
Fast Vehicle Turning-Movement Counting using Localization-based Tracking

Derek Gloudemans and Daniel B. Work

Institute for Software Integrated Systems

Vanderbilt University

1025 16th Avenue S., Nashville, TN 37212

derek.gloudemans@vanderbilt.edu

Abstract

Despite the high utility of traffic volume and turning

movement data, such data is still hard to come by for the

vast majority of roadways and intersections in nearly ev-

ery city. Edge computing devices offer a promising tool for

recording turning movement data if lightweight algorithms

can be designed to run in real-time with relatively modest

computational complexity. To that end, this work presents

Vehicle Turning-Movement Counting using Localization-

based Tracking (LBT-Count). This method is fast because

it never performs detection on a full frame. Instead, only

a few portions of the image are cropped and used to de-

tect objects within the frame. The method achieves com-

petitive performance on the public evaluation server for

Track 1 of the AI City Challenge (7th overall on the first

50% of data). Furthermore, we show that LBT-Count is

52% faster than an analogous counting algorithm utilizing

a traditional tracking-by-detection framework on available

challenge data.

1. Introduction

Vehicle turning-movement counting is an essential tool

for transportation planning. Accurate vehicle counts are

necessary to determine roadway utilization, identify ar-

eas of congestion, and optimally allocate funding to max-

imally increase transportation quality of service within a

constrained budget. Historically, these vehicle counts were

performed manually using handheld electronic devices.

Inductive-loop sensors [10] and radar sensors [27] offer au-

tomation of vehicle counting, but these infrastructure-based

solutions are expensive, inflexible and only usable in the lo-

cation in which they are installed, making counting of mul-

tiple vehicle movements at complex intersections difficult

and costly. To combat these weaknesses, portable magnetic

sensors have also been proposed [12].

Despite the relatively long and well-established usage

Figure 1. Proposed method (LBT-Count). (a.) Two types of re-

gions within the current frame are of interest: manually-defined

source regions (green dashed boxes) and expanded boxes (other

dashed boxes) centered on tracked object a priori locations (solid

boxes) which are predicted using information from previous

frames. (b.) These regions are cropped from the overall frame. (c.)

The localizer produces object bounding boxes within these crops.

(d.) Bounding boxes are transformed back into global frame coor-

dinates to update existing and initialize new tracklets. (e.) When

tracked objects intersect sink regions (red dash), the associated ve-

hicle movement is counted.

of existing traffic-counting devices, the nexus of three key

trends in the past 10 years make vehicle turning-movement

counting a problem of renewed interest, as seen by this

task’s presence in the 2020 and 2021 AI City Challenges

[38]. First, the development of fast and accurate image pro-

cessing methods [28] allow for video data to be reliably

and accurately used to provide information in transporta-

tion contexts. Second, state and federal transportation orga-

nizations have become increasingly interested in intelligent

transportation systems (ITS) that both utilize and incorpo-

rate traffic data to allocate resources and even make trans-

portation decisions in real-time. [45]. Lastly, edge com-

puting devices continue to become cheaper, more computa-

tionally powerful, and more ubiquitous such that they now

provide a feasible tool by which to study traffic in many

cities [22, 24].



Vehicle turning-movement counting from video data is

now a fairly well-studied problem [1, 4, 9, 13, 17, 18, 36,

39, 43, 44, 46, 47, 54, 56] and many accurate algorithms

exist for this task. Nearly all such algorithms are based on

the detect-track-count paradigm, where objects (vehicles)

are first detected in a frame, then associated with detections

from previous frames (tracked). Finally, vehicle trajectories

are used to identify the turning movement of each vehicle

through the camera field of view. Unfortunately, the accu-

racy of these methods cannot be realized in practice because

slow object detection steps prevent these methods from pro-

cessing incoming data in real-time. This is even more true

when these algorithms are run edge devices, which are less

computationally powerful than the server-grade computers

on which algorithms are generally developed.

To address this issue, we leverage our recent work on a

fast and accurate joint object detection and tracking method,

Localization-based Tracking (LBT) [20]. This method

avoids the slow detection step on most frames during track-

ing by using exisiting tracklet locations to provide a prior

for object locations in the current frame. Regions corre-

sponding to these tracklet locations are cropped and pro-

cessed by a localizer (an object detector trained to locate a

single object of interest within a crop) while other regions of

the frame are ignored. Periodically, detection is performed

on the overall frame to initialize new objects.

[20] The main contribution of our work is to introduce a

new method for counting vehicle turning movements lever-

aging LBT to perform fast and accurate detection and track-

ing, which we call Vehicle Turning-Movement Counting us-

ing Localization-based Tracking (LBT-Count). New to this

work, we utilize object source regions within a camera field

of view and process these regions with the localizer at ev-

ery frame such that detection is never performed on a full

frame, yet new object tracklets can still be initialized at ev-

ery frame. To the best of our knowledge, LBT-Count is the

first traffic counting algorithm to explicitly avoid perform-

ing object detection on whole frames, and is one of only a

few algorithms to break the detect-track-count paradigm for

this task [39, 56].

An overview of the proposed approach is shown in Fig-

ure 1. At a frame n, (a). cropping boxes are generated based

on i.) the predicted location of already-tracked objects, and

ii.) predefined source regions for the camera field of view.

The cropping boxes are (b.) cropped from the overall frame,

and (c.) processed by the localizer to obtain predicted object

bounding boxes. The bounding boxes are (d.) transformed

into global frame coordinates, where bounding boxes from

source region crops are used to initialize new objects, and

boxes corresponding to object tracklets are used to update

these tracklets. (e.) When tracked objects reach predefined

sink regions, the combination of that object’s source region

of origin and the sink region are used to predict a turning

movement for that object.

The rest of this article is organized as follows. In Sec-

tion 2 we review existing approaches for vehicle turning-

movement counting and related problems. Section 3 details

our proposed method. Section 4 briefly describes Track 1

of the 2021 AI City Challenge on which we evaluate the

proposed method, and Section 5 presents the competitive

results of the evaluated method.

2. Related Work

Notable methods for tasks related to vehicle turning-

movement counting are briefly reviewed, namely object de-

tection, multiple object tracking and single-movement vehi-

cle counting. Methods for vehicle turning-movement count-

ing are then reviewed.

2.1. Object Detection

All vehicle counting methods rely on the accurate detec-

tion of vehicles within an image. Traditional approaches

within the vehicle context relied on background subtraction

and clustering [4, 5] or Gaussian mixture models [44, 51].

The vast majority of modern approaches leverage GPU-

accelerated convolutional neural networks (CNNs) for fast

and accurate object detection [14, 19, 29, 30, 33, 41, 42].

One accurate category of CNN architecture is the two-

stage detector, in which a first stage extracts features and

identifies regions likely to contain objects, and a second

stage performs bounding box regression and classification

on these proposals [42]. Faster one-stage object detectors

skip the region proposal step to boost speed [33, 41]. Re-

cent works have built upon this architecture, inspired by hu-

man object recognition behaviors to utilize object keypoints

and keypoint-specific losses including corners [30], centers

[14], or combinations of each at multiple scales [19]. Other

approaches have explored ever-more-complex architectures

for passing and aggregating information between layers. In

[53] deeper aggregations and combinations of feature maps

are used to create a more robust feature set, and in [29] a

more nuanced neural architecture is learned for combining

features at multiple scales, building on the powerful feature

pyramid network (FPN) approach proposed in [33]. Most

state-of-the-art detection methods cannot yet process im-

ages of modest size (e.g. 1920 x 1080 pixels) at the rate

of modern video (30+ fps) [34].

2.2. Multiple Object Tracking

Multiple Object Tracking (MOT) is the task of associat-

ing objects in each frame temporally such that each unique

object has the same label across all frames in which it ap-

pears. Some popular approaches utilize Euclidean distance

between object tracklets and detections from the next frame

[7, 15] or intersection-over-union-based comparison [8],



and utilize Kalman filters to predict tracklet locations for in-

creased accuracy [7, 11, 15]. Other tracking algorithms in-

corporate visual features to associate objects across frames

[32, 49, 50, 55].

Recent MOT methods have utilized information from the

object tracking context to inform detection, performing de-

tection and data association across frames jointly. One such

framework is object re-detection, in which previous object

locations are input to the detector as region proposals [6, 31]

or heatmaps [57]. Other approaches pass pairs or larger sets

of objects to the detector at each frame to both boost de-

tection accuracy and aid in data association across frames

[16, 40]. In [20], object locations from previous frames are

used to crop relevant portions of the frame, and only these

area are searched for objects, reducing CNN inference time.

2.3. SingleMovement Vehicle Counting

The task of single-movement vehicle counting or count-

ing of vehicles passing a fixed line generally requires ob-

ject detection, as well as object tracking to avoid double-

counting the same vehicle in multiple frames. As noted in

[21], single movement vehicle counting is still a challenging

task in cases where camera field of view creates extremely

high overlap between vehicles. In [5], an early algorithm for

object counting is proposed utilizing background subtrac-

tion, blob fitting to cluster pixels into objects, and Kalman

filtering to track vehicles across frames. [51] utilises Gaus-

sian Mixture models for clustering background-subtracted

pixels and compares each resulting cluster’s convex hull

area to its contained bright pixel area to explicitly predict

object occlusion. [2, 3] use CNN-based object detectors and

the Kanade-Lucas-Tomasi feature tracker to track and count

objects. Similarly, [35, 37] utilize CNN object detectors

and Kalman filtering for object tracking through the move-

ment of interest, and [52] combines a cascade feature-based

CNN with IOU tracking [8]. [36] also utilizes a weakly

defined homography transformation into real-world coordi-

nates to estimate each tracked vehicles length and inform

vehicle classification. [48] makes use of foreground and

background information to drastically reduce the feature

space relative to image pixel-space before regressing object

locations. [26] does not track objects, but instead maintains

occupancy counts for several regions with the frame to log-

ically determine when a vehicle should be counted.

2.4. Multiple Turning Movement Counting

The task of multiple turning movement counting is

distinct from single-movement vehicle counting in that a

movement uniquely defined by an object’s origin and des-

tination must be predicted for each counted object. As

with single movement counting, multi-movement vehicle

counting is still a challenging task especially when real-

time performance is required. [18] utilizes a neural network

to predict multiple vehicle turning movement counts at in-

tersections given only aggregate approach traffic volume,

which could effectively turn single-movement algorithms

into multiple-movement counting algorithms, but this ap-

proach is not widely used. Nearly all algorithms for vehicle

turning-movement follow the detect-track-count paradigm,

where objects are detected in each frame, tracked across

frames, and tracklets are subsequently categorized into turn-

ing movements, though [39] instead utilizes a joint track-

ing and detection method, Tracktor [6], and [56] instead di-

rectly regresses vehicle counts from an input video using a

Long-Short Term Memory (LSTM) neural network to incor-

porate temporal information into the task. Most approaches

for counting vehicle movements from trajectories utilize

trajectory passage through unique sets of regions with the

camera field of view to uniquely identify the relevant turn-

ing movement [4, 9, 13, 17, 39, 46], directly compare trajec-

tories to canonical turning movements from each possible

movement category [1, 36, 44, 54], or do some combina-

tion of the two [43, 47]. While many approaches in the first

category require only a source and sink region to uniquely

define a movement, some methods utilize larger sequences

of regions to help distinguish between turning movements

that occupy similar areas within a camera field of view

[9, 46]. In the second category, the longest common sub-

set (LCSS) shared by object trajectories and canonical turn-

ing movements is often used to assign turning movements

to trajectories [44], but K-nearest neighbors clustering [1],

scale-normalized trajectory similarity [54] and Hausdorff

distance [36] are also used. [54] also scores each turning

movement in terms of stability, completeness, and proxim-

ity to each object’s trajectory, and smooths out anomalous

points in each trajectory. [47] performs segmentation on

trajectories and compares segments to known turning move-

ment segments.

3. Methodology

This section describes Vehicle Turning-Movement

Counting using Localization-based Tracking (LBT-Count)

in detail.

The algorithmic process for an arbitrary frame n is

shown in Figure 2. This method utilizes our previously-

proposed Localization-based Tracking (LBT) framework

[20], which leverages the tracking context to speed up ob-

ject detection in a video. For each frame, regions of inter-

est likely to contain objects (vehicles) are cropped from the

overall frame. These crops are passed to a localizer (sin-

gle object detector), and the resulting detected objects are

used to update existing tracklets and initialize new track-

lets. Whenever a tracked object enters a sink region of the

frame, the path of the object is used to classify that object’s

turning movement, and thenceforth the vehicle is no longer

tracked. We elaborate on each step of this process next.



 5. Refine tracklets - update tracklet states,
remove anomalies

1. Preprocess - predict tracklet locations

 2. Crop frame - crop tracklets and source
regions from frame n 

4b. Source region
crops - use boxes to

Initialize new
tracklets 

Get frame n

 3. Localize - Predict boxes, confidences and
classes for each crop

 4a. Tracklet crops -
select best output for

each crop

6. Count Movements - remove objects in sink
regions; increment movement count

corresponding to object source-sink pair

Measure Object Locations this frame?

Yes No

Figure 2. LBT-Count (proposed) process for a frame n.

Step 1: Preprocess Tracklet Locations

Throughout video processing, the state of each tracklet

(tracked object) is estimated using a Kalman filter [25] as

in Kalman filtering-based Intersection-over-Union tracking

(KIOU) [8, 11]. A 2-dimensional, constant-velocity motion

model is used for filtering each object’s position. At each

frame n, the filter is used to estimate a priori (estimated

without measurement) locations of each existing tracklet.

In many video sequences, objects move predictably and

can be tracked accurately without measuring their locations

at every frame. In this work, a measurement is performed

every floc frames (a parameter tuned per unique camera

field of view). On all other frames, visual information is

not used at all, and Step 2-4 are skipped.

Step 2: Crop Frame

Each a priori tracked object location (predicted using

information from frames {0...n − 1} and expressed as a

bounding box center x and y coordinate, width, and height)

is expanded by a factor of b (to ensure that the tracked ob-

ject is contained within the expanded box) and made square.

The resulting boxes are used to crop the corresponding re-

gions from the overall frame.

These crops only account for objects that were tracked

for at least one previous frame. The original LBT frame-

work initializes new objects for by performing detection on

an overall frame periodically [20]. Instead, this work lever-

ages the assumption that cameras are relatively static and

new vehicles appear in a few, well-known regions within

each camera field of view. This assumption is generally

valid for traffic monitoring and for camera-equipped edge

devices. We call the regions where new objects appear

source regions. Source regions are manually identified once

for each camera field of view. Figure 3 shows example

source regions for a few camera fields of view. In addition

to cropped regions based on existing object tracklets, each

source region is also cropped to localize potential new ve-

hicles. All crops are resized to square images of a standard

size cs pixels.

In each crop, regions containing visual information

likely to mislead the localizer and reduce tracking accu-

racy are blacked out. These can include regions that are

always misleading (e.g. parking lots and street-parked ve-

hicles) and regions that are only misleading when initial-

izing new objects (e.g. traffic on the opposing side of a

highway). Regions of the former type are blacked out in all

image crops, whereas regions of the latter type are blacked

out only in crops corresponding to source regions such that

existing objects can still be tracked through these regions.

Figure 3 shows examples of each type of ignored region.

Step 3: Localize existing / Detect new objects

The task of locating a single object of interest within an

image crop is called localization. Thus, we call the CNN-

based object detector trained specifically for this task a lo-

calizer. A Retinanet with ResNet-50 FPN backbone trained

specifically on crops of sized cs is used as the localizer in

this work [23, 33]. All crops from Step 2 are processed

by the localizer, which outputs bounding boxes and corre-

sponding confidences and class predictions for each crop.

Step 4a. Select Best Output for Tracklet Crops

The localizer outputs a set of bounding boxes for each

crop. For crops generated from existing object tracklets,

a single object is of interest. We parse the localizer out-

puts to select the best bounding box as in our previous work

for LBT-extended KIOU [20]. Let i index the set of all

tracked objects O := {1, · · · , i, · · · , omax} and let j index

the set of all localizer outputs L := {1, · · · , j, · · · , lmax}.

Each localizer output boxl
i,j and corresponding confidence

confi,j is scored according to:



Figure 3. Examples of vehicle source regions (green), sink regions (red), regions that are blacked out in source crops only (dark blue) and

regions that are blacked out in all crops (light blue) for several camera fields of view. Source regions are cropped and searched for new

objects at each frame (Steps 2-3). Detected vehicles are tracked until they have travelled from a source region to a sink region, and the

unique source-sink combination defines the vehicle’s unique turning movement (Step 6).

score(boxli,j , bõxi) = W × confi,j +Φ(boxl
i,j , bõxi), (1)

where bõxi is the a priori object location for tracklet i, Φ
is a function that computes the IOU similarity between two

boxes, and W is a scalar parameter used to balance the two

terms. The highest-scoring bounding box is selected as the

localizer output for object i.

Step 4b. Initialize New Objects

The localizer outputs corresponding to source region

crops are parsed differently than the outputs corresponding

to tracklet crops. Instead, the outputs for each source are

parsed using the following logic:

1. All output bounding boxes with confidence lower than

σmin (a tuned parameter) or with a predicted class

other than {car, truck} are removed.

2. Non-maximal suppression is performed on all remain-

ing bounding boxes.

3. All remaining bounding boxes with confidence lower

than σnew (a tuned parameter) are removed.

4. Any item that overlaps with an existing object by more

than φnew (a tuned parameter) in terms of intersection-

over-union metric is removed.

5. All remaining bounding boxes are used to initialize

new object tracklets, and the source region from which

each object was initialized is recorded. The new ob-

ject’s speed is initialized in the Kalman filter as the es-

timated average speed of objects originating from the

same source.

Note that although the localizer is trained primarily for

single object detection, it is also capable of accurately de-

tecting new objects within crops because the training pro-

cess for the localizer is identical to the training process for

a normal object detector except for the size of the images

used for training.

Step 5. Refine Tracklets

The localizer-output bounding boxes from Step 4a are

used to update the Kalman filter states for each existing

tracklet. Then, the following steps are taken to remove

anomalous tracklets.

• The localizer-output bounding box for each tracked

object i has associated confidence confi and overlaps

with that object’s a priori location by φi (in terms

of intersection-over-union metric). After initialization,

each tracklet is required to have one localization where

φi > φloc and confi > σloc within fmax frames of ini-

tialization, or else object tracklet i is no longer tracked.

φloc, σloc and fmax are parameters tuned per camera.

• Objects are removed if they exceed reasonable bound-

ing box size bounds [smin, smax], defined per camera

field of view.

• If two tracklet locations overlap by more than φoverlap

at frame n, the tracklet that has been tracked for fewer

frames is pruned. Empirically, this most often occurs

when two tracklets have been initialized for the same

real object, though in a few cases this does result in

occluded vehicles being pruned.

• Object tracklets that exit the frame are removed and no

longer tracked.

Step 6. Count Movements

Just as objects tend to enter a frame at a few source re-

gions, objects also exit the frame in a few, well-known sink

regions within each camera field of view. These sink re-

gions are manually labeled once for each camera field of

view. After Step 5, each object is compared to each sink re-

gion. If the center of that object’s bounding box falls within

a sink region, that object is no longer tracked. Each unique

source-sink combination identifies a vehicle turning move-

ment of interest, so this corresponding vehicle movement is

output by the algorithm. Example sink regions are shown

for several camera fields of view in Figure 3.



At every frame for which object i is localized, the pre-

dicted class for that object is recorded. When an object

reaches a sink region, the most frequently occurring class

assignment for that object is output with that record. Em-

pirically, the localizer has difficulty distinguishing between

trucks and cars from some viewpoints, likely due to slightly

differing definitions of which vehicles should be classified

as trucks or cars across datasets. To boost classification ac-

curacy, additional logic is used to classify trucks. When an

object is initialized in a source region, if the object’s starting

bounding box size is more than struck times larger than the

average object initialized at that source, ntruck additional

predictions of truck are recorded to indicate a high likeli-

hood that the object is a truck. For some camera fields of

view in which objects are initialized far from the camera,

initial bounding box size is not a good indicator of vehi-

cle size. In these cases, objects that reach sink regions are

compared against a baseline area atruck, a parameter tuned

per camera field of view. If the object bounding box area is

greater than atruck, the object is classified as a truck, and

otherwise the object is classified as a car.

Logical limits are imposed on the frequency with which

specific vehicle movements can occur. The minimum num-

ber of frames between movements fmove is set per vehi-

cle movement, per camera view, and only source-sink com-

binations corresponding to valid vehicle movements are

recorded. This helps to avoid double-counting vehicles in

the event that multiple object tracklets correspond to a sin-

gle real vehicle or that a tracklet from one source mistakenly

begins tracking a vehicle from another source.

4. Experiments

The proposed method is evaluated on Track 1 of the 2021

AI City Challenge. Section 4.1 describes this challenge in

more detail. Section 4.2 provides detailed parameter set-

tings and implementation details for the evaluation.

4.1. AI City Challenge

Track 1 of the 2021 AI City Challenge requires multi-

class, multi-movement vehicle counting on video sequences

at intersections and along roadways. Thirty-one sequences

from 20 distinct camera views are included, comprising

about 9 hours of total video data all of which has resolu-

tion of at least 1280×960. Each camera field of view con-

tains several vehicle movements of interest. To motivate the

design of algorithms that can be evaluated in real-time on

edge compute devices, the computational efficiency of ve-

hicle counting algorithms are taken into account in addition

to counting accuracy. Algorithms are assigned a score S1
according to the following formula:

S1 = 0.7× S1effectiveness + 0.3× S1efficiency

S1effectiveness uses cumulative vehicle counts at sev-

eral times throughout each video sequence’s overall length

to evaluate counting effectiveness, weighting each time seg-

ment to help smooth jitters from vehicles counted near seg-

ment breakpoints. Cumulative count errors across all video

sequences, turning movements and vehicle classes are nor-

malized using the number of ground-truth vehicles within

each cumulative count so that movements with more vehi-

cles are counted more in the overall S1effectiveness score.

To partially account for the difference in operat-

ing speeds of various competitors’ computing hardware,

S1efficiency weights an algorithm’s processing speed by

the evaluating machine’s speed at a set of benchmarking

tasks relative to a baseline machine’s speed on the same

benchmark tasks. To compare these algorithms fairly in

terms of speed, though, each algorithm must be run on the

same compute hardware.

One half of the testing data is made available to chal-

lenge participants, with only a very small proportion of

ground-truth labels provided such that supervised learning

methods cannot feasibly be used. All submitted algorithms

are evaluated on the full dataset, run on the same edge de-

vice (Nvidia Jetson NX development kit board.) As of sub-

mission, only aggregate S1 metrics from the first 50% of

testing data are made public, so we report these scores in

Section 5.

4.2. Parameter Settings and implementation Details

We use a Pytorch implementation of Retinanet with a

ResNet50-FPN backbone for feature extraction. Because

the scale of objects in image crops varies significantly from

the scale of objects when detecting on whole frames, our

localizer only is retrained for truck and car bounding box

and class prediction per guidance from challenge organiz-

ers. Training makes no use of AI City Challenge data in

any way. All code is run on a single GPU and 2 CPU cores

(one of which is exclusively used for video decoding and

frame buffering). Parameter settings or setting ranges for

movement count tests are reported in Table 1.

Parameter Value [Range] Parameter Value [Range]

σmin 0.05 cs 112

σnew [0.15 , 0.6] struck 1.5

σloc 0.5 smin 0

φnew 0.3 smax 1200

φloc 0.3 atruck 160000

φoverlap 0.7 ntruck 100

fmax [2 , 3] W 0.5

fmove [0 , 20] b [1.2,1.6]

floc [2 , 5]

Table 1. Parameter settings or ranges of settings for evaluation.

Full parameter settings are available along with code for this work.



Figure 4. Vehicle paths for counted vehicle movements. Each movement is shown in a unique color per sequence. Faint green and red

boxes denote source and sink regions, respectively.

5. Results

We report results on Track 1 of the 2021 AI City chal-

lenge. Section 5.1 reports overall score on the evaluation

server, Section 5.2 presents qualitative results (as sufficient

ground-truth data is purposely not made available for this

challenge), and Section 5.3 provides a speed comparison

of LBT-Count to an analogous tracking-by-detection-based

counter following the detect-track-count framework.

5.1. Track 1 Leaderboard

Table 2 reports a comparison of all 17 algorithms sub-

mitted to the public Track 1 Challenge as part of the

2021 Nvidia AI City Challenge. Our algorithm (Team

ID 95) places 7th in terms of S1 score on the 50% of

testing data made publicly available, with S1 = 0.8576,

S1effectiveness = 0.8549 and S1efficiency = 0.8637.

LBT-Count processes the available videos at an average of

72.6 frames per second on a single GPU and 2 CPU cores.

5.2. Qualitative Results Analysis

Figure 4 shows the path of each object that was counted

as a valid vehicle movement for several sequences, with ob-

ject paths of each vehicle movement colored uniquely.

Team ID Rank S1 Score

37 1 0.9467

5 2 0.9459

8 3 0.9263

19 4 0.9249

118 5 0.9235

42 6 0.9157

95 7 0.8576

134 8 0.8449

153 9 0.8205

168 10 0.7545

144 11 0.7521

64 12 0.7506

86 13 0.6677

131 14 0.6548

133 15 0.4804

48 16 0.4205

77 17 0.3757

Table 2. S1 score for algorithms on 50% of testing data, evaluated

on disparate machines.

A few observations are of note. First, there are very

few anomalous paths indicating that few objects experi-



ence identity switches and generally tracking is quite accu-

rate, even on sequences with many distinct turning move-

ments. Second, object tracking ends as soon as objects

reach sink regions; these sink regions were defined to max-

imize the chance of objects being captured correctly within

these regions, and in some cases these regions are defined

such that objects enter these sink regions before the exit the

challenge-defined region of interest for a given camera field

of view. We choose to emphasize accurate movement re-

porting over accurate movement time reporting. Based on

these observations, the errors of our method likely fall pre-

dominantly into two categories: a.) false negatives when

vehicles are lost somewhere within the region of interest or

are never initially detected. b.) objects that are counted in

the incorrect time bin due to premature tracklet termination

at a sink box. Of these two sources of error, only a.) is of

real concern for data quality as objects are at worst counted

only a few seconds early or late.

5.3. Speed Comparison to Tracking by Detection

Lastly, to benchmark the impact of using Localization-

based Tracking (LBT) rather than tracking-by-detection

(TBD) for the object detection and tracking portions of our

counting method, we implement a detect-track-count algo-

rithm based on KIOU object tracking [8, 11]. We measure

the speed of each method when a measurement step is per-

formed at every frame. The same network structure is used

for the localizer in LBT and the detector in TBD (Retinanet

with ResNet50-FPN backbone). Table 3 reports the results.

LBT-Count is 52% faster than the detect-track-count

(TBD) approach overall (20 fps vs 13.2 fps average). LBT

is faster than TBD on 29 of 31 available test sequences, and

achieves at least a 100% speedup on 19 of 31 sequences.

The speedup of LBT is somewhat correlated to the num-

ber of crops (the sum of the number of tracked objects and

the number of source regions for a camera field of view),

as each cropped region requires additional computation to

localize vehicles within it. Sequences with fewer than 19

crops per frame on average exclusively experience an in-

crease in speed as a result of using the LBT framework.

6. Conclusion

In this work, we present LBT-Count, a novel method

for generating vehicle turning movement counts from raw

video that breaks from the detect-track-count paradigm by

localizing objects in smaller crops without ever performing

detection on a full frame. We evaluate our method as part

of Track 1 of the 2021 AI City Challenge and achieve com-

petitive performance, and further show that the method sig-

nificantly increases the speed of the detection and tracking

portion of this task (52% relative to an analogous tracking-

by-detection approach). In future work, a detailed investiga-

tion of the role of hyperparameter settings on performance

Sequence Speedup Crops LBT-Count fps TBD fps

cam 14 534% 2.3 30.9 4.9

cam 16 308% 2.5 40.8 10.0

cam 17 310% 2.8 40.5 9.9

cam 20 308% 3.5 39.3 9.6

cam 19 309% 3.6 38.3 9.4

cam 18 323% 3.7 39.1 9.2

cam 13 252% 4.9 37.7 10.7

cam 15 283% 5.4 36.8 9.6

cam 1 dawn 171% 5.6 42.0 15.5

cam 12 251% 5.9 36.5 10.4

cam 2 rain 97% 6.0 39.0 19.8

cam 10 251% 6.4 37.0 10.5

cam 1 rain 166% 6.5 40.7 15.3

cam 1 150% 6.6 38.2 15.3

cam 2 64% 7.0 29.7 18.1

cam 3 rain 94% 7.8 37.1 19.1

cam 3 42% 7.9 25.4 17.9

cam 11 249% 9.2 35.8 10.3

cam 9 223% 9.4 33.7 10.4

cam 8 231% 12.0 34.2 10.3

cam 7 dawn 131% 15.6 33.9 14.7

cam 4 rain 102% 16.5 30.7 15.2

cam 6 snow 158% 18.6 32.9 12.7

cam 4 dawn 68% 19.1 25.7 15.3

cam 4 -13% 19.5 12.7 14.6

cam 6 35% 21.5 18.3 13.6

cam 5 dawn 78% 21.5 24.8 13.9

cam 7 rain 89% 21.6 26.1 13.9

cam 5 rain 81% 24.6 25.2 13.9

cam 7 9% 27.3 12.0 11.1

cam 5 -12% 27.9 11.9 13.5

Average 52% 11.4 20.0 13.2

Table 3. Speedup from using LBT-Count versus a tracking-by-

detection-based counter (TBD). ”Crops” indicates the average

number of cropped regions processed by the localizer per frame

in LBT-Count.

is warranted; such an analysis requires ground truth data on

vehicle turning movements, which was neither provided nor

allowed for this challenge. Code for this method is available

at https://github.com/DerekGloudemans/LBT-count/.

Acknowledgments

This material is based upon work supported by the Na-

tional Science Foundation under Grant No. CNS-1837652

(Work) and by the National Science Foundation Graduate

Research Fellowship under Grant No. DGE-1937963. This

material is based upon work supported by the U.S. Depart-

ment of Energy’s Office of Energy Efficiency and Renew-

able Energy (EERE) award number CID DE-EE0008872.

The views expressed herein do not necessarily represent the

views of the U.S. Department of Energy or the United States

Government.



References

[1] Awad Abdelhalim and Montasir Abbas. Towards real-time

traffic movement count and trajectory reconstruction using

virtual traffic lanes. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 592–593, 2020.
[2] Mohamed A Abdelwahab. Accurate vehicle counting ap-

proach based on deep neural networks. In 2019 International

Conference on Innovative Trends in Computer Engineering

(ITCE), pages 1–5. IEEE, 2019.
[3] Z. Al-Ariny, M. A. Abdelwahab, M. Fakhry, and E. Hasa-

neen. An efficient vehicle counting method using mask r-

cnn. In 2020 International Conference on Innovative Trends

in Communication and Computer Engineering (ITCE), pages

232–237, 2020.
[4] Pablo Barcellos, Christiano Bouvié, Fabiano Lopes Escouto,

and Jacob Scharcanski. A novel video based system for de-

tecting and counting vehicles at user-defined virtual loops.

Expert Systems with Applications, 42(4):1845–1856, 2015.
[5] Erhan Bas, A Murat Tekalp, and F Sibel Salman. Automatic

vehicle counting from video for traffic flow analysis. In 2007

IEEE intelligent vehicles symposium, pages 392–397. Ieee,

2007.
[6] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe.

Tracking without bells and whistles. In Proceedings of the

IEEE International Conference on Computer Vision, pages

941–951, 2019.
[7] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and

Ben Upcroft. Simple online and realtime tracking. In 2016

IEEE International Conference on Image Processing (ICIP),

pages 3464–3468. IEEE, 2016.
[8] Erik Bochinski, Volker Eiselein, and Thomas Sikora. High-

speed tracking-by-detection without using image informa-

tion. In 2017 14th IEEE International Conference on Ad-

vanced Video and Signal Based Surveillance (AVSS), pages

1–6. IEEE, 2017.
[9] Nam Bui, Hongsuk Yi, and Jiho Cho. A vehicle counts by

class framework using distinguished regions tracking at mul-

tiple intersections. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 578–579, 2020.
[10] Chao Chen, Karl Petty, Alexander Skabardonis, Pravin

Varaiya, and Zhanfeng Jia. Freeway performance measure-

ment system: mining loop detector data. Transportation Re-

search Record, 1748(1):96–102, 2001.
[11] S. Chen and C. Shao. Python implementation of the kalman-

iou tracker. https://github.com/siyuanc2/

kiout. Accessed: 2021-03-12.
[12] Thou-Ho Chen, Yu-Feng Lin, and Tsong-Yi Chen. Intelli-

gent vehicle counting method based on blob analysis in traf-

fic surveillance. In Second International Conference on In-

novative Computing, Informatio and Control (ICICIC 2007),

pages 238–238. IEEE, 2007.
[13] Zhe Dai, Huansheng Song, Xuan Wang, Yong Fang, Xu Yun,

Zhaoyang Zhang, and Huaiyu Li. Video-based vehicle count-

ing framework. IEEE Access, 7:64460–64470, 2019.
[14] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-

ming Huang, and Qi Tian. Centernet: Keypoint triplets for

object detection. In Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pages 6569–6578,

2019.
[15] Jianxin Fang, Huadong Meng, Hao Zhang, and Xiqin Wang.

A low-cost vehicle detection and classification system based

on unmodulated continuous-wave radar. In 2007 IEEE Intel-

ligent Transportation Systems Conference, pages 715–720.

IEEE, 2007.
[16] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.

Detect to track and track to detect. In Proceedings of the

IEEE International Conference on Computer Vision, pages

3038–3046, 2017.
[17] Jan Folenta, Jakub Spanhel, Vojtech Bartl, and Adam Her-

out. Determining vehicle turn counts at multiple intersec-

tions by separated vehicle classes using cnns. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops, pages 596–597, 2020.
[18] Mohammad Shareef Ghanim and Khaled Shaaban. Estimat-

ing turning movements at signalized intersections using ar-

tificial neural networks. IEEE Transactions on Intelligent

Transportation Systems, 20(5):1828–1836, 2018.
[19] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. Nas-fpn:

Learning scalable feature pyramid architecture for object

detection. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June

2019.
[20] Derek Gloudemans and Daniel B. Work. Localization-based

tracking, 2021. arXiv preprint number to be updated for

camera-ready submission.
[21] Ricardo Guerrero-Gómez-Olmedo, Beatriz Torre-Jiménez,

Roberto López-Sastre, Saturnino Maldonado-Bascón, and

Daniel Onoro-Rubio. Extremely overlapping vehicle count-

ing. In Iberian Conference on Pattern Recognition and Im-

age Analysis, pages 423–431. Springer, 2015.
[22] Gerhard P Hancke, Gerhard P Hancke Jr, et al. The role of

advanced sensing in smart cities. Sensors, 13(1):393–425,

2013.
[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.
[24] Ling Hu and Qiang Ni. Iot-driven automated object detec-

tion algorithm for urban surveillance systems in smart cities.

IEEE Internet of Things Journal, 5(2):747–754, 2017.
[25] Rudolph Emil Kalman. A new approach to linear filtering

and prediction problems. Transactions of the ASME–Journal

of Basic Engineering, 82(Series D):35–45, 1960.
[26] Shiva Kamkar and Reza Safabakhsh. Vehicle detection,

counting and classification in various conditions. IET In-

telligent Transport Systems, 10(6):406–413, 2016.
[27] Lawrence A Klein, Milton K Mills, David RP Gibson, et al.

Traffic detector handbook: Volume i. Technical report,

Turner-Fairbank Highway Research Center, 2006.
[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. Advances in neural information processing systems,

25:1097–1105, 2012.
[29] Shiyi Lan, Zhou Ren, Yi Wu, Larry S. Davis, and Gang Hua.

Saccadenet: A fast and accurate object detector. In Proceed-



ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), June 2020.
[30] Hei Law and Jia Deng. Cornernet: Detecting objects as

paired keypoints. In Proceedings of the European confer-

ence on computer vision (ECCV), pages 734–750, 2018.
[31] Wei Li, Yuanjun Xiong, Shuo Yang, Siqi Deng, and Wei

Xia. Smot: Single-shot multi object tracking. arXiv preprint

arXiv:2010.16031, 2020.
[32] Chao Liang, Zhipeng Zhang, Yi Lu, Xue Zhou, Bing Li,

Xiyong Ye, and Jianxiao Zou. Rethinking the competition

between detection and reid in multi-object tracking. arXiv

preprint arXiv:2010.12138, 2020.
[33] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollar. Focal loss for dense object detection. In The

IEEE International Conference on Computer Vision (ICCV),

Oct 2017.
[34] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014.
[35] Chenghuan Liu, Du Q Huynh, Yuchao Sun, Mark Reynolds,

and Steve Atkinson. A vision-based pipeline for vehicle

counting, speed estimation, and classification. IEEE Trans-

actions on Intelligent Transportation Systems, 2020.
[36] Zhongji Liu, Wei Zhang, Xu Gao, Hao Meng, Xiao Tan, Xi-

aoxing Zhu, Zhan Xue, Xiaoqing Ye, Hongwu Zhang, Shilei

Wen, et al. Robust movement-specific vehicle counting at

crowded intersections. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

Workshops, pages 614–615, 2020.
[37] Lu Lou, Qi Zhang, Chunfang Liu, Minlan Sheng, Jun Liu,

and Huimin Song. Detecting and counting the moving ve-

hicles using mask r-cnn. In 2019 IEEE 8th Data Driven

Control and Learning Systems Conference (DDCLS), pages

987–992. IEEE, 2019.
[38] Milind Naphade, Shuo Wang, David C. Anastasiu, Zheng

Tang, Ming-Ching Chang, Xiaodong Yang, Liang Zheng,

Anuj Sharma, Rama Chellappa, and Pranamesh Chakraborty.

The 4th ai city challenge. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR) Workshops,

page 2665–2674, June 2020.
[39] Andres Ospina and Felipe Torres. Countor: Count without

bells and whistles. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 600–601, 2020.
[40] Bo Pang, Yizhuo Li, Yifan Zhang, Muchen Li, and Cewu Lu.

Tubetk: Adopting tubes to track multi-object in a one-step

training model. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 6308–

6318, 2020.
[41] Joseph Redmon and Ali Farhadi. Yolov3: An incremental

improvement. arXiv preprint arXiv:1804.02767, 2018.
[42] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015.
[43] Mohammad Shokrolah Shirazi and Brendan Morris. A typi-

cal video-based framework for counting, behavior and safety

analysis at intersections. In 2015 IEEE Intelligent Vehicles

Symposium (IV), pages 1264–1269. IEEE, 2015.
[44] Mohammad Shokrolah Shirazi and Brendan Tran Morris.

Trajectory prediction of vehicles turning at intersections us-

ing deep neural networks. Machine Vision and Applications,

30(6):1097–1109, 2019.
[45] Katherine F Turnbull. Critical issues in transportation. TR

NEWS, 2019.
[46] Wei Wang, Tim Gee, Jeff Price, and Hairong Qi. Real time

multi-vehicle tracking and counting at intersections from a

fisheye camera. In 2015 IEEE Winter Conference on Appli-

cations of Computer Vision, pages 17–24. IEEE, 2015.
[47] Zhihui Wang, Bing Bai, Yujun Xie, Tengfei Xing, Bi-

neng Zhong, Qinqin Zhou, Yiping Meng, Bin Xu, Zhichao

Song, Pengfei Xu, et al. Robust and fast vehicle turn-

counts at intersections via an integrated solution from de-

tection, tracking and trajectory modeling. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 610–611, 2020.
[48] Zilei Wang, Xu Liu, Jiashi Feng, Jian Yang, and Hongsheng

Xi. Compressed-domain highway vehicle counting by spatial

and temporal regression. IEEE Transactions on Circuits and

Systems for Video Technology, 29(1):263–274, 2017.
[49] Zhongdao Wang, Liang Zheng, Yixuan Liu, Yali Li, and

Shengjin Wang. Towards real-time multi-object tracking.

arXiv preprint arXiv:1909.12605, 2019.
[50] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple

online and realtime tracking with a deep association metric.

In 2017 IEEE international conference on image processing

(ICIP), pages 3645–3649. IEEE, 2017.
[51] Yingjie Xia, Xingmin Shi, Guanghua Song, Qiaolei Geng,

and Yuncai Liu. Towards improving quality of video-based

vehicle counting method for traffic flow estimation. Signal

Processing, 120:672–681, 2016.
[52] Yomna Youssef and Mohamed Elshenawy. Automatic ve-

hicle counting and tracking in aerial video feeds using cas-

cade region-based convolutional neural networks and feature

pyramid networks. Transportation Research Record, page

0361198121997833, 2021.
[53] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor

Darrell. Deep layer aggregation. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 2403–2412, 2018.
[54] Lijun Yu, Qianyu Feng, Yijun Qian, Wenhe Liu, and Alexan-

der G Hauptmann. Zero-virus: Zero-shot vehicle route un-

derstanding system for intelligent transportation. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops, pages 594–595, 2020.
[55] Yifu Zhan, Chunyu Wang, Xinggang Wang, Wenjun Zeng,

and Wenyu Liu. A simple baseline for multi-object tracking.

arXiv preprint arXiv:2004.01888, 2020.
[56] Shanghang Zhang, Guanhang Wu, Joao P. Costeira, and Jose

M. F. Moura. Fcn-rlstm: Deep spatio-temporal neural net-

works for vehicle counting in city cameras. In Proceedings

of the IEEE International Conference on Computer Vision

(ICCV), Oct 2017.
[57] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl.

Tracking objects as points. In European Conference on Com-

puter Vision, pages 474–490. Springer, 2020.


