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Abstract

Due to its relevance in intelligent transportation systems,

anomaly detection in traffic videos has recently received

much interest. It remains a difficult problem due to a variety

of factors influencing the video quality of a real-time traf-

fic feed, such as temperature, perspective, lighting condi-

tions, and so on. Even though state-of-the-art methods per-

form well on the available benchmark datasets, they need

a large amount of external training data as well as sub-

stantial computational resources. In this paper, we propose

an efficient approach for a video anomaly detection system

which is capable of running at the edge devices, e.g., on a

roadside camera. The proposed approach comprises a pre-

processing module that detects changes in the scene and re-

moves the corrupted frames, a two-stage background mod-

elling module and a two-stage object detector. Finally, a

backtracking anomaly detection algorithm computes a simi-

larity statistic and decides on the onset time of the anomaly.

We also propose a sequential change detection algorithm

that can quickly adapt to a new scene and detect changes

in the similarity statistic. Experimental results on the Track

4 test set of the 2021 AI City Challenge show the efficacy

of the proposed framework as we achieve an F1-score of

0.9157 along with 8.4027 root mean square error (RMSE)

and are ranked fourth in the competition.

1. Introduction

The identification of abnormal events such as traffic col-

lisions, violations, and crimes is one of the most crucial, de-

manding, and time-critical tasks in automated traffic video

monitoring. As a result, video anomaly detection has be-

come a subject of increasing interest, thanks to its appli-

cations in intelligent transportation systems. Anomaly de-

tection is a broad, important, and difficult research subject

that deals with identifying data instances that deviate from

nominal trends, as shown in Fig. 1.

Given the critical role that video anomaly detection will

play in ensuring security, stability, and in some cases, the

Figure 1: Challenging scenarios from the test videos. Sev-

eral anomalies in the test videos are not obvious and difficult

to detect by humans as well.

avoidance of possible disasters, one of the most valuable

features of a video anomaly detection system is the ability

to make real-time decisions. Traffic collisions, robberies,

and fires in remote locations necessitate urgent countermea-

sures, which can be aided by real-time anomaly identifica-

tion. Despite their relevance, online and real-time detection

approaches have received only a small amount of research.

Regarding the importance of timely detection in video, as

[23] argues, the methods should also be evaluated in terms

of the average delay, in addition to the commonly used met-

rics such as true positive rate, false positive rate, and AUC.

Traditionally, the video anomaly detection problem has

been formulated as detecting patterns which are previously

unseen in the training data. Most of the recent video

anomaly detection methods are based on end-to-end trained

complex deep neural networks [30, 21], which require a sig-

nificant amount of data to train. However, a majority of

such approaches can only work on datasets from homoge-

neous scenes, which is not the case in traffic datasets [20].

Moreover, such models need to be specifically trained on

videos from each scene it is deployed at, which is not ideal

for edge applications.

To tackle the above challenges, we propose a vehicle de-

tection and background modelling based approach for traf-
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fic video anomaly detection. We hypothesize that whenever

a traffic accident occurs or a vehicle stops abruptly, the vehi-

cle would be stationary in the video for a significant period

of time. To this end, we propose using a Gaussian Mix-

ture Model (GMM) to first eliminate the moving vehicles.

Then, we use a pretrained semantic segmentation model to

eliminate vehicles in parking lots and some false detections.

Since the segmentation model needs to be run only once,

we do not include its computational overhead. In an ideal

scenario, all vehicles from the videos except for stalled ve-

hicles on/near roads would be removed. We then use a vehi-

cle detection model to extract such stalled vehicles. Finally,

we monitor the structural similarity of the detected regions.

Whenever a vehicle stalls or a traffic accident occurs, this

would lead to a change in the structural similarity. Our con-

tributions in this paper are as follows:

• We propose an efficient framework for traffic video

anomaly detection which is capable of running on the

edge devices.

• We propose a sequential anomaly detection algorithm

which can significantly improve the robustness of the

approach.

• We extensively test our algorithm on the 2021 AI City

Challenge dataset without access to external data and

yet perform comparatively well.

In summary, we propose an unsupervised framework

which is capable of detecting anomalies, specifically stalled

vehicles and crashes, in real-time. Our model has been

tested on an NVIDIA Jetson AGX, which is a low-power

System on Module (SOM) and can be deployed at the net-

work edge. The experimental results reveal that with a

resource-efficient framework, our approach is capable of

performing competitively and is ranked fourth on the Track

4 test set of the AI City Challenge 2021, with an F1-score

of 0.9157 at an RMSE of 8.4027.

2. Related Work

While video anomaly detection has been extensively

studied in the recent years, it still remains a challenging

task. The existing approaches are mostly semi-supervised

in nature, with models learning a notion of normality from

the training videos and detecting activities that deviate from

it. Early approaches focused on using handcrafted motion

features such as histogram of oriented gradients (HOGs)

[4, 5, 19], Hidden Markov Models [17, 14], sparse coding

[34, 24], and appearance features [6, 19]. On the other hand,

recent approaches have been completely dominated by deep

learning based algorithms. These methods are based on spe-

cific scenes, e.g., they learn the nominal appearance, mo-

tion, and location features for each scene and then monitor

the reconstruction error [12, 13, 22, 25, 26] or the prediction

error [21, 18, 7, 10]. More recently, hybrid transfer learn-

ing based approaches have also been proposed [8] which

extract features using deep learning methods, use statisti-

cal approaches to detect anomalies, and is also capable of

continual learning.

On the other hand, there are also several supervised de-

tection methods, which train on both nominal and anoma-

lous videos. Particularly, [30] proposes using a deep multi-

ple instance learning (MIL) approach to train on video-level

annotated videos, in a weakly supervised manner. How-

ever, the main drawback of such methods is the difficulty

in finding frame-level labeled, representative, and inclusive

anomaly instances. Moreover, while they show a supe-

rior performance on similar anomalous events, they perform

poorly when faced with unknown and novel anomaly types.

In contrast to such approaches, traffic anomaly detec-

tion is more fine-grained and needs to be easy to gener-

alize to different scenarios. To this end, [11] studied de-

tection of abnormal vehicle trajectories such as illegal U-

turn. Particularly in the previous AI CITY Challenges

[33, 16, 3, 1, 27, 9, 20] used the background modeling

method, which has achieved competitive results, to effec-

tively eliminate the interference of the mobile vehicle, and

obtains the location of the static region to analyze. Specifi-

cally, [20] proposes a multi-granularity approach with pixel

and box tracking to detect anomalies. They hand label the

vehicles in the training data and then train a two-stage ob-

ject detector on it, achieving the first rank. On the other

hand, [9] propose a fast unsupervised approach which uses

k-nearest neighbors and K-means clustering for anomaly

detection. Their approach uses a pretrained YOLO ob-

ject detector, and achieves the second rank. However, all

the above methods require detecting all the vehicles in the

frames and then using a tracking algorithm to monitor their

trajectory. This leads to considerable computational over-

head and is not a feasible approach for deploying a vehicle

anomaly detection system on the edge.

3. Proposed Method

While the primary task in this challenge is to detect ve-

hicle anomalies as soon as possible, in general, it is also im-

portant to check the feasibility of the approach. While sev-

eral recent algorithms have shown remarkable performance

on several benchmark datasets, they also suffer from a sig-

nificantly high computational overhead. Particularly, the

state of the art algorithm proposed in [1] trains the detec-

tion model on external datasets [33, 36] and uses the com-

putationally heavy ResNet-50 model which requires 311 ms

per frame for vehicle detection on a reasonable GPU. In

[35, 31], a vehicle tracking approach is proposed. How-

ever, given the high number of vehicles detected in a traffic

video, tracking each vehicle also becomes computationally



Figure 2: Proposed vehicle video anomaly detection system. We first extract the background in the forward and backward

direction, and then only analyze the detected stationary vehicles.

inefficient. While using a computationally expensive model

certainly improves the performance, using it to detect ve-

hicles every frame significantly increases the time required

to process one video stream, thus defeating the purpose of

a video anomaly detection system. Therefore, a trade-off

between feasibility and performance is needed.

To this end, we propose a more light-weight and intuitive

approach. First, we employ a two-stage background mod-

elling approach to remove all moving vehicles. We propose

to focus only on the stationary objects that we see in the

video, specifically cars and trucks. Hence, we train a two-

stage object detector on the training videos using the labels

from [20]. Then, using a pretrained semantic segmentation

model to remove the missclassified vehicles by removing

those objects which occur outside the selected regions in

the video. Finally, in the anomaly detection stage, given

the region of interest, we locate the first instance where an

anomalous vehicle is detected using a backtracking algo-

rithm.

In the following subsections, we describe in detail the

proposed approach for efficient anomaly detection. We be-

gin by discussing the pre-processing and semantic segmen-

tation stages. Then, we describe the background modelling

and vehicle detection modules. Finally, we explain the

anomaly detection algorithm, which enables timely and ac-

curately detection of the onset of anomalies in the proposed

framework. The entire algorithm is given in Algorithm 1

and shown in Fig. 2. Additionally, we also propose a new

framework by breaking down the video anomaly detection

task into two separate problems, online anomaly detection

and offline anomaly localization, along with a sequential

anomaly detection approach, which we believe would help

design more robust systems.

3.1. Pre­Processing and Semantic Segmentation

The AI City Track 4 test dataset also includes videos

which have several corrupted or jittery frames. To deal with

such videos, we employ a simple filter that measures the

mean of the frame extracted every 30s and if it is close to

zero, removes it. To extract background masks, we use a

hierarchical multi-scale semantic segmentation model pre-

trained on the Cityscapes dataset 1. The model uses HRNet-

OCR as backbone and is more memory efficient than other

approaches. It uses an attention based approach to com-

bine multi-scale predictions. For the purpose of extracting

masks, we consider roads and vehicles as a single label and

all other classes as a different label.

3.2. Background Modelling

We hypothesize that stalled vehicles due to accidents or

some mishap remain stationary for an extended period of

time. Such vehicles, under decent lighting conditions would

1https://github.com/NVIDIA/

semantic-segmentation



Figure 3: Comparison of forward background modelling and backward background modelling. We see that forward mod-

elling suffers from visible vehicles in the initial images and backward modelling suffers from visible vehicles in the later

images.

become a part of the background and make it easier for

anomaly detection. To this end, for background modelling,

we employ the MOG2 method [37] in this paper. Since

MOG2 is robust against image jittering and lighting vari-

ations, the extracted background masks do not have a lot

of difference between them. Specifically, we set our update

interval at 120 frames at 1 fps. While this reduces the com-

putational cost, it takes longer for moving objects to com-

pletely disappear. However, for the purpose of the proposed

algorithm, it is absolutely essential for all moving objects

to be completely removed, or they could be sources of false

positives. Hence, we extract the background in the forward

and backward directions (Fig. 3) and then merge them.

3.3. Detection Model

Object detection has received a lot of attention in re-

cent years. Broadly, object detectors can be classified into

single-stage and two-stage detectors. In single-stage object

detectors such as YOLO (You Only Look Once) [28] and

SSD (Single Shot Multibox Detector), the object detection

task is treated as a simple regression problem, and directly

output the bounding box coordinates. On the other hand,

two-stage detectors such as Faster R-CNN [29] use a region

proposal network first to generate regions of interest and

then do object classification and bounding box regression.

These methods are typically slower and take considerably

longer, but are much better at detecting small objects. While

single stage detectors are more efficient, we noticed that re-

moving the false detections due to the lower accuracy ac-

crues additional computational overhead, thus negating the

advantage of using such detectors. To this end, following

[20], we train a Faster R-CNN model which uses a Squeeze

and Excitation Network (SENet) [15], since they general-

ize extremely well across different scenarios. SENet has a

depth of 152 and uses a K-means clustering algorithm to

cluster anchors, with the distance metric defined as:

D(box, centroid) = 1− IoU(box, centroid),

where IoU denotes the intersection of union.

We also leverage data augmentation to avoid overfilling

and generalize the model to various lighting and weather

conditions. Specifically, we use data augmentation tech-

niques such as higher resolution, data flipping, and data

cropping to improve the generalization capability of the al-

gorithm. Since many of the vehicles are extremely small

and difficult to detect, we also employ random cropping to

learn on multiple scales. Each randomly cropped image is

also resized to the recommended size of 1333x800. More-

over, to improve the detection recall, we also employ a feed-

back approach in combination to data flipping, which helps

reduce the number of false positives. The images are ran-

domly mirror flipped with a random probability of 0.5. The

initial model is trained on the COCO dataset and then fine

tuned using the AI City 2021 Track 4 training videos. We

use the PaddlePaddle framework to train our model. The

labelled training videos consist of frames extracted every

four seconds from the training dataset and assigned bound-

ing box level labels to the vehicles in images. We show

some of the detected vehicles in Fig. 4

Once object detection is performed for the entire video,

we do some post-processing to eliminate stationary back-

ground objects detected as vehicle and slowly moving vehi-

cles. Specifically, we map the center (ctxi, c
t
yi) of the bound-

ing box for an object i detected at each time instance t to a

two dimensional plane. Then, for each point (ctxi, c
t
yi), we

compute the k-Nearest-Neighbor (kNN) distance dtxi,yi(k)
to its k neighboring points. Specifically, we consider an ob-

ject i as misclassified if

dtxi,yi(k1) ≤ l1, (1)



Figure 4: Sample frames of detections.

where k1 ≫ l1, and as a slow moving vehicle if

dtxi,yi(k2) ≥ l2, (2)

such that k2 ≪ l2.

3.4. Backtracking Anomaly Detection

For detecting the anomalies, we leverage the structural

similarity (SSim) measure [32], which is a standard im-

age comparison metric in Python libraries, for the frames

within the detected region of interest, between the start of

the video, t = 0, and the instance when the stalled vehicle

was detected, tk. The motivation behind this is that in the

absence of a stalled vehicle, the structural similarity with re-

spect to an image with a stalled vehicle would remain close

to zero, and would increase significantly when a vehicle ap-

pears. To remove increases caused due to noise, we apply a

Savitzky-Golay filter to the similarity statistic. Specifically,

we focus on whether the increase is persistant over several

frames or occurs only over a couple of frames. Finally, we

declare t as the onset time of the anomaly when the similar-

ity statistic crosses the threshold. Fig. 5 shows a case where

a stopped car is successfully detected by our algorithm with

minimum detection delay. In Algorithm 1, we summarize

our entire pipeline.

4. Experiments

4.1. Experimental Setup

The Track 4 dataset of the AI City Challenge 2021 con-

sists of 100 training videos and 150 testing videos, each

with an approximate length of 15 minutes. The videos

are captured at a frame rate of 30 fps and a resolution of

800x410. The purpose of the challenge is to devise an algo-

rithm that is capable of identifying all anomalies with min-

imum false alarms and detection delay. The anomalies are

generally caused due to stalled vehicles or crashes. In con-

trast to previous years, the testing data is significantly more

difficult since it consists of several videos with corrupted

frames and noisy data. Hence, it is also very important to

preprocess such videos since they can lead to false alarms.

The evaluation for Track 4 had two major criteria,

namely detection delay measured by the root mean square

error (RMSE) and the detection performance measured by

the F1 score. Specifically, the final statistic was termed as

Algorithm 1: Proposed anomaly detection algo-

rithm

Stage: Preprocessing

Input: f1, f120, . . . , fN

Output: (c1xi, c
1

yi), (c
120

xi , c120yi ), . . . , (cNxi, c
N
yi)

1: for t = 1, 120, . . . , N do

2: Obtain the averaged image F t
avg using MOG2.

3: Determine bounding box for each detected object i.

4: Remove overlapping boxes using NMS.

5: Build set CXY .

6: Compute segmentation map S using semantic

segmentation.

7: end for

Stage: Candidate Selection

Input: Set CXY , segmentation map S

Output: Centroid (m1, n1), . . . , (mK , nK)

1: for t = 1, 100, . . . , N do

2: Remove misclassified objects using Eq. (1).

3: Remove slow moving vehicles using Eq. (2).

4: end for

5: Select K using elbow method.

6: if Centroid (mk, nk) not in S then

Remove (mk, nk)
7: end if

Stage: Backtracking Anomaly detection

Input: Anomaly detection time tk for centroid k,

region of interest (wt
i , h

t
i)

Output: Anomaly onset time δt

1: for t = 1, 10, . . . do

2: for k = 1, . . . ,K do

3: if SSim (ROIt,ROItk ) > threshold) then

4: Declare t as anomaly onset time.

5: end if

6: end for

7: end for

S4 and was computed as

S4 = F1(1−NRMSE) (3)

where NRMSE is the normalized version of the root mean



Figure 5: Backtracking anomaly detection pipeline for the proposed framework. We monitor the structural similarity (SSim)

for each region of interest and decide to raise an alarm when the SSim crosses a threshold.

F1 RMSE S4

Our Method 0.9157 8.4027 0.8900

Table 1: Our performance

square error and is given by:

NRMSE =
min

√

1

TP

∑TP

i=1
((tpi − t

gt
i )2, 300)

300
(4)

and F1-score is given by:

F1 =
2TP

2TP + FN + FP
. (5)

The range of S4 score is from 0 to 1, with 1 signifying the

best performance that could be achieved. A detection was

considered as a true positive if it was detected within 10

seconds of the true anomaly.

4.2. Implementation details

In our implementations, the detection backbone network

used is SENet-152, which is pretrained on the the COCO

dataset and fine tuned on the labelled training data from

the challenge. We use the suggested parameters, with

stochastic gradient descent and a learning rate of 0.00125

and minibatch of 8. We train the model for 15K itera-

tions, and the input images are resized to dimensions of

800x1333. The model utilizes 5 layer feature maps and

use [16,32,64,128,256] as anchor boxes. During testing, the

frames are extracted at 1 fps. The Jetson AGX is initialized

with NVIDIA JetPack 4.3 and compiled with PaddlePaddle.

4.3. Performance Evaluation

As shown in Table 1, we achieve an F1 score of 0.9157

and an RMSE score of 8.4027. The final S4 score com-

puted using Eq. 3 is 0.8900, which placed us fourth in the

challenge. The fact that no external data was used shows

the generalization capability of our proposed algorithm. In

Table 2, we show the results among all teams. The pro-

cessing time of each step in our algorithm on the edge de-

vice NVIDIA Jetson Xavier is given in Table 3. The pro-

cessing time is for each test video, which is approximately

15 minutes long. The object detection module is the most

computationally expensive component; it requires about 14

minutes for each video. This can be drastically reduced by

using a more efficient object detection model. The forward

and backward background modelling take 2.5 minutes each

and can be executed in parallel. The final anomaly detec-

tion requires 1.2 minutes, making the end-to-end algorithm

real-time.

Leaderboard

Rank Id Name S4

1 76 KillerSeven 0.9355

2 158 BD 0.9220

3 92 WHU IIP 0.9197

4 90 SIS Lab 0.8900

5 153 Titan Mizzou 0.5686

6 48 BUPT-MCPRL2 0.2890

7 26 Attention Please! 0.2184

8 154 Alchera 0.1418

9 12 CET 0.1401

Table 2: Result comparison on the Track 4 test set from the

top 9 on the leaderboard.



Component Processing Time (minutes)

Object Detection 13.9

Forward BG Modelling 2.5

Backward BG Modelling 2.5

Backtracking 1.2

Table 3: Processing time on NVIDIA Jetson Xavier AGX

for a test video of 15 minutes long.

5. Discussion

Currently, the traffic video anomaly detection literature

lacks a clear distinction between online anomalous event

detection and offline anomalous frame localization. Partic-

ularly, online anomaly detection is essential for detecting

emergencies in a timely manner, whereas offline anomaly

localization is relevant in future video analysis. The S4

evaluation metric used in the AI City Challenge considers

the detection delay, but does not require the algorithm to

be online. Specifically, it combines the event-level detec-

tion delay with the frame-level F1 score. We believe that it

is necessary to formally break down traffic video anomaly

detection into two separate problems:

• Online Detection: Because of the time-sensitive nature

of video anomaly detection, the proposed framework

should be capable of real-time detection of anomalous

events while minimizing the number of false alarms.

• Offline Localization: Once an anomalous event is re-

liably detected, an additional feature that the system

can provide is temporally and spatially localizing the

anomaly in frames and pixels, respectively. Since ac-

curacy is the defining criterion here rather than quick-

ness, this operation can be performed in an offline

mode.

Problem Formulation: Given a video stream F =
{f1, f2, . . . }, the system observes a new frame {ft, xt} at

each time instance t, comprising activity(s) xt drawn non

i.i.d. from a complex and unknown distribution X , which

itself can undergo gradual or abrupt changes. For online

anomalous event detection, the objective is to minimize the

average detection delay while maintaining an acceptable

false alarm/positive rate. Hence, we formulate this in terms

of quickest change detection framework [2], which is tai-

lored for this objective:

X = X0 for t < τ, and X 6= X0 for t ≥ τ.

where τ is the instance when the anomaly begins. In this

formulation, the objective is to quickly and reliably detect

the time instance τ . This is fundamentally different from

frame localization, in which the objective is to classify the

frames as nominal or anomalous without regard to continu-

ity of video stream and anomalous event.

After detection of an anomalous event, given a video seg-

ment, the offline anomaly localization problem can be for-

mulated as a binary hypothesis test for each frame. The vast

majority of existing works implicitly pursue this offline lo-

calization problem for video anomaly detection.

Performance Metric for Online Detection: Since the

online detection of anomalous events in streaming video is

not rigorously studied in the literature, there is a need for a

suitable performance metric to evaluate algorithms address-

ing this problem. While the commonly used frame-level

AUC (area under the ROC curve, borrowed from binary hy-

pothesis testing) might be a suitable metric for localizing

the anomaly in video frames, it ignores the temporal nature

of videos and fails to capture the dynamics of detection re-

sults, e.g., a detector that detects the later half of an event

holds the same AUC as the detector that detects every other

frame. To avoid cases where a detector might always raise

an alarm, the false alarm rate also needs to be monitored.

We here present a new performance metric called Average

Precision Delay (APD), which is based on average detection

delay and alarm precision:

APD =

∫

1

0

P (α) dα, (6)

where α denotes the normalized average detection delay,

and P denotes the precision. The average detection delay

is normalized by the largest possible delay either defined by

a performance requirement or the length of natural cuts in

the video stream. Here, precision is defined as the ratio of

number of true alarms to the number of all alarms. APD ∈
[0, 1] measures the area under the precision-delay curve to

give a comprehensive performance metric for online video

anomaly detection. A highly successful algorithm with an

APD value close to 1 must have high reliability in its alarms

(i.e., precision close to 1) and low delay.

Sequential Anomaly Detection: Due to the temporal na-

ture of traffic videos, we propose a nonparametric sequen-

tial anomaly detection algorithm which aims to achieve high

alarm precision and low detection delay. The proposed al-

gorithm leverages the computed structural similarity SSim

et for each extracted frame ft in the training dataset. Once

we compute the structural similarity, we normalize them be-

tween [0, 1] and then extract the nonzero values and build a

set Strain. Then, for a significance level, e.g., α = 0.05, the

(1 − α)th percentile γ of Strain is computed. This is used

as a baseline statistic to remove the nominal structural sim-

ilarity. For online testing for anomalous events, following

the statistic update rule of the minimax-optimum CUSUM

algorithm [2], we accumulate the anomaly evidence et − γ



Figure 6: The advantage of sequential anomaly detection

over a single-shot detector. It is seen that a sequential de-

tector can significantly reduce the number of false alarms.

to obtain the test statistic st:

st = max{0, st−1 + et − γ}. (7)

Finally, the test continues until the accumulated anomaly

evidence st exceeds a predetermined threshold h, which

controls the trade-off between the conflicting objectives,

high precision and low delay. Once an anomalous event

is detected at time T = min{t : st ≥ h}, we find the point

where st starts continuously decreasing, say T + M , and

compare the anomaly evidence et, t ∈ [T, T +M ] for each

suspicious frame with a threshold g for anomaly localiza-

tion. The threshold g also determines the trade-off between

the true positive and false positive rates in localization.

To illustrate the significance of the proposed sequen-

tial detection method, we compare the structural similarity

computed to the sequential algorithm. As shown in Fig. 6,

the proposed sequential statistic handles noisy evidence by

integrating recent evidence over time. On the other hand,

the instantaneous anomaly evidence is more prone to false

alarms since it only considers the noisy evidence available

at the current time to decide.

6. Conclusion

In this work, we proposed an efficient solution for traffic

video anomaly detection. The proposed solution is able to

perform competitively in the 2021 AI City Challenge and

run at an edge device such as NVIDIA Jetson Xavier. We

also highlighted key shortcomings in the existing problem

formulation and proposed a new framework that addresses

them. Since the ground truth was unavailable, we were

unable to evaluate the performance of our model on the

proposed online event detection metric, but we hope that

it can be helpful for future algorithm design. Our future

work would include density estimation for the K-means al-

gorithm and a continual learning based model capable of

learning different type of anomalies.
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