the wavefront and correct them in real-time. For

narrow field systems, it is possible to correct wavefront

aberrations due to both the atmosphere and the optics. For

wide-field systems, however, the atmospheric contributions

cannot be corrected since they vary considerably over the

field of view. Nevertheless, contributions due to variations

in the optics can be corrected if the components of the in-

dividual elements can be discerned. Here we present a new

machine learning framework that is capable of extracting

the optics aberrations and improving image quality.

While the immediate application is improving image

quality in present and future ground-based telescopes, there

are also emerging use cases in space. The simultaneous

demands for higher quality images and lighter payloads

from space telescopes make large foldable mirrors attrac-

tive. These large, lightweight mirrors are more susceptible

to environmental disturbances and would benefit from ac-

tive optics control. Prototypes are already being explored

[16, 15, 6, 35, 31, 29]. In this work we demonstrate that

our method is capable of improving image quality in the

challenging ground-based environment. We suspect its per-

formance will improve in the space environment where at-

mospheric turbulence is absent.

The upcoming ground-based Vera Rubin Observatory

(Rubin) has a 3.5 degree field of view and high dimensional

optical model that make it the ideal stress test for our frame-

work [10, 1]. The large scientific community behind the

Rubin Observatory has developed a mature suite of simula-

tion codes [25, 19, 5] which we used to train and test our

model in realistic scenarios. The unlimited supply of simu-

lated observations allows us to assess our method in a more

comprehensive range of conditions than would be possible

with a real instrument.

The input to our model comes from four curvature wave-

front sensors in the corner of the Rubin focal plane, shown

in Figure 1. Each of these sensors is split into two half-

chips which are purposefully offset both above and below

focus. The stars that fall on these sensors produce large

ring-like donut images due to the annular shape of the Ru-

bin primary mirror. The goal of our algorithm is to constrain

optics aberrations attributed to the entrance pupil from the

intensity patterns in all the donut images in an observation,

which can number into the thousands. One of the key chal-

lenges is interpolating the optics wavefront across the entire

focal plane from donut images in four concentrated regions

that collectively cover less than 2% of the total focal plane.

The key breakthrough in our work is the realization that

the wavefront sensing problem can be divided into two sub-

problems that are highly amenable to machine learning and

optimization. The first problem is to estimate the local

wavefronts, characterized by 18 Zernike coefficients, from

individual donut images. The second problem is to interpo-

late the global optics wavefront, characterized by 56 double

Zernike coefficients, from all the local estimates by mini-

mizing a simple convex loss function. The main contribu-

tions of this work are:

1) We present a new mathematical framework for extract-

ing the optics wavefront across the field of view.



Figure 1. The Rubin Observatory focal plane and wavefront sensor images. Left: the Rubin Observatory focal plane. The eight solid

boxes show the positions of the eight wavefront sensor half-chips and the gray dots show the centers of the remaining 189 science sensors.

Right: example wavefront sensor images from each of the eight half-chips. The boundary color matches with the region they correspond

to on the focal plane. The colored boxes show the donuts on each half-chip.

2) We demonstrate that a convolutional neural network

can make reasonable estimates of the local wavefront

from donut images.

3) We show that fitting the global wavefront from a mul-

titude of local wavefront estimates can suppress the at-

mospheric contribution.

4) We run our framework on a realistic mini-survey where

it reduces the total magnitude of the optics wavefront

by 66%, the optics point spread function full width at

half maximum (PSF FWHM) by 27%, and increases

the Strehl ratio by a factor of 6.

Finally, we emphasize that while this work focuses on

the Rubin Observatory, our framework extends to all wide-

field telescopes with curvature wavefront sensors, and po-

tentially to future space telescopes.

2. Related Work

The potential for neural networks to learn the non-linear

mapping between intensity patterns and aberrations in the

pupil plane was first recognized in 1990 [3]. Shortly af-

terwards, this potential was realized as neural networks

were deployed to detect turbulence induced distortion on the

Multiple Mirror Telescope [27] and to detect aberrations in

the primary mirror of the Hubble Space Telescope [4]. Oth-

ers expanded this concept to predict more wavefront com-

ponents [11], incorporate temporal history [18, 20], com-

pare reconstruction methods [8], and better characterize at-

mospheric turbulence [32].

In the past decade, convolutional neural networks

(CNNs) [17] have re-emerged and spurred dramatic ad-

vances in computer vision [13, 30, 26, 9]. This has cre-

ated new possibilities for wavefront sensing in astronomy.

In [22], the authors created a CNN that could estimate the

wavefront from a single PSF image. They used these esti-

mates as initial starting points in a gradient-based optimiza-

tion and showed this was superior to using random samples.

[21] showed wavefront sensing performance could be im-

proved by introducing a preconditioner to broaden the PSF

and create more intensity structure for the neural network to

exploit. This brings up interesting new design possibilities

for wavefront sensors. While conventional Lyot-based low

order wavefront sensing methods have a limited dynamic

range due to their linear recovery, [2] showed that a CNN

can extend the aberration range over which the wavefront

can be estimated by an order of magnitude.

Previous work on machine learning based wavefront

sensing focuses on sensing the full wavefront aberration.

Here we focus on sensing the optics wavefront, across the

field of view, in the midst of the dominant atmospheric con-

tribution. This problem presents new challenges, such as

how to best aggregate intensity information from through-

out the field of view to suppress the spatially correlated error

due to the turbulence contribution.

Xin et. al. [33] designed an iterative algorithm that ex-



tends conventional curvature sensing [24] to estimate the

Rubin optics wavefront at four field positions. While this

method has been shown to be in good agreement with the

estimates from the Dark Energy Camera active optics sys-

tem [34], there are some noteworthy limitations. First,

each iteration of this algorithm involves complicated image

transformations based on the wavefront estimate from the

previous iteration, and solving a PDE. There are no guar-

antees that each step is improving the wavefront estimate,

or that the full algorithm will converge. Second, the path-

dependent nature of the iterations makes it difficult to char-

acterize the error and benchmark performance. Third, it

takes around 10 seconds to process a single donut. Here

we present a transparent new approach that leverages the

power of machine learning and optimization. Our approach

is comprised of only two steps, is easy to characterize, and

can process each donut image in 6 milliseconds.

3. Wavefront Estimation Framework

The optics wavefront Wopt is a function of two sepa-

rate planes: the pupil plane parameterized by (u, v) and

the focal plane parameterized by (x, y). We use the dou-

ble Zernike polynomial basis [14] to represent the optics

wavefront,

Wopt(u, v, x, y) =

k
∑

i=1

m
∑

j=1

βijZi(u, v)Zj(x, y) (1)

where βij are the coefficients, Zi are annular Zernike poly-

nomials over the pupil, and Zj are circular Zernike polyno-

mials over the focal plane. The goal of wavefront sensing is

to estimate these coefficients βij from the n donut images

Di positioned across the wavefront sensors (see Figure 1).

Let the position of donut i be xi, yi and the defocus offset

of the corresponding sensor be zi. The wavefront sensing

problem is to find f such that

β = f((D1, x1, y1, z1), . . . , (Dn, xn, yn, zn)) (2)

We break this into two subproblems.

3.1. Estimating Local Wavefronts

In the first subproblem, we estimate the total local wave-

front wtot(u, v) from donut Di at position xi, yi, zi. The in-

tensity in the donut image is related to the total local wave-

front by the Fraunhoffer diffraction integral,

D ∝ |F {P (u, v) exp(2πiwtot(u, v)/λ)}|2 (3)

where F is the Fourier transform, P (u, v) is the pupil mask,

and λ is the wavelength. We represent the local wavefront in

a basis of annular Zernike polynomials over the pupil, such

that the total local wavefront for donut i at position xi, yi is

wtot(u, v) =
∑

j

αijZj(u, v) (4)

Convolutional neural networks (CNNs) are particularly well

suited for processing images and learning nonlinear map-

pings. We develop a CNN ϕ to solve the inverse problem

of estimating αij for j = 1 . . .m from (Di, xi, yi, zi) . In

Section 4 we describe the implementation of this model in

detail.

3.2. Interpolating the Optics Wavefront

In the second subproblem, we aggregate the local esti-

mates from the first subproblem to constrain β. The to-

tal local wavefront at position xi, yi is related to the optics

wavefront via

wtot(u, v) = Wopt(u, v|xi, yi) + ǫ(u, v|xi, yi) (5)

where ǫ represents the atmospheric turbulence contribu-

tion to the wavefront. Let Z be defined such that Zij =
Zj(xi, yi). Then for i = 1, . . . ,m we have

αei = Zβei + ǫ (6)

where ei is the ith unit vector. Then combining the α from

the previous subproblem, and computing the corresponding

Z , allows us to solve for β,

β = argminβ

{

m
∑

i=1

ℓ(αei,Zβei)

}

(7)

where ℓ is a convex loss function. Algorithm 1 shows the

psuedocode.

Algorithm 1: estimates the optics wavefront from

donut images.

given image I ∈ R
N×N

initialize local wavefront estimate α ∈ R
n×m

initialize global Zernike basis Z ∈ R
n×k

for donut i in 1. . . n do
Di = Crop(I, xi, yi)
α[i, :] = ϕ(Di, xi, yi, zi)
for zernike j in 1. . . k do

Z[i, j] = Zj(xi, yi)
end

end

initialize optics wavefront β ∈ R
k×m

for local Zernike i in 1 . . .m do
β[:, i] = argminβ[:,i] {ℓ(α[:, i],Zβ[:, i])}

end

return β

The dominant source of error is the atmospheric turbu-

lence contribution to the wavefront. This error is correlated

on scales of arcminutes. By processing donuts with reason-

able separation and between different wavefront sensors we



Figure 2. Network architecture. The layers of the image component, which reduces the donut image into a 1024 length vector, are in blue

and the layers of the position component, which concatenates the position and makes the wavefront estimate, are in red.

are able to suppress this error by roughly a factor of 1/
√
n

where n is the number of donuts used.

There are two parameters of our algorithm that must be

set based on the telescope: the number of Zernike coeffi-

cients to use for the pupil m, and the number of Zernike co-

efficients to use for the focal plane k. For the Rubin Obser-

vatory we use Zernikes Z4 through Z21 for the pupil plane.

The first three coefficients do not impact image quality, so

we exclude them. We truncate the basis at Z21, a conven-

tion set by [33], as the higher order terms have very small

coefficients in practice. We use Z1 through Z3 for the focal

plane. Our simulations show that 90% of the optics wave-

front is contained in this truncated basis.

There are two benefits to dividing the wavefront esti-

mation problem into these two subproblems that are worth

highlighting. The first is the useful intermediate data prod-

ucts. The local wavefront coefficients α, which are esti-

mated in the first subproblem, are physically meaningful.

Telescope operators can track them during operations and

gain further insight into the system. This adds an additional

layer of transparency and robustness.

The second benefit is that it makes deep learning ap-

proaches feasible. Deep neural networks must be trained on

large datasets to avoid overfitting. The input to the original

problem is four wavefront sensor images, or up to thousands

of donut images. The raytracing necessary to simulate even

a single input sample is computationally expensive. In our

first subproblem however, the input is only a single donut

image. This reduces the computation required to produce

a training sample by three orders of magnitude and makes

it possible to generate simulated datasets that are sufficient

for training deep neural networks. In the next section, we

highlight the power of these models.

4. Experiments and Analysis

4.1. Datasets

4.1.1 Donut Training, Validation, and Test Sets

This dataset is used to train the neural network to estimate

the local wavefront. Each sample consists of a 256 × 256
pixel Rubin donut image (see Figure 3), the donut position,

and a true local wavefront label. The sources are chosen to

be as realistic as possible. We started by drawing 5,000

r-band observations from a simulated Rubin Observatory

observing schedule [5]. For each of these observations we

queried the Gaia DR2 catalog for sources that would fall

on the wavefront sensors [7]. Then we sampled 200 stars,

with replacement, to simulate from each observation. We

simulated an additional 100,147 blends - donut images with

multiple stars overlapping - so that the network could learn

to handle these complicated cases as well. The training,

validation, and test sets are comprised of 498,071 stars and

100,028 blends, 220 stars and 36 blends, and 1,708 stars

and 340 blends respectively.

The simulations start by drawing photons from a black-

body distribution based on the star temperature and mag-

nitude from the catalog. We then propagate these through

the atmosphere with the help of the GalSim Python pack-

age [25]. We use frozen phase screens to represent low spa-

tial frequency turbulence and apply a randomly drawn sec-

ond kick to account for high frequency turbulence [23]. We

use the Batoid Python raytracing package to generate Rubin

telescope instances and trace the photons into the detector

[19]. We randomly perturb 50 different degrees of freedom

for each telescope instance. These random perturbations are

drawn from distributions that represent what we expect the

Rubin telescope will face in operations. Finally, we use the

GalSim to model the sensor readout. We incorporate cus-

tom functions throughout this pipeline to account for ad-

ditional physical effects such as: chromatic seeing, differ-



ential chromatic refraction, charge diffusion in the sensors,

bad pixels, and astrometric errors.

The local wavefront labels are calculated with Batoid.

For each perturbed telescope instance, a grid of rays are

traced from the entrance pupil through the corresponding

field position to the exit pupil. Then Zernike polynomi-

als are fit to the optical path differences between the rays.

These coefficients are the entries of the labels.

4.1.2 Mini-Survey Test Set

This dataset is used for testing the full framework. Each

sample corresponds to an observation as opposed to an indi-

vidual donut. Each sample consists of all the donut images

and positions in the observation, plus the full optics wave-

front. We used 497 Rubin observations, each containing

hundreds to thousands of simulated donuts.

All the donuts in an observation are simulated with the

same atmosphere and sky background. The observations

are drawn from Rubin Observatory scheduler simulations

and the sources correspond to Gaia queries. Each star in the

observation is simulated in the same manner as the donuts

dataset described above. For each observation, we used the

batoid framework to compute the optics wavefront double

Zernike coefficients for the perturbed telescope instance.

4.2. Architecture and Training

The input to the neural network is a 256×256 pixel donut

image and position r = (x, y, z). The network, shown in

Figure 2, has two components: an image component and

a position component. The image component reduces the

donut image to a 1024 dimensional vector. The position

component combines this vector with the position input and

estimates the 18 local wavefront coefficients.

The image component consists of eight repeated convo-

lution blocks which decrease the tensor height and width

and increase the depth, all by a factor of two. The con-

volution block has a convolution skip connection followed

by the downsampling convolution. The position component

consists of three linear layers which each reduce the dimen-

sionality of the tensor. All convolution and linear layers are

followed by ReLU and batchnorm layers, except the final

linear layer.

We use the mean-squared-error (MSE) between the es-

timated and true wavefront coefficient as the loss function.

We train the model for 8 epochs over the donut training set

with the Adam optimizer [12] and a batch-size of 64. Ev-

ery 200 batches, we evaluate the MSE of the model on the

donut validation set, and keep the best model. After the

model is finalized, we evaluate it on the donut test set. The

training and test set MSEs are 4.5± 3.2 and 4.4± 3.5 thou-

sandths of waves on stars respectively, and 9.5 ± 20.0 and

9.6±22.0 thousandths of waves on blends respectively. The

Figure 3. Three donut images and their wavefront estimates.

Top: three donut images drawn from the bottom 10%, median,

and top 10% of the MSE distribution respectively. Bottom: the

three corresponding true and estimated local wavefronts. The y-

axis goes from -0.5 waves to 0.5 waves.

performance on the training and test sets is almost identical,

which suggests our model is not overfitting.

4.3. Local Wavefront Results

The wavefront estimates for three representative samples

are shown in Figure 3. The wavefront estimates are very

close to the truth, even for test samples with MSE in the bot-

tom decile. Going from the bottom decile to the top decile

leads to a reduction in the MSE by almost an order of mag-

nitude. In Subsection 4.4, we explore different ways to take

advantage of this large discrepancy when interpolating the

full optics wavefront.

We see significant degradation in the accuracy of es-

timates on donut images with three or more overlapping

neighbors. We suspect this may be due to the distribution of

our training set, where the frequency of blended donuts with

n neighbors decreases exponentially with n. We also see

that brighter sky backgrounds, significant vignetting near

the far corners of the sensors, and the atmospheric seeing

are all weakly correlated with decreasing accuracy. This is

in line with expectations.

Along with studying the output of the network, we also

probe some of its intrinsic behavior. This serves as a san-

ity check and can give us humans clues as to where further

improvements may lie. In order to uncover what donut fea-

tures the network is paying most attention to, we take gra-

dients of the norm of the estimates with respect to the pixel

intensity values, or

∇D||ϕ(D, r)||2 (8)

The entries of this gradient with the largest magnitude are

the pixels that the estimate is most sensitive to.



Figure 4. Saliency maps. Three input donut images with a color

overlay showing where the network is focusing.

Two notable trends emerge from this analysis (shown in

Figure 4). The first trend is that the estimates are most sen-

sitive to the edges of the donuts. This raises the question

of whether only having the shape of the boundary, perhaps

extracted with a simple thresholding algorithm, is sufficient

to achieve comparable accuracy. The second finding is on

the blended donuts. The network exhibits bimodal behav-

ior. Either it ignores the overlapping regions of the target

donut, or it uses information from all the donuts. It seems

as if the network is making a binary decision as to which

way to go. It would be interesting to learn what factors con-

tribute to this decision and see whether these insights would

be relevant to other de-blending problems in astronomy.

In a similar vein, we also took a single donut, and cal-

culated the intensity changes that would move the estimate

towards a specific zernike coefficient. We take the gradient

of the norm of the estimate minus the target zernike coeffi-

cient with respect to the pixel intensity values, or

∇D||ϕ(D, r)− ei||2 (9)

where ei is the ith unit vector. The results for three exam-

ple coefficients are shown in Figure 5. The similarity be-

tween the intensity changes and the Zernike polynomials is

striking, especially given that the network has not been ex-

plicitly trained to learn these patterns. It demonstrates that

the network is engaging in higher order learning, where it is

learning general features of the problem space.

We showed a neural network is capable of making ac-

curate local wavefront estimates for the first stage of our

algorithm. It is the responsibility of the second stage to ag-

gregate all these estimates and estimate the full optics wave-

front.

4.4. Full Optics Wavefront Results

The second stage uses the local wavefront estimates from

donuts in the four wavefront sensor images to interpolate

Figure 5. Network learns Zernike patterns. Top: the Zernike

polynomials Z12, Z13, Z14. Bottom: the intensity changes needed

to move the estimate towards the corresponding Zernike coeffi-

cient.

the optics wavefront across the entire focal plane. We de-

scribe the interpolation in three steps that are reminiscent of

a standard data query: select, reduce, and fit. The select step

decides which donuts and corresponding local estimates to

use in the interpolation. The reduce step, which is typically

skipped, reduces these estimates across a wavefront sensor.

The fit step fits the local coefficients to a global Zernike ba-

sis based on the provided loss function.

We examine multiple variations in each of these steps to

find which combination works best. We explore selecting

donuts from all the sources (stars and blends), from only

the non-blended stars (stars), the non-blended 10 brightest

stars per chip (brightest stars), and using the true labels (la-

bels). The results on the true labels provide a sanity check

and bound the performance we can expect to achieve with

alternatives.

We also analyze two variations in the reduce step. Either

we make no changes to estimates and effectively skip this

step, or we take the median of the estimates on each chip.

In the median case, we would then fit against the four points

corresponding to the four sensors in the fit step.

We explore three different fitting strategies. The ℓ1, or

absolute loss, is convex and can be found with an iterative

optimization algorithm. The ℓ2, or least squares loss, has an

analytic solution. This has the added benefit of making error

propagation analytic as well. Finally, the Huber loss ℓh is

similar to the ℓ2 for samples with small error but scales like

ℓ1 for large error. Thus it is similar to ℓ2 but less sensitive

to outliers.

The results of these variations, applied to the local wave-

front estimates from the neural network, applied to the

mini-survey test set, are shown in Table 1. We compare

the true optics wavefront and the residual optics wavefront,



Median % Samples Relative

Select Reduce Fit Improved Residual

ℓ1 99.6 0.48± 0.13
Stars ℓ2 99.8 0.49± 0.12
and ℓh 100.0 0.48± 0.12

Blends X ℓ1 97.8 0.67± 0.14
X ℓ2 100.0 0.46± 0.12

ℓ1 99.8 0.44± 0.11
ℓ2 100.0 0.43± 0.10

Stars ℓh 100.0 0.43± 0.10
X ℓ1 97.2 0.64± 0.14
X ℓ2 99.8 0.41± 0.11

ℓ1 99.6 0.37± 0.13
Brightest ℓ2 100.0 0.34± 0.12

Stars ℓh 100.0 0.34± 0.12
X ℓ1 97.2 0.60± 0.16
X ℓ2 100.0 0.35± 0.12

ℓ1 100.0 0.13± 0.05
Labels ℓ2 100.0 0.06± 0.02

ℓh 100.0 0.08± 0.04

Table 1. Optics wavefront results on different select-reduce-fit

variations. Each row contains the results for a different combina-

tion of select, reduce, and fit steps. The penultimate column con-

tains the percentage of the number of samples where the residual

improved. The final column contains the relative residual: the to-

tal magnitude of the residual divided by the total magnitude of the

true wavefront. The best variation on neural network estimates is

highlighted in blue. The best variation on the true label estimates

is highlighted in gold.

where the residual is the full true optics wavefront minus the

full estimated optics wavefront. The residual wavefront is

smaller than the original wavefront for all the samples in the

majority of select-reduce-fit variations. The consistency of

the improvements makes our method an attractive candidate

for deployment.

This experiment also taught us that more data is not al-

ways better. Ignoring the blended donuts leads to a clear

improvement in performance. So does ignoring all but the

brightest stars. This suggests that we should prioritize mak-

ing accurate predictions on the best donuts, perhaps at the

expense of making consistent estimates on all the donuts.

It also may have consequences for wavefront sensing in

crowded fields where almost all of the donuts are blended.

We can also draw conclusions about the variations. Tak-

ing the median and fitting with the ℓ1 norm appears to dis-

card too much information. We also see that the benefit of

using median with the ℓ2 norm goes away as the select be-

comes more selective. This is likely because the outliers,

which the median reduce suppresses, get filtered and are no

longer an issue. The ℓh norm also seems to do compara-

tively well on stars and blends, but loses this advantage on

State Position FWHM Strehl

Before Center 0.288± 0.034 0.093± 0.39
After Center 0.211± 0.005 0.555± 0.207
Before Corner 0.314± 0.045 0.074± 0.32
After Corner 0.215± 0.009 0.400± 0.184

Table 2. Improvement in the optics PSF FWHM and Strehl ra-

tio. We measure the optics PSF FWHM and Strehl ratio on the

original optics wavefront from the observation (Before), and the

residual wavefront resulting from subtracting our wavefront esti-

mate from the original optics wavefront (After). The Center posi-

tion is at the center of the Rubin focal plane; the Corner position is

at the center of the R00 wavefront sensor in the corner of the focal

plane.

the more selective brightest stars selection. We conclude us-

ing the ℓ2 norm, with no median reduce, to fit the brightest

stars, is the best variation.

The combined implementation is very fast. The neural

network processes donuts in 6 milliseconds on a 2.4 GHz

Intel Xeon CPU with a single Nvidia V100 GPU. Our algo-

rithm can process a full observation, both the local estimates

and interpolation, in under 300 milliseconds. This is around

two orders of magnitude smaller than the typical telescope

exposure time, which suggests latency will not prevent its

adoption.

The next step is to take this model and measure the reper-

cussions of subtracting its estimate from the true wavefront

on both the PSF FWHM and Strehl ratio [28]. We com-

pute these by calculating the local wavefronts at the center

and one corner of the focal plane. Then we take the fourier

transform of the resulting pupil plane aberration to get the

point spread function. The results for the original and cor-

rected wavefronts are shown in Table 2.

The optics PSF FWHM decreases considerably, espe-

cially when compared to the standard deviation of the orig-

inal. The Strehl ratio increases in an even more extreme

manner. Figure 6 provides an illustrative example of how

the improvements to the optics PSF from our method can

improve image quality. We apply the Rubin optics PSF, be-

fore and after subtracting the optics wavefront estimated by

our framework, to six classic Hubble Telescope images in

the absence of other significant PSF contributions.

For the Rubin Observatory however, the PSF is domi-

nated by the atmosphere, which as indicated cannot be cor-

rected. For the Rubin observatory the assumed PSF width

is of order 0.71 arcseconds, of which 0.65 is contributed by

the atmosphere. Therefore, the improvement in the Strehl

and image quality is not as dramatic. Nevertheless, this im-

provement is still important for use on nights with unusually

good atmospheric seeing and also for applications that are

especially sensitive to the PSF width.



Figure 6. Hubble Telescope images before and after subtracting the optics wavefront estimated by our framework. An illustration

of the effect of wavefront correction using our techniques on image resolution. We use actual Hubble Space Telescope images to show the

effect. The Before images are degraded by the wavefront aberrations we have simulated. The After images show their reconstruction after

wavefront estimation and correction using the technique we describe in this paper. On the bottom two rows, we show the effective PSF,

both before and after wavefront correction. The images have an angular extent of 3 arcseconds and the PSFs are displayed on a 0.16×0.16

arcsecond grid.

5. Conclusion

A new perspective can facilitate significant progress on

a classic problem. For wide-field telescopes, discerning the

aberrations due to the optics from those due to atmospheric

turbulence is a critical challenge. In this work, we de-

composed this classic wavefront sensing problem into two

new subproblems. The first subproblem is to estimate lo-

cal wavefronts from donut images. The second subprob-

lem is to interpolate the optics wavefront across the focal

plane from all of the local estimates in the observation.

We achieved notable performance by developing special-

ized techniques for each subproblem, namely a deep convo-

lutional neural network and a select-reduce-fit interpolation

scheme. The combined framework reduced the optics PSF

FWHM by 27% and increased the Strehl ratio by a factor

of 6 on a simulated Rubin Observatory mini-survey. This

subproblem decomposition may be a valuable paradigm for

designing future wavefront sensing strategies.

Our specific implementation also has unique practical

advantages. First, it is extremely fast. It is capable of pro-

cessing an entire observation in less than 300 milliseconds.

Second, it is easy to monitor. There are no iterations; just

two steps. The intermediate local wavefronts passed be-

tween steps are a useful physical observable that can help

telescope operators supervise the system. Third, it is easy

to characterize. Both steps are characterized by well known,

physical, and interpretable error metrics, such as the MSE

of the wavefront coefficients or PSF FWHM of the full op-

tics wavefront. Fourth, it is robust. It improved the op-

tics PSF in all 497 observations in the mini-survey test set.

These properties make it an attractive candidate for current

and future active optics systems. We are particularly ex-

cited about the prospect of our framework being used on

space telescopes, where robustness is at a premium.
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Lafenetre, Fabrice Champandard, Jean-Bernard Ghibaudo,

and Vincent Costes. Active optics for space telescopes.

In Astronomical Optics: Design, Manufacture, and Test of

Space and Ground Systems II, volume 11116 of Society

of Photo-Optical Instrumentation Engineers (SPIE) Confer-

ence Series, page 1111611, Sept. 2019.

[30] Christian Szegedy, Alexander Toshev, and Dumitru Erhan.

Deep neural networks for object detection. In Proceedings

of the 26th International Conference on Neural Information

Processing Systems - Volume 2, NIPS’13, page 25532561,

Red Hook, NY, USA, 2013. Curran Associates Inc.

[31] T. Viard, J. F. Blanc, C. Devilliers, F. Champandard, B.

Bailly, F. Falzon, J. B. Ghibaudo, D. Sucher, G. Briche, V.

Costes, and C. Du Jeu. Active optics for next generation

of space observation instruments. In International Confer-

ence on Space Optics &mdash; ICSO 2018, volume 11180 of

Society of Photo-Optical Instrumentation Engineers (SPIE)

Conference Series, page 1118008, July 2019.

[32] S. J. Weddell and R. Y. Webb. Reservoir Computing for Pre-

diction of the Spatially-Variant Point Spread Function. IEEE

Journal of Selected Topics in Signal Processing, 2(5):624–

634, Nov. 2008.

[33] Bo Xin, Chuck Claver, Ming Liang, Srinivasan Chand

rasekharan, George Angeli, and Ian Shipsey. Curvature

wavefront sensing for the large synoptic survey telescope.

Applied Optics, 54(30):9045, Oct. 2015.

[34] Bo Xin, Aaron Roodman, George Angeli, Chuck Claver,

and Sandrine Thomas. Comparison of LSST and DECam

wavefront recovery algorithms. In Helen J. Hall, Roberto

Gilmozzi, and Heather K. Marshall, editors, Ground-based

and Airborne Telescopes VI, volume 9906 of Society of

Photo-Optical Instrumentation Engineers (SPIE) Confer-

ence Series, page 99064J, July 2016.

[35] Pingwei Zhou, Dongxu Zhang, Guang Liu, and Changxiang

Yan. Development of space active optics for a whiffletree

supported mirror. Applied Optics, 58(21):5740, July 2019.


