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Abstract

Vehicle search is one basic task for the efficient traffic

management in terms of the AI City. Most existing prac-

tices focus on the image-based vehicle matching, includ-

ing vehicle re-identification and vehicle tracking. In this

paper, we apply one new modality, i.e., the language de-

scription, to search the vehicle of interest and explore the

potential of this task in the real-world scenario. The natu-

ral language-based vehicle search poses one new challenge

of fine-grained understanding of both vision and language

modalities. To connect language and vision, we propose

to jointly train the state-of-the-art vision models with the

transformer-based language model in an end-to-end man-

ner. Except for the network structure design and the train-

ing strategy, several optimization objectives are also re-

visited in this work. The qualitative and quantitative ex-

periments verify the effectiveness of the proposed method.

Our proposed method has achieved the 1st place on the

5th AI City Challenge, yielding competitive performance

18.69% MRR accuracy on the private test set. We hope this

work can pave the way for the future study on using lan-

guage description effectively and efficiently for real-world

vehicle retrieval systems. The code will be available at

https://github.com/ShuaiBai623/AIC2021-

T5-CLV .

1. Introduction

Vehicle retrieval usually meets a large-scale candidate

pool due to the 24/7 records, which is an important part of

the intelligent transportation system for AI City. Most exist-

ing vehicle retrieval systems are based on image-to-image

matching, also known as vehicle re-identification (vehicle

re-id) [67]. To retrieve the target vehicle tracklets, these

methods require a vehicle image query, which is not al-

ways available in the real-world scenario [24, 10]. In this

report, we leverage natural language descriptions to search

vehicles. Compared to image queries, natural language de-

scriptions are more user-friendly and easier to be obtained.

Besides, it enables fuzzy vehicle search and provides more

flexible applications.

A common approach to performing language-based ve-

hicle retrieval is to embed the images and descriptions

to shared feature space and then rank the vehicle images

based on the cross-modal similarities. Most existing meth-

ods [8] construct the visual encoder and text encoder with

fixed backbones and only optimize several projection lay-

ers. In our solution, we train the cross-modal vehicle re-

trieval framework in an end-to-end manner. This design

enables the powerful backbones to learn fine-grained ve-

hicle attributes like vehicle types and directions. Inspired

by the recent advances in cross-modal representation learn-

ing [38, 69], we adopt the symmetric InfoNCE loss [35] and

instance loss [69] to jointly train the text encoder and visual

encoder.

For the visual encoder, we propose a two-stream archi-

tecture to provide complimentary local details (e.g. color,

type and size) and global information (e.g. motion and en-

vironment). The motivation behind the design is that the

natural language sentences not only contain the informa-

tion of vehicle appearance but also describe the trajecto-

ries and background. This is also the main difference be-

tween language-based vehicle retrieval and image-based ve-

hicle retrieval. Specifically, we adopt two individual CNNs

to construct the backbones of the two streams. The lo-

cal stream takes the detected patches that only contain the

vehicle as input, while the input for the global stream is

the synthesized dynamic image with the averaged back-

ground and the trajectory of the vehicle. The outputs from

the two streams are concatenated as the final visual repre-

sentation. For the text encoder, we adopt the state-of-the-

art transformer-based language models like BERT [7] and

RoBERTa [28] as our text encoder. To enhance the robust-

ness of the model, we propose a text augmentation approach

by back-translation technique. The proposed method has

achieved 18.69% MRR accuracy on the private test set of

the 5th AI City Challenge on natural language-based ve-

hicle retrieval, yielding the 1st place on the public leader-



board.

2. Related Work

2.1. Video Retrieval via Natural Language

Natural language-based video retrieval aims to search

a specific video matching the given language description

from a large amount of candidate videos. Most existing

works [23, 55, 36, 59, 60, 33, 62, 31, 8, 49] adopt the sim-

ilarity learning [54] to learn a function (network) that can

estimate the similarity between videos and language de-

scriptions. These works encode the language by the textual

feature extractor (Word2Vec [32], LSTM [16], etc.), learn

video representations by the visual feature extractor (Two-

Stream Network [41], C3D [3], S3D [53], etc.) and esti-

mate the language-video similarity in a common semantic

space. Further, for language representations, Xu et al. [55]

design a compositional language model by the dependency-

tree structure. Yu et al. [60] develop a high-level concept

detector as semantic priors and apply the attention mecha-

nism to selectively focuses on the detected word concepts.

For video representations, recent methods [42, 2] utilize the

well-designed Transformer architecture [46] to learn pow-

erful video features. And some works [33, 31, 11, 9] fur-

ther incorporate multi-modal features (e.g. motion, audio)

from a video for more robust video understanding. As for

the video-language interaction, Zhang et al. [62] exploit

both low-level and high-level correspondences in the hi-

erarchically semantic spaces, and Dong et al. [8] propose

the multi-level encoding including global, local and tem-

poral patterns in both videos and sentences to learn better

shared representations. Besides, VideoBERT [43], Uni-

ViLM [30], HERO [22] and ClipBERT [21] explore the

large-scale video-language pre-training to boost compre-

hensive video-language understanding.

Recently, to search fine-grained video contents via nat-

ural language, researchers begin to explore moment re-

trieval and object retrieval in videos. Video moment re-

trieval [12, 15, 64] localizes a video clip corresponding to

the given language, which avoids manually searching for

the clip of interests in a long video. Existing approaches

often pre-define a series of clip proposals by sliding win-

dows or multi-granularity anchors, and rank these clips

by visual-textual interaction and estimation, e.g. attention

mechanism [26] and graph convolution [63]. And video ob-

ject retrieval [57, 4, 66] aims to search the spatio-temporal

object track (i.e. a sequence of bounding boxes) accord-

ing to the language description. Early work [57] only

searches the person track in multiple videos and recent ap-

proaches [70, 4] further retrieve the spatio-temporal tracks

of diverse objects. Besides single-object retrieval, Huang

and Shi et al. [18, 40] try to localize multiple objects that

appear in the language description. Different from previous

tasks, vehicle retrieval via natural language is one practical

task for the traffic management, which retrieves the specific

vehicle given single-camera tracks and corresponding lan-

guage descriptions of the targets. Our method sufficiently

considers the inherent attributes of the vehicles as well as

global motion and environment information to search the

described vehicle.

2.2. Vehicle Re­identification

Vehicle re-identification (vehicle re-id) is to find the ve-

hicle of interest from millions of candidate images from

different cameras, which can largely save the human re-

sources as well as the time cost. Several pioneering works

focus on building the large-scale dataset for subsequential

learning, including VehicleID [25], VeRi-776 [27] and Ve-

hicleNet [67]. The follow-up works focus on the discrim-

inative representation learning [27, 68] as well as mining

the structure information [50, 44]. For instance, Qian et

al. [37] and Yu et al. [58] propose to leverage the multi-

scale information within deeply-learned models. To mine

the fine-grained vehicle structure, Wang et al. [50] further

take the keypoints into consideration and apply the struc-

ture information to the final feature aggregation part. Be-

sides, Zheng et al. [67] apply the transfer learning to dis-

till common knowledge from large-scale vehicle dataset to

the specific small dataset, yielding the state-of-the-art per-

formance. Attributes and environment conditions also have

been explored in several pioneering works [29, 24]. In sum-

mary, vehicle re-identification is primarily different from

the natural language-based vehicle retrieval in terms of the

input modality. The two different modalities are inherently

different, which is challenging in mapping heterogeneous

inputs to the same semantic space. In this paper, we mainly

focus on the vehicle tracklet retrieval via the natural lan-

guage, but the existing vehicle re-id also gives us many in-

spirations in the representation learning and optimization

strategies. We will provide more details in Section 3.

2.3. Data Augmentation in NLP

Data augmentation has gradually become a common

practice in NLP and it brings substantial improvement due

to the requirement of a large amount of training data. The

augmented data should be semantic-consistent variants of

the original ones. A conventional method is lexical re-

placement, including synonym replacement with Word-

Net [65, 34, 51], word embedding substitution [19, 48], and

masked language modeling [13], etc. Backtranslation is an

effective method to generate samples that are semantically

invariant [39], and it strongly promotes the development of

unsupervised machine translation [20]. Xie et al. [52] ap-

plied backtranslation for text classification and reached the

state-of-the-art performance. Other methods include ran-

dom noise injection [52, 51], syntax tree manipulation [5],
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Figure 1. The overall framework. The vanilla network only contains one local image encoder for local cropped vehicle image and one text

encoder for language description input. We further introduce the global image encoder to help learning more position information as well

as the environment from motion images to ease the matching difficulty. In this paper, we also explore different optimization objectives,

including Symmetric InfoNCE Loss [35] and Instance Loss [69].

mixup [14], etc.

3. Method

In this section, we provide one detailed illustration of

the proposed framework. In particular, we first start with

the data augmentation strategies, which include the motion

modeling and description augmentation. Followed by the

data augmentation, the representation learning contains the

description of the network structure and optimization func-

tions.

3.1. Data Augmentation

3.1.1 Motion and background modeling

Compared with the image-based vehicle retrieval, which ap-

plies vehicle images as queries for fine-grained appearance

modeling, the natural language descriptions contain more

surrounding factors and the motion information. The in-

herent attributes of vehicles are not enough to distinguish

the specific target. For example, two white SUVs that go

straight and turn left are difficult to distinguish only through

the color and type of the vehicles. Therefore, the introduc-

tion of global information, such as background, is of vital

importance for the accurate natural language-based vehicle

retrieval. We propose a simple but effective way to intro-

duce global information. As shown in Figure 2, we adopt

background and trajectory modeling to preserve environ-

ment and motion information as a motion image. In par-

ticular, the generation of motion images consists of three

steps.

Firstly, we notice that the camera position is fixed, and

maintains the same angle of view in video clips. It means

that the background in the same video is stable. The method

continuously calculating the weighted sum of input frame

can enhance the static parts and remove the moving vehi-

cles, which is widely applied in traffic anomaly detection

[1, 56]. Specifically, we calculate the mean value of each

frame in the same video to generate background images. It

can be formulated as:

B =
1

N

N∑

i

Fi, (1)

where Fi is the ith frame, B is the background image, and

N is the number of video frames. For the AICity train-

ing/test data, the environmental information is preserved in

the background image, including parking lots, intersections

and traffic lights.

Secondly, the motion information of the vehicle reflects
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Figure 2. Motion and background modeling. Here we show the

steps to obtain motion maps. In particular, we average the whole

views into one consistent background, and then past the trajectory

vehicle bounding boxes with the time gap.

that the position of the vehicle is different at different mo-

ments. We continuously cover the crop of the detection box

to the trajectory image T . In particular, since the movement

distance of consecutive frames is limited, we use interval

frames for coverage.

Tboxi
= Fboxi

, (2)

where boxi is the detection box in the ith frame. T is the

trajectory image, and it is initialized with the zero matrix as

large as the video frames.

Finally, we copy the detected bounding boxes, and paste

the vehicles of different timestamps to the background im-

age as the motion image.

3.1.2 Description Augmentation

In order to provide more training data and enhance the

model robustness, we apply text data augmentation. Specif-

ically, in our practice, we use backtranslation to generate

semantic invariants for the training samples. We collect all

the command texts and apply translation and backtransla-

tion with the in-house application Ali-translate. We observe

the text data and find that the commands are mostly of short

length and without complex syntactic structure. Translating

to languages that are similar to English, such as French and

German, may cause backtranslation’s generating the same

texts. Instead, we translate the texts to Chinese and back-

translate them to English. We demonstrate some examples

of translation and backtranslation in Figure 3.

In addition, to avoid the interference caused by multi-

ple vehicle descriptions in the text, we enhance the text by

strengthening the subject. As shown in Figure 4, the target

vehicle is often the subject of the text description. There-

fore, we use ”spacy ”1 extract the subject as a separate sen-

tence and put it at the beginning. At the same time, the

subject of the three sentences forms the fourth text descrip-

tion.

1
https://spacy.io/

Figure 3. An example of the translation and back-translation as

description augmentation. We first translate the original training

sentence from English to Chinese, and then translate the sentence

back to the English format.

"A mid-sided blue sedan goes straight through an intersection behind a blue vehicle."

"A black sedan keeping straight down the street followed by another black vehicle."

"A black sedan goes down the straight after a blue sedan."

" A mid-sided blue sedan. A mid-sided blue sedan goes straight through ……. "

" A black sedan. A black sedan keeping straight down the street followed …..."

" A black sedan. A black sedan goes down the straight after a blue sedan. "

" A mid-sided blue sedan. A black sedan. A black sedan "

Figure 4. An example of strengthening the subject in the text de-

scription.

3.2. Cross­Modal Representation Learning

Natural language-based vehicle retrieval aims to retrieve

the specific vehicle according to the text description. These

texts describe the inherent attributes of the vehicles (e.g.,

color, type, and size), as well as external factors such as the

behavior of the vehicle and the surrounding environment.

At the network structure level, we construct a dual-stream

image encoder for visual representation learning, the dual-

stream architecture takes local detected objectives, i.e., ve-

hicle, as input and global motion images separately to pay

attention to the inherent attributes and external factors of the

vehicles. In addition, the pretrained text encoder is utilized

to extract text embedding. We revisit several losses in terms

of language-based vehicle retrieval. For instance, following

the natural language supervision in CLIP [38], the symmet-

ric InfoNCE [35] loss is adopted to learn multi-modal em-

bedding space by jointly training an image encoder and text

encoder to maximize the cosine similarity of the image and

text embeddings. Furthermore, we introduce the instance

loss [69] to learn the instance-level features and the self-

supervised barlow twins loss [61] to demand the feature to

be as diverse as possible.

Network structure. Following existing re-id works, we

adopt the strong networks pretrained on ImageNet [6] as

the vision backbone module. We have adopted two vision

structures:

• The vanilla re-id baseline2 is used to extract the vi-

sual representation for cropped vehicle. We follow the

code3 of the 4th AICity vehicle re-id to pre-train the

model on the data of track2 this year. In particular, the

2
https://github.com/layumi/Person_reID_baseline_pytorch

3
https://github.com/layumi/AICIty-reID-2020



visual backbone is SE-ResNeXt50 [17]. We then fine-

tune the model on the track5 data with instance loss

to extract the visual feature. Only the cropped vehicle

images are considered in this baseline model. We ex-

tract the final 512-dim feature before the classification

layer as the visual representation.

• To learn the motion information, we further adopt

a dual-stream structure. The inputs consist of local

cropped images and global motion images. The local

cropped images are the detected vehicles cropped from

a random frame. The global motion images are gen-

erated as illustrated in Section 3.1.1. The dual-stream

structure contains two independent CNN encoders pre-

trained on ImageNet as the backbone, including SE-

ResNeXt50 [17] or EfficientNet B3 [45]. In particular,

for each stream, we introduce projection heads to map

visual representation to the spaces of contrastive rep-

resentation learning and instance fine-grained feature

learning. The projection head uses a MLP with the

hidden layer to obtain

zi = gi(hi) = W2σ(BN(W2hi)), (3)

where BN is a Batch Normalization (BN) layer, σ is a

ReLU layer, and the output dimension is 512. hi is the

visual features extracted by the backbone. As shown in

Figure 1, there are three projection heads, correspond-

ing to local detail features, global motion features and

fusion features. In addition, the classification heads are

applied to output the predicted possibility of different

tracks. The classification head is similar with the pro-

jection head, but the output dimension is the number

of tracks.

For text embeddings, we deploy pretrained BERT [7] or

RoBERTa [28] as text encoder. Similar with the image en-

coder, the projection head is introduced to map text em-

beddings to the space of contrastive representation learn-

ing. But the BN is replaced with the Layer Normalization

(LN) layer. Due to the limited amount of text data, the pa-

rameters of text encoder are fixed or updated with a small

learning rate.

zt = gt(ht) = W2σ(LN(W2ht)), (4)

where ht is the text embeddings extracted by the pretrained

model.

3.3. Optimization Objectives

3.3.1 Contrastive Loss

To maximize the cosine similarity of the image and text

embeddings, we utilize symmetric InfoNCE [35] loss like

CLIP [38]. Specially, we optimize the symmetric InfoNCE

in three levels to achieve well-aligned with the given de-

scription: (1) local cropped image region and sentence, (2)

global motion image and sentence, (3) fusion feature and

sentence. We define the score function following previous

work in contrastive learning:

S = cos(zimg, ztext)/τ, (5)

where cos(u, v) = uT v
||u||||v|| denotes cosine similarity, and τ

denotes a temperature learnable parameter initialized with

1. This maps the image and text representations into a joint

embedding space.

Given a batch of M image-text pairs, it consists of

M×M possible sample pairs. The symmetric InfoNCE has

two parts: Text-to-Image and Image-to-Text. Text-to-Image

compares one positive pair with M − 1 Negative pairs for

each text description:

Lt2i =
1

M

M∑

i=1

− log
exp(cos(zimg,i, ztext,i)/τ)∑M

j=1
exp(cos(zimg,j , ztext,i)/τ)

.

(6)

Meanwhile, Image-to-Text optimizes one positive pair with

M − 1 Negative pairs for each track:

Li2t =
1

M

M∑

i=1

− log
exp(cos(zimg,i, ztext,i)/τ)∑M

j=1
exp(cos(zimg,i, ztext,j)/τ)

.

(7)

The symmetric InfoNCE is formulated as:

LSNCE = λ1Lt2i + λ2Li2t, (8)

where λ1, λ2 are the weights of Text-to-Image and Image-

to-Text. Due to the evaluation of Text-to-Image manner, we

set λ1 = 2, λ2 = 1.

InfoNCE loss between local cropped image and sen-

tence. The local cropped image contains the inherent at-

tributes of the vehicle (e.g., color, type, and size). These

inherent attributes should be consistent with corresponding

words in the text description, which are often the text de-

scription about the subject. In order to strengthen the rela-

tionship between the target vehicle image and the subject of

the text description, we adopt the description augmentation

in Section 3.1.2.

InfoNCE loss between global motion image and sen-

tence. The global motion image reflects the motion of vehi-

cle and the external factors of the surrounding environment.

As illustrated in section 3.1.1, our motion images can effec-

tively retain these information, and the role of these external

factors can be grasped through the supervision of the global

motion map. .

InfoNCE loss between fusion feature and sentence. Fu-

sion of local and global features using nonlinear mapping

takes advantage of neural networks to mine some complex



associations. During the inference, we only use the fused

features as the representation of the retrieval.

At three levels, we use the symmetric InfoNCE in Eq. 8

to optimize the learning of contrastive representations, and

the weight of each level is 1.

3.3.2 Instance Loss

Instance loss is one common objective in the bi-directional

image-text retrieval task to capture the global discrepancy

[69], and we also explore this loss in terms of the natural

language-based vehicle retrieval task. We treat every track

and the corresponding descriptions as one category. The

optimization goal is to mapping the visual and textual in-

put into one shared classification space. In particular, we

adopted one shared classifier for both visual and textual in-

puts, and enforce the model to learn the mapping function.

Li = −log(Wshared zi), (9)

Lt = −log(Wshared zt), (10)

where zi and zt are the visual and textual embedding de-

fined in Eq. 3 and Eq. 4, and Wshared denotes the weight

of the final linear classifier. Instance loss can be formulated

as:

Linstance = Li + Lt. (11)

It is worth noting that the instance loss is different from

the symmetric infoNCE in whether it optimizes the cosine

similarity within one mini-batch or the stored classification

weights of all image-text pairs. As shown in Table 2, the in-

stance loss is complementary to the contrastive loss, which

further boosts the performance.

3.3.3 Barlow-twins Loss

Barlow-twins loss [61] is an optional loss in the proposed

framework. We trained three models based on such loss for

the ensemble. This loss is similar to the CLIP loss [38] but

it conducts the feature multiplication in the feature channel,

which results in one totally different request to the learned

feature. Actually, this loss can be viewed as one regulariza-

tion term. It asks the model to learn one orthogonal feature,

where every channel contains a different semantic meaning

from the rest channels.

4. Experiment

4.1. Dataset Analysis

Natural language (NL) description offers another useful

way to specify vehicle track queries. The dataset for Natural

Language-Based Vehicle Retrieval Track is built upon the

CityFlow Benchmark by annotating vehicles with natural

language descriptions. This dataset contains 2498 tracks

Figure 5. Noise in the training & test set. We observe two kinds

of noise existed in the dataset. The identical three descriptions are

annotated for different vehicle tracklets in the training set (left).

Conflicting descriptions existed in the query set (right).

Rank Team Name MRR

1 Alibaba-UTS (Ours) 0.1869

2 TimeLab 0.1613

3 SBUK 0.1594

4 SNLP 0.1571

5 HUST 0.1564

Table 1. Competition results of AI City Natural Language-Based

Vehicle Retrieval Challenge.

of vehicles with three unique natural language descriptions

each. 530 unique vehicle tracks together with 530 query

sets with three descriptions are curated for this challenge.

Noise in the training & test set. As shown in Figure 5,

we observe that noise exists in both training and test set.

The main noise is from the same three descriptions for dif-

ferent vehicle tracklets. There are 323 tracklets sharing the

identical three sentences with another tracklets. A similar

phenomenon is observed on the query set, and there are 56
queries containing the identical three textual descriptions.

Such textual input compromises the training process as well

as the inference accuracy. Besides, we also observe the con-

flicting descriptions in the query set. For instance, “turning

left” and “turns right” simultaneously appear in one descrip-

tion group. We can not optimize such noise but deploy the

mean textual feature to find the most similar samples.

Evaluation. The Vehicle Retrieval by NL Descriptions task

is evaluated using standard metrics for retrieval tasks. The

Mean Reciprocal Rank (MRR) is used [47]. It is formulated

as :

MRR =
1

|Q|

|Q|∑

i=1

1

ranki
, (12)

where ranki refers to the rank position of the right track for

the ith text description, and Q is the set of text descriptions.

4.2. Quantitative Results

During the inference, we average all the frame features

of the target in each track as track features, the embedding



'A red pickup truck turns left at an intersection.’

'A red pickup turns left after waiting for a while.’

'Red chevy pickup truck turns left.'

'A white truck enters the turning lane before turning right 

into a parking lot.’

'A white pickup truck turns right from a highway.’,

'A white pickup t to enter a parking lot.'

'A black sedan runs down the street.’,

'A black sedan is going straight across an intersection.’

'A black sedan runs straight down the street.’

'A white sedan turn right to join another road.’,

'A white sedan followed by another black vehicle.’

'A white mid-sized coup crosses an intersection and turns left.'

'An empty cargo truck drives straight up a hill in the right lane.’,

'A large truck runs on the street.’, 

A silver cargo truck runs down the street and is approaching 

Target.'

'A white pickup truck going straight down the street.’,

'A white pickup drives down a road.’,

'A white pickup truck keeps straight with traffic on the right side.'

Rank 1

Rank 6

Rank 1

Rank 6

Figure 6. Quantitative Results. We highlight “key” words in red and show the proposed method can find the right matches with the

fine-grained attention.

Method Performance

Baseline X X X X X X

Instance Loss X X X X X

Motion Image X X X X

NLP Augmentation X X X

Large Size& Model X X

Ensemble X

MRR(%) 8.25 9.65 13.21 14.56 19.27 20.77

Table 2. Ablation Study on TestA in the online evaluation system.

described by three sentences is also averaged as the query

features. The cosine distance is used for ranking as the final

result.

Comparsion with Other Teams. As shown in Table 1,

the proposed method has achieved the state-of-the-art MRR,

i.e., 0.1869, which is superior to the second-best team by a

large margin. Moreover, the consistent performance on all

Test datasets demonstrates the effectiveness and robustness

of the proposed method.

Abation Study. As illustrated in Table 2, we perform

ablation studies with different modules of our proposed

method. The “Baseline” donates that CLIP [38] with

ResNet50 as image encoder and BERT-BASE as text en-



coder. The “Instance Loss” optimizes the cross-entropy loss

function for distinguishing each track.“Motion Images” do-

nates the dual-stream architecture with local cropped im-

age and global motion images. The introduction of mo-

tion images gains a relative MRR improvement of 36.5%,

which demonstrates the external factors and motion infor-

mation play a vital role in natural language-based vehicle

retrieval. Our method of motion and background model-

ing is a simple and effective manner to capture these in-

formation. The “NLP augmentation” consists of strength-

ening the subject description and backtranslation. “Large

Size&Model” means that using larger pretrained models,

such as RoBERTa [28] as text encoder and ResNeXt101

as image encoder. The size of image input is improved to

320 × 320. The obvious improvement of larger pretrained

model proves the importance of Large-scale language pre-

training. The well-pretrained text encoder provides a good

Initialization embedding space, especially in the case of

lack of text content. On the 50% Test set, we improve the

CLIP baseline from 0.0825 to 0.1927 mAP MRR with sin-

gle model.

4.3. Qualitative Results

Furthermore, we visualize the ranking results in Fig-

ure 6, which shows the effectiveness of the proposed

method. All the top-6 samples are relevant to the query de-

scriptions. We highlight “key” words in the description and

show the proposed method can find the right matches with

the fine-grained attention.

5. Conclusion

In this paper, we propose a robust natural language-based

vehicle search system for smart city applications. To con-

nect the vision and language modalities, we jointly train

the state-of-the-art vision model and transformer-based lan-

guage model with the symmetric InfoNCE loss and instance

loss. Further, we design a two-stream architecture to in-

corporate both local details and global information of vehi-

cles, and apply the text augmentation technique backtrans-

lation to enhance the model robustness. Finally, the system

achieves 18.69% MRR accuracy and reaches the first place

in the natural language-based vehicle retrieval track of the

5th AICity Challenge. In the future, we will continually ex-

plore the large-scale and efficient vehicle search technique

for the intelligent transportation system, such as more elab-

orate model architectures, more powerful optimization ob-

jectives and more abundant data augmentation methods.
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