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Abstract

Traffic anomaly detection has played a crucial role in In-

telligent Transportation System (ITS). The main challenges

of this task lie in the highly diversified anomaly scenes and

variational lighting conditions. Although much work has

managed to identify the anomaly in homogenous weather

and scene, few resolved to cope with complex ones. In this

paper, we proposed a dual-modality modularized method-

ology for the robust detection of abnormal vehicles. We in-

troduced an integrated anomaly detection framework com-

prising the following modules: background modeling, ve-

hicle tracking with detection, mask construction, Region

of Interest (ROI) backtracking, and dual-modality tracing.

Concretely, we employed background modeling to filter the

motion information and left the static information for later

vehicle detection. For the vehicle detection and tracking

module, we adopted YOLOv5 and multi-scale tracking to

localize the anomalies. Besides, we utilized the frame differ-

ence and tracking results to identify the road and obtain the

mask. In addition, we introduced multiple similarity estima-

tion metrics to refine the anomaly period via backtracking.

Finally, we proposed a dual-modality bilateral tracing mod-

ule to refine the time further. The experiments conducted

on the Track 4 testset of the NVIDIA 2021 AI City Chal-

lenge yielded a result of 0.9302 F1-Score and 3.4039 root

mean square error (RMSE), indicating the effectiveness of

our framework.

1. Introduction

Traffic anomaly detection, one of the critical compo-

nents for ITS, attracted more attention as the broader use
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Figure 1: Examples of visualized detection results. Through

YOLOv5, even small vehicles in the remote regions can be

infered accurately with relatively high confidence score and

tight bounding box.

of surveillance cameras. With the aid of anomaly detec-

tion, traffic management can respond to emergencies and

make instantaneous decisions such as route re-planning and

healthcare resource allocation. Admitting more and more

cameras are mounted within the urban areas, only a few

of the data collected by these devices is processed and re-

sponded to. This is because of the extremely un-even situ-

ation between limited human monitoring resources and the

vast amount of collected data. Thus, an anomaly detection

framework of high generalization and efficiency is urgently

needed to confront this dilemma.

Despite the importance of such an anomaly detection al-

gorithm, several physical challenges, including object oc-

clusion, lighting conditions, ever-changing weather, various

anomaly scenarios, etc., must be addressed. Another diffi-

culty comes from the distribution of anomaly since it often

refers to an event that is not expected to occur in a given

context, suggesting the imbalance between normal and ab-

normal samples. This creates great difficulty in precisely

identifying the anomaly event in all samples since it only

makes up a relatively minor fraction. Besides, both the nor-



mal scene and abnormal scene are highly diversified. The

traffic flow pattern for the normal sample can vary from

each other, so it is for the abnormal samples. Therefore,

it is critical to define the traffic anomaly. Specifically, in the

NVIDIA 2021 AI City Challenge, the traffic anomaly can

be substantially categorized into two kinds: stalled vehicles

and crashing ones.

In recent years, most of the work is deep-learning-based,

and much state-of-art work is end-to-end algorithms. Such

algorithms aim to detect anomalies by modeling normal and

abnormal samples through deep neuron networks. Admit-

ting great performance has been achieved by these previous

work on many datasets, such as UCF-Crime [26], Shang-

haiTech [17], UCSD Ped [4], SUBWAY [1], they can hardly

generalize to another dataset. For one aspect, the scenes

within the aforementioned dataset are often identical and

homogenous. For another aspect, the anomalies in these

datasets give great change in both intensity and motion of

the frames. Both these two features make the modeling of

the anomaly event readily. Contrary to these datasets, Iowa

DOT [22], which functions as the benchmark for the chal-

lenge, consists of multi-scenarios and various weather, in-

dicating the infeasibility of implementing aforementioned

methodologies. Facing the current challenges, we proposed

a dual-modality framework to fully utilize the motion infor-

mation among frames to identify the traffic anomaly. Gen-

erally, two reasonable assumptions to tackle anomaly local-

ization are made. First, the normal vehicles should drive

along the road without parking movement lasting longer

than the traffic signal control period or un-smoothed trajec-

tory; thus, we define the problem as identify the stationary

vehicle and vehicles with abnormal trajectory, which often

refers to a car crashing event. Secondly, either stalled and

crashed vehicles will ultimately come to a stop.

With these two assumptions, we will localize the stop-

ping time of the vehicle then construct the trajectory to de-

termine if it is a stalled vehicle. For a stalled vehicle with

an un-smoothed trajectory, we determined that the start time

would be when it began to deviates from the normal status.

Concretely, we firstly utilized the classic MOG2 [33] algo-

rithm for the background modeling to leave out the static

information within the context. After the background mod-

eling module, we were able to better cope with the instant

occlusion of the abnormal vehicles, which managed to make

the detection result of these vehicles given by YOLOv5 [11]

more robust for multiple scenarios. Then we introduced a

novel box-level branch and fused it with a pixel-level branch

inspired by [3, 14] for the comprehensiveness of vehicle

tracking. Besides, the mask construction based on the fu-

sion of motion and tracking trajectory was employed to fil-

ter out the parking lots, which do not count as anomalous

regions. In our methodology, the filtered multi-granularity

tracking result only provides a rough time-localization for

the traffic anomaly. With the time and location provided

by the aforementioned module, we refined the result with a

proposed novel mechanism named Region of Interest (ROI)

backtracking, which adopts multi-faceted distance metric

for both object-level and pixel-level. Finally, we proposed

another novel module, a dual-modality bilateral trajectory

tracing branch, which makes a significant contribution to

the accurate inference of anomaly time.

The main contributions of this paper are summarized as

follows:

• A novel fusion methodology of the box-level and

pixel-level tracking branch is proposed. Each branch

functions as compensation for detecting anomaly

events, which is suggested to be efficient and robust.

• A novel backtracking methodology that utilizes the

object-level detection result to propose an ROI for sim-

ilarity estimation with three distance metrics is pro-

posed. The extensive testing of ROI backtracking in-

dicates its superiority in accuracy and efficiency

• A novel dual-modality bilateral trajectory tracing

methodology that utilized the RGB image and sparse

optical flow inspired by [30] in opposite directions to

mine the spacial-temporal information between frames

is proposed. This largely resolved the challenge cre-

ated by the crashing vehicle.

To our best knowledge, we are the very first to pro-

pose the dual-modality bilateral trajectory tracing in the

challenge to resolve the challenge brings about by abnor-

mal moving vehicles. Attributing to the aforementioned

strengths, our algorithm achieved a result with F1-Score of

0.9302 and an RMSE of 3.4039. The test result proved its

effectiveness by outperforming many other teams.

2. Related work

Anomaly detection, where many researchers have ex-

plicitly studied for years, has experienced a significant

methodology change. During the early years, many related

research [2, 4, 25, 29, 6, 13, 18, 20, 21]focused on how

to utilize handcrafted features such as Histogram of Optical

Gradient (HOG), Histogram of Optical Flow (HOF), Mix-

ture of Dynamic Textures (MDT) [20] that represent both

the local and the global pattern of images; then, machine

learning methods such as Support Vector Machine (SVM),

Markov Random Field (MRF) [12, 20], Isolation Forest [16]

were implemented to identify the anomaly. In the broad

sense, these machine learning algorithms mainly face the

problem of expensive computation and lack of efficiency.

Deep learning algorithms, as one of the most prospering

research fields, have proved their effectiveness on many



Figure 2: The pipeline of our proposed method that tracking stage provides the exact time and bounding boxes of anomalies

in the stationary conditions and localization stage traces back the instants of crashes if possible.

downstream tasks such as classification, detection, and seg-

mentation, become widely implemented in anomaly detec-

tion. Such methods [26, 9, 10, 31, 17, 8, 19, 23, 32, 28, 7]

often introduce a deep neuron network to learn a good

embedding or representation of the normal and abnormal

samples. These work can be essentially categorized into

two kinds: unsupervised and weakly-supervised frame-

work. Unsupervised anomaly detection [17, 9, 10, 31, 8]

only models the normal samples while using multiple loss

as the metric to classify the samples since the prediction

loss for the abnormal sample is statistically greater than

normal ones. The previous work mainly adopted the Auto-

Encoder (AE) and Generative Adeversal Network (GAN)

as the learning architecture for frame prediction or recon-

struction. However, these unsupervised work all confront a

problem of multiple-possibility for future frame prediction,

which results in blurred predictions. Also, to produce robust

results, the normal samples must be comprehensive; thus,

extensive labeling for samples is inevitable. Weakly super-

vise as another widely-used framework a solution for labo-

rious labeling by using Multiple Instance Learning (MIL)

and noised label learning. Other deep learning based work

includes methodology including multi-modality [28], meta-

learning [19] also produced considerable performance but

still remain as challenging topics. In conclusion, challenges

of laborious labeling and lack of interpretability, general-

ization is still unresolved. Since many traffic anomalies in

Iowa DOT [22] only have subtle intensity change between

frames, deep learning method might not be sensitive enough

for these anomalies. Therefore, in previous AI City Chal-

lenges, hybrid frameworks with deep learning techniques

were widely employed by teams. In 2018 AI City Chal-

lenge, Xu et al. [30] firstly introduced background model-

ing into the challenge and proposed dual-mode modeling

to identify the static and mobile anomalies. For 2019 AI

City Challenge, Bai et al. [3] developed an extra road mask

module and proposed the spatial-temporal information ma-

trix to discriminate the anomalies. In 2020 AI City Chal-

lenge, Li et al. [14] proposed a multi-granularity tracking

module to facilitate static vehicle tracking. In this paper,

we proposed a novel dual-modality bilateral trajectory trac-

ing mechanism that utilizes both frame intensity and sparse

optical flow to trace the trajectory in forward and backward

direction, respectively. This mechanism considerably con-

tributes to the fine-grained localization for anomalies with a

relatively small RSME of 3.4039 among all results of past

teams.

3. Methodology

The proposed two-stage framework is shown in Figure 2

with its main modules. According to the figure, the static

analysis stage provides the time and location when a vehi-

cle came to a complete stop. In the dynamic analysis stage,

the dual-modality bilateral module will be introduced to re-

trieve the crashing instant for moving anomalies. In the fol-

lowing sections, we introduce each module in the sequence

of processing.

3.1. Background modeling

Since both two types of anomalies, including stalled ve-

hicles and crashed vehicles, generally lead to stopped vehi-

cles left on the road after a period of time, the static object

analysis in modeling background is widely implemented in

anomaly detection. Meanwhile, the fixed perspective in

the videos with seldom rotation provides conveniences to

model the background in a proper way.

To model the background, we adopted MOG2 [33] based

on Gaussian Mixture Model (GMM). According to [14]

and our experiments, it was more resilient to scene changes

and camera shaking than simple moving average methodol-

ogy [30]. We followed the empirical parameter T set by

[14] where the components of GMM will be updated in

the interval of 120 frames at 30 fps. Besides, it is worth

mentioning that since the inner property of MOG2, the

time when anomalies appear in the background modeling

videos is often postponed compared to the actual timestamp.



Hence multiple methodologies for start time tracing were

proposed and introduced in the following sections.

3.2. Detection model

With the development of computer vision, object detec-

tion is of ever-growing importance. ITS raises many crucial

topics such as speed estimation, vehicle re-identification,

and anomaly vehicle detection. To effectively aid ITS, a

detection model with high performance is the prerequisite

to all aforementioned applications. In general, the detec-

tor can be divide into two groups: single-stage and second-

stage detector. For a single-stage detector, the head struc-

ture of the detector is responsible for prediction of location

and classification of the bounding box. Dissimilarly, the

classification and prediction task were conducted alterna-

tively. Since our model implements a tracking by detection

framework, the selection of the detection model will pri-

marily affect the performance for the later module. Due

to the extra vast amount of labeling data required by clas-

sification, we determined YOLOv5 [11] to be our detec-

tor in terms of a trade-off between timely-cost-efficiency

and performance. YOLOv5, the latest version among the

YOLO series, has achieved considerable performance on

COCO [15] and other datasets. Also, the Cross-Stage-

Partial-Connections (CSP) module proposed to facilitate

small object detection in YOLOv4 [5] is suitable since the

presence of tiny objects in the dataset.

To identify the vehicles of multi-view and multi-scale,

we employed several techniques in training. Firstly, we

manually labeled the vehicle class for a fraction of the

training set frames. Unlike COCO, we only labeled one

class, car, for the anomaly detection as the extensive ex-

periment indicates an increase in mean average precision.

Secondly, we adopted the adaptive-sized anchor-box, which

is deducted through the statistic distribution of all bound-

ing boxes using the K-Means clustering algorithm. Thirdly,

a multi-facet data-augmentation technique including shear-

ing, flipping, mosaic transformation, perspective transfor-

mation, etc., was employed for generating final training

data. Among all, the mosaic data augmentation proposed

in Bochkovskiy et al. YOLOv4 [5] increase the mean aver-

age precision by providing integration of four different con-

texts. Finally, we used the weight pre-trained on the COCO

dataset as initialization and then finetuned on our dataset.

For performance evaluation, the detection model yields a

result of 0.90 mAP@0.5 and an 0.87 F1-score at the con-

fidence threshold of 0.457. As a comparison, we trained

another detection model based on Faster R-CNN [24] with

the same training data; it only achieved 0.80 mAP@0.5. In

addition, the inference speed of YOLOv5 reached up to 65

fps without Test-Time-Augmentation (TTA) module, sug-

gesting the superiority in inference efficiency and precision.

Figure 2 shows some detection results by YOLOv5.

3.3. Road mask construction

Based on the fact that the stationary parking vehicles at

the parking lot do not count as anomalies, our algorithm

only outputs the static vehicle on/beside the main road as

an anomaly to avoid the false alarm. Inspired by [14], we

constructed the road mask in terms of both motion and tra-

jectory information. In detail, the mask region was com-

posed of areas where vehicle tracking results are found, and

intensity changes were apparent.

Motion-based road mask. We subtracted the consecu-

tive frames and emphasized the areas of difference. Three

hyperparameters were set to handle the changes: diff was

used as the subtract result in frame level, the parameter k

refers to the interval of implement subtract, T1 refers to the

upper bound of changing to avoid unexpected camera shak-

ing and rotation, T2 refers to the minimum area of ROI to

cope with abnormal local changes. Above all, we accumu-

lated all areas met the conditions to construct the motion-

based road mask.

Trajectory-based road mask. To further refine the mask

of road, we adopted the DeepSORT [27] as the multi-object

tracking algorithm to track all vehicles detected by the for-

mer detection module, where region without any tracking

results should not be considered as the regular route and,

thus, not an anomalous region. For the final fusion, we take

the intersection of the masks introduced above to eliminate

the false alarms. A for recovery of the original shape of

roads, morphological operations including dilation and ero-

sion were implemented as the post-processing module for

the mask construction.

3.4. Vehicle tracking

After the background modeling and detection module,

detection results for every frame are collected, but no

anomaly inference was yet made. To ensure the compre-

hensiveness of the anomaly inference, two branches of the

tracking algorithm were developed.

Pixel-level tracking. For tracking at pixel-level, we fol-

lowed the framework proposed by [3] to analyze anomaly

using the spatial-temporal matrix, which represents the dy-

namic information of stationary vehicles. In this method,

spatial-temporal matrices Vdetected, Vundetected, Vstate,

Vscore, Vstart and Vend are calculated iteratively to iden-

tify the suspicious anomaly region. Concretely, if the state

of one normality region transferred to a suspicious one,

pixel-level tracking would compare the region with bound-

ing boxes that were previously given to determine whether

an anomaly had happened.

Box-level tracking. With full adoption to anomaly re-

sults provided by the pixel-level tracking branch, we first

implement the DeepSORT [27] as the multi-object tracking

algorithm on the samples that are predicted as normal ones,

which serve as a supplement for anomaly detection. We set



multiple criteria to identify the actual anomaly inferences

during this phase while suppressing the false positive ones.

Specifically, considering the unavoidable loss of tracked id

caused by physical environment, we implemented IoU val-

ues as criteria to retrieve the original id. Then, we proposed

three criteria: interval, frequency, and stability of each id to

leave out the authentic anomaly vehicles.

3.5. ROI backtracking

Since the presence of static vehicle appearance delay in

background modeling frames, the anomaly inference times-

tamps for both pixel and box level are also delayed. There-

fore, an effective module must be developed to refine the

start time of the anomaly. Despite the imprecise inference

time, the location of the anomaly is invariant. Therefore,

we can establish a connection between original and back-

ground modeling frames by setting an ROI used to estimate

the similarity between the same region at two frames over

a time span. A novel backtracking methodology was then

proposed with the inspiration of [14].

Specifically, the ROI was set to be the anomaly bounding

box location provided by the previous modules. We firstly

search all detection results for each frame on original frames

to find the ideal objects, while the IoU value between two

bounding boxes functions as the object-level metric.

A pixel-level similarity measurement module then pro-

cesses the pair of boxes that have high IoU values. A single

distance metric might not be sufficient for various scenarios

due to its unilaterality; hence, three distance metrics are in-

troduced to evaluate the similarity of the intersection region

in adjacent frames, including Peak Signal to Noise Ratio

(PSNR), Structural Similarity (SSIM), and Euclidean dis-

tance. As the fusion of results produced by metrics above,

we utilize a voting and weighting mechanism to reach the

best performance while alleviating the extreme deviation

caused by the discrepancy among these metrics.

For the anomaly frame contains multiple anomaly vehi-

cles, we filtered the pixel-level inference results and left one

with the earliest start time. Then we compared it with the

box-level results to select the corresponding nearest results

for both branches. After the selection of ROI, we imple-

mented the ROI tracking algorithm separately for results

given by two branches. After the ROI tracking module, a

simple filtering mechanism is employed to combine simi-

lar anomalies and eliminate negative results with time and

bounding box information to gain the fused fine-grind track-

ing results.

3.6. Dual­modality bilateral trajectory tracing

While much previous work succeeded in inferring the

accurate start time for stalled vehicles, few have managed

inference the crashing instant for moving vehicles since

the widely-used background modeling eliminates most of

the motion information. Consequently, the aforementioned

modules were not adequate for accurate inference of start

time for moving vehicles. Therefore, we proposed a novel

dual-modality bilateral trajectory tracing module further

to analyze the motion pattern of the moving vehicles and

aimed to localize the crashing timestamp. Explicitly, in-

tensity information corresponding to the global pattern and

sparse optical flow corresponding to the local pattern were

utilized in forward and backward directions, respectively.

3.6.1 Multiple vehicle trajectory tracing

Statistically, vehicle crashes often come up with sharp turns,

which is the primary reaction of drivers when encounter-

ing such anomalies. Also, the sharp turns of an abnormal

vehicle often show transitivity in other vehicles along the

road for collision avoidance. Therefore, we determined the

anomaly time as the interval contains an extensive amount

of unsmoothed trajectories.

To obtain the dynamic information, we took the time

span S, consisting of 26 intervals of 1s as {S0, S1, ..., S25},

which starts 20s earlier than the given timestamp and ends at

6s later. The center points of bounding boxes on the original

frames are stacked over time to form the trajectory for each

vehicle. Each time node Si corresponds to a set of trajec-

tories for all vehicles in the camera monitoring area, which

can be represented as {Traji0, T raj
i
1, ..., T raj

i
n}. We con-

sider each normal Trajj
i within 1 second, which is a tol-

erable interval to be straight. On the contrary, the abnormal

one forms curving trajectories in a short period. Hence, to

estimate the curving degree, we utilize the Least Square al-

gorithm to fit straight lines and calculate estimation error Ei
j

as the curving index. To seek out extreme deviation values

in time scale, we set a constant threshold T to calculate ab-

normal curves in each trajectory Trajj
i where Ei

j is higher

than T add up for each interval denoted as Ni. Finally, a

time series of abnormal sharp curves can be established by

stacking Ni over time.

Obviously, distractions exist in some scenarios that

blending roads contribute to the normal curves of trajecto-

ries which should not be misclassified into abnormal ones.

In this situation, time series will have an initial value of

Ni as in each interval, amount of vehicles pass through the

roads, which form platform effect with relatively equal Ni

value and impair the peak of time series. Thus We adopt

hierarchical constraints to avoid this kind of false-positive

detection. Besides, road masks are introduced to eliminate

unexpected trajectories out of the main road area and to

seek off-track trajectories with length and intersection con-

straints.

From the visualization shown in Figure 4, some crashes

can be included and traced accurately to the exact time,

align with our sharp turning hypothesis.



Figure 3: Examples of singular vehicle trajectory tracing where include stalled and crashed ones. In our hypothesis, once

crashes happened, the trajectory of abnormal vehicles will curve immediately which representing violent variation in speed.

As the results displayed, speed changes and outliers in the time duration are plotted on the right with optical flow trajectories

on the left, respectively.

3.6.2 Singular vehicle trajectory tracing

Admitting the effectiveness of multiple vehicle trajectory

tracing, such object-level algorithm with global pattern

analysis will fail in cases such as camera shaking and global

similar motion pattern. The former case mainly results

in unavoidable unstable or vanished detection, making the

constant and steady tracking of same vehicle difficult. The

later case mainly fail because of lacking of sufficient con-

trastive normal samples.

Therefore, we proposed another branch of singular tra-

jectory tracing to obtain the local motion pattern captured

by sparse optical flow as the compensation for global per-

spective anomaly time localization. Optical flow, as a clas-

sical feature and modality in computer vision, is of great

importance for motion analysis. Unlike the object-level

trajectory tracing, it remains feasible when experiencing

aforementioned cases. To avoid the expensive computa-

tional cost led by pixel and its neighborhood-wised track-

ing, we limited the tracking feature points for each anomaly

detected. Concretely, since we had already obtained a re-

fined stopping time and bounding box location given by the

ROI backtracking, we used the sparse optical flow tracking

algorithm, Lucas–Kanade method, in backward direction.



Figure 4: Examples of sharp turning curves. From left to right, trajectories within intervals are displayed in time sequence.

With three assumptions that can be fairly made for opti-

cal flow: brightness constancy over time, subtle motion and

spatial similarity among neighbourhood, the motion of fea-

ture points can be reasonably calculated. For a point with

location (x, y) and its displacement(dx, dy) along horizon-

tal and vertical directions at time stamp t can formulate the

brightness constancy function as follows:

I(x, y, t) = I(x+ dx, y + dy, t+ dt) (1)

Then take the Taylor expansion of I(x+ dx, y+ dy, t+
dt) at (x, y, t):

I(x, y, t) ≈ I(x, y, t) + Ix ·
dx

dt
+ Iy ·

dy

dt
+ It (2)

Finally, the instance motion can be denoted as (u, v)
where u = dx

dt
and v = dy

dt
. Then we initialized p fea-

ture points within the bounding box at stopping frame and

track these points backward for 390 frames denoted as

a sequence of {F0, F1, ..., F390} where each time stamp

corresponds to Fi. For p tracking results in Fi, in-

cluding position and tracking status, we denoted them

as {Posi0, Posi1, ..., Posip} and {Sti0, St
i
1, ..., St

i
p}, respec-

tively. For next frame, only the points that are successfully

tracked in the previous frame should be updated to p. Sup-

posing each point location to be Posn, where only points

with Stn equal to true is further tracked. The points with-

out being tracked in the previous frame are deposed.

To avoid a small fraction of unreliable optical flow track-

ing, we adopted the outlier filtering methodology proposed

by [30] using the K-Nearest Neighbour to exclude the

highly deviated points. Then we calculate the average u and

v for every points and gives the final velocity magnitude as

follows:

m =
√

ū2 + v̄2 (3)

The velocity was then stacked as a time series for

each vehicle. To further reduce the noise in veloc-

ity time series, a suppression method was proposed to

pick out the top four velocity values selected with the

same interval from the top, represented with its in-

dexes as {m0
max,m

2
max,m

4
max,m

6
max} and the variable

length of neighbor L − index, where L is the constant

number set before the procedure. If all the neighbors

{mi−neighbor,mi−neighbor+1, ..., ,mi−1,mi+1,

...,mi+neighbor} are smaller than mi itself, we set mito 0

to weaken the disturbance of peak noises.

As for the final result, we utilized a moving window es-

timation module to identify the anomaly. Specifically, we

calculated the mean value m for the rolling window. The

mean absolute error (MAE) and standard deviation between

the values in the rolling window and m were also computed

as m mae and m std. Then the height of normal interval

can be determined as 2(m mae+scale∗m std) where the

centre value is m. All points distributed out of the range

are sought. Through further judgment, drastic changes and

smooth fluctuations are categorized into anomaly and nor-

malcy. We list out some typical distributions of abnor-

mal velocity points in Figure 3 that extreme pulses such as

the top-left curve and bottom-right one are the considered

anomalies at the summit, whereas the left two are normal

ones with a subtle variation or smooth acceleration.

4. Experiments

4.1. Track 4 dataset

Iowa DOT [22], the Track 4 dataset in NVIDIA 2021 AI

CITY Challenge is partitioned into 100 training videos and

150 testing videos which contains videos with an approxi-

mate length of 15 minutes and at a frame rate of 30 fps and a

resolution of 800×410 as the benchmark for the challenge.

Some of them contain anomalies due to stalled or crashed

vehicles. The main target of the challenge is to identify and



Table 1: Our results on Track 4 testset

F1-Score RMSE S4-Score

0.9302 3.4039 0.9197

localize anomalies in test videos to return the start time of

the anomaly and confidence score.

4.2. Implementation details

Detection model. YOLOv5 is implemented as the detec-

tor of our model. For the optimizer, we adopted Stochastic

Gradient Decent with an initial learning rate of 10−2. The K

value and number of anchors are both set to be 9. The infer-

ence augmentation is also used in the testing video, where

the TTA module will enlarge the image size by 30%; thus,

the size of the image will be expanded to 832 × 832. The

reason for this is to recognize the smaller object better.

Road mask construction. We follow [14] to set motion-

based and trajectory-based parameters except for the filter-

ing area, which is set as 6000 in the motion-based branch

to eliminate the continuous shaking frames. What is more,

we reduce the times of dilation in order to polish a thinner

outline.

Pixel-level tracking. The minimum abnormal duration

and suspicious abnormal duration are 60 seconds and 40

seconds, respectively. Other parameters are initialized cor-

responding to [3].

Box-level tracking. For anomaly detection, the mini-

mum abnormal duration is set to be 40s, and the vehicle

must appear at least four times out of 5 intervals of 10s. For

retrieval of vehicle id, IoU threshold is set to be 0.3. For

bounding box stability estimation, the standard deviation of

the center point must be below three either for x or y coor-

dinate.

ROI backtracking. The IoU between the selected bound-

ing box and background modeling detection results is set

to 0.9. The maximum deviation time is 12. Backtracking

thresholds of PSNR, SSIM, Euclidean are set as 13, 0.4,

0.7, and average thresholds are 10, 0.3, 0.65 with 15 sec-

onds max backtracking time.

Multiple vehicle trajectory tracing. The minimum

length of trajectory in each interval is 10 points. The thresh-

old of fitting error is 30. The off-track judgment is com-

bined with an area threshold of 40 pixels and a fitting error

of 10 at the lowest frequency of 8 times.

Singular vehicle trajectory tracing. The K value for the

KNN filter is set to be 6. The density estimation of the

clustering points was filtered by a threshold of 6.6. Finally,

the scaling factor used to construct the normal interval in

moving window estimation is 2.5.

Figure 5: The comparison of Track 4 testset results on pub-

lic leaderboard.

4.3. Evaluation and experimental results

Evaluation indexes for algorithm performance consist of

F1-Score and NRMSE for Track 4, respectively, repre-

senting the identification accuracy and time localization er-

ror. Specifically, the Track 4 score will be computed as:

S4 = F1× (1−NRMSE) (4)

where F1 determines the harmonic mean of precision and

recall, and NRMSE is the min-max normalization be-

tween 0 and 300 frames of time error. RMSE can be com-

puted on difference of time between ground truth and true

positive predictions. Briefly speaking, the maximum aver-

age prediction error is 300 seconds corresponding to a min-

imum NRMSE value 0. Specifically, NRMSE can be

calculated as:

NRMSE =
min(

√

1

TP

∑TP

i=1
(ti − ti

gt)2, 300)

300
(5)

We evaluate our methodology on the Track 4 testing data

and obtain relatively high F1-Score at 0.9302 while main-

taining low RMSE value at 3.4039, referring average time

error in seconds. Finally, according to Equation 4, we gain

0.9197 S4-Score on the full test set.

5. Conclusion

In this paper, a novel dual-modality two-stage anoma-

lies detection model that analysis both static and motion in-

formation for abnormal vehicles was proposed. The static

analysis stage infers the time and location of the static

anomalies at both pixel and box level; as a supplementary,

the dynamic analysis stage, including multiple and singular

trajectory tracing branch, was proposed to infer the crash-

ing instant in bilateral direction. In NVIDIA 2021 AI City

Challenge, a considerable performance with an F1-Score of

0.9302 and RMSE of 3.4039 was achieved through our pro-

posed framework.
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