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Abstract

Due to the rapid growth in the number of vehicles over

the last decade, there has been a dramatic increase in de-

mand for highway capacity analysis. Vehicle counting, in

particular, has become a key element of vision-based in-

telligent traffic systems deployed across metropolitan ar-

eas. Most methods solved the vehicle counting problem un-

der the assumption of state-of-the-art computing systems.

However, large-scale deployment of such systems for multi-

camera processing is very inefficient. With the recent ad-

vancement of cost-efficient Internet-of-Things (IoT) devices

alongside machine learning methods developed specifically

for such devices, solving the vehicle counting problem for

real-time traffic analysis on IoT edge devices, and thereby

facilitating its large-scale deployment have become highly

favorable. In this paper, we propose a framework of ve-

hicle counting designed specifically for IoT edge comput-

ers which follows the detection-tracking-counting (DTC)

model. The proposed solution aims at addressing the mul-

timodality of contextual dynamics in traffic scenes with a

small detector model, a robust tracker and a counting pro-

cess that accurately estimate both a vehicle’s motion of in-

terest and its exit time from observation areas. Experimen-

tal results on AI City 2021 Track-1 Dataset showed that

ours outperformed related methods with promising results

regarding both accuracy and execution speed.

1. Introduction

The past decade has experienced a dramatically in-

creasing demand for analyses of traffic capacity on high-

ways, owing to the rapid growth in the number of ve-

hicles. Particularly, vehicle counting has become a piv-

otal component in vision-based traffic surveillance systems

across metropolises. This function cohesively associates
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with a wide range of research works that focus on extract-

ing static and dynamic attributes regarding vehicles’ ap-

pearances and motion characteristics, including locations,

shapes, sizes, categories, trajectories, paths of movement,

and time-series records of motion within the observational

views of surveillance cameras. So far, these advances have

improved the overall accuracy of digital traffic analytic sys-

tems. However, in real-world applications, taking into ac-

count scaling-up strategies of practical implementations,

the vehicle counting task needs to be carried out on com-

putationally limited platforms at real-time execution effi-

ciency. As a result, mimicking in-road hardware sensor-

based counting on IoT devices necessitates that vision so-

lution settings well utilize hardware resources in terms of

computations and memory complexities.

AI City Challenge is a competition that focuses on effi-

cient transportation systems, and pushes technologies closer

to practical integration. Our research work deals with the

one of the tracks introduced by the AI City Workshop at

CVPR 2021: Track1: Multi-Class Multi-Movement Vehi-

cle Counting Using IoT Devices. In this challenge, teams

are required to develop class-wise, motion-specific vehi-

cle counting systems that can efficiently record vehicles

in two categories, i.e., cars and trucks, in different traf-

fic paths and scenes in real time on a single-board com-

puter. In Track 1 of [20], the vehicle counting challenge was

met with astounding successes by many proposed meth-

ods [18, 21, 31, 34], where the methods well satisfy the ef-

fectiveness and efficiency requirements when executed on

a high-end processing system with an exceptional graphic

processing unit (GPU). However, scaling up these models

to accommodate expansions of multiple traffic scenarios re-

quires expensive infrastructural developments.

Recent years have seen many technological advances of

IoT devices and edge computing. These devices’ comput-

ing capability has had striking improvements which, in turn,

allows large scale deployment of machine learning models,

and encourages the machine learning research community



to develop efficient methods and libraries for IoT devices.

Hence, it is favorable to efficiently solve the vehicle count-

ing problem for real-time traffic analysis on these IoT edge

devices. In this paper, anchoring on the computational ca-

pabilities of IoT devices like NVIDIA Jetson Xavier NX,

we propose a framework of vehicle counting that follows

the detection-tracking-counting (DTC) model. Our work

performs multi-vehicle tracking via associating vehicle de-

tections that are extracted from a separated YOLOv4-Tiny

[29], a robust and light-weighted object detector for mobile

embedded devices. From the trajectories, we record mov-

ing vehicles in terms of estimated real paths and exit times.

Our contributions in this paper are described as follows:

• Firstly, addressing contextual dynamics in traffic

scenes, we trained and inferenced a vehicle detector on

our custom hand-labelled AI City 2021 Track-1 dataset

with a mosaic data augmentation [32], where we also

exploit major parallelism at lower levels of CUDA ef-

ficiency for batch processing at high speed.

• Secondly, in traffic scenes, there is a fact that vehicles’

motions usually accompany sudden changes in veloc-

ity and positions. Addressing these problems, we in-

corporate significant modifications by engaging with

IoU, Mahalanobis distance and visual histogram dis-

tribution difference on a Kalman-Filter-based, multi-

vehicle tracker called SORT [2]. We especially avoid

deep features such as in DeepSORT [33] to resolve

computational costs of feature extraction.

• Thirdly, we propose a counting component that esti-

mates each vehicle’s direction of motion and its exit

time from observational areas by exploiting its trajec-

tory and momentum. In this component, we use pre-

defined scope fields to limit the domain of analysis to

only vehicles of interest, and from the numerical mo-

tion trajectories of the vehicles, we estimate their real-

life paths via a directional pattern-trajectory matching.

We then record the vehicles of interest at the moment

they are expected to leave the regions of interest via a

Kalman Filter’s linear constant velocity model.

• Finally, in our DTC solution, based on the fact that

the three modules are mostly independent from one an-

other, and that most of our processing flow adopts a se-

quential paradigm, we extend the proposed solution’s

implementation with thread-level parallelism. Our ex-

periments suggest that this implementation not only

increases the efficiency of resource usage on an IoT

device, but it also effectively leverages our highly ac-

curate DTC approach to traffic density analysis.

The rest of the paper is structured as follows. Section

2 provides a recapitulation of previous related modular re-

search that is capable of execution on embedded devices.

In Section 3, our proposed model of vehicle counting for

embedded devices are elaborated. Our experimental eval-

uation are then presented in Section 4 and discussions are

concluded in Section 5.

2. Related Works

Object Detection: Object detection has an essential role

in the analysis of object behaviors, where the detection

module can simplify the domain of interest and support a

variety of tasks such as tracking vehicles, traffic density

analysis, anomaly recognition, etc. In the past decade, the

research community has shifted attention to deep learning

to tackle the object detection problem. Research results

have indisputably demonstrated the effectiveness of deep

neural networks (DNN) [12, 13, 23] and [3] for accurately

recognizing image objects, but largely by greatly trading

off speed for accuracy on high-end machines. Therefore,

in order to promote wide-spread industrial scalability, many

researchers seek to propose similar DNN-based approaches

for embedded IoT edge devices such as MobileNet-SSD

[14, 17], YOLOv3-tiny [22], YOLOv4-Tiny [29], NAS-

FPNLite [11], and EfficientDet [26]. These models have

met ever-increasing success as they reduce the computa-

tional complexity while preserving accuracy.

Multi-Object Tracking: Multi-Object Tracking (MOT)

is one of the most widely investigated problems as it is a

vital component for many applications in computer vision

when we can reserved the time-series information of de-

sired objects. The typical motif of MOT is the tracking-

by-detection model, where objects of interest are localized

by detectors before tracking. Regarding MOT problems,

recently-published methods are categorized into two repre-

sentative approaches: offline tracking and online tracking.

Offline techniques use the detection results of a batch of

consecutive frames in the video on a global optimization al-

gorithm [1,7,8,16,27,30]. Online MOT, on the other hand,

often uses only the previous and current video frame since

long-term movements of objects being tracked are embed-

ded into a state space for memorization. This further leads

to a data association formulation between the object being

tracked with the newly received detection of the MOT task.

In this kind of formulation, it is crucial to find a good mech-

anism that can effectively evaluate the similarity of the same

objects from various viewpoints, e.g. by following mathe-

matical foundations [2,18], or deep-learning practices [33].

The literature of deep learning approaches for MOT has in-

troduced mechanisms to estimating the similarity that in-

cludes the attention mechanism [5, 10, 36], neural networks

like Recurrent Neural Networks [9,19,24] and Siamese Net-

works [6, 25]. However, incorporating these mechanisms

poses a dilemma between good accuracy and huge compu-

tational overheads to the systems. When good detections

already have high computational demands, it is less reason-



able to run neural network methods than those with explicit

mathematical formulations on embedded devices.

Vehicle Counting: Vehicle counting is a fascinating

problem as it enables traffic engineers to analyze traffic

conditions to devise plans for controlling traffic flow and

expanding road networks. This problem was revisited by

the AI City 2020 [20], where a variety of different methods

have been proposed to tackle the problem [4, 28]. Most of

the proposed method follows a sequential DTC paradigm,

where independent improvements of the modules can be

made, i.e. error mitigation on separate modules. There are

generally two strategies to tackle the vehicle counting prob-

lem in the DTC framework. The first strategy is to use an

accurate, computationally complex detector to support the

following tracker and counter. The representative methods

for this strategy are introduced in [18, 21, 31, 34]. While

better and often more heavy-weighted state-of-the-art de-

tectors do improve counting accuracy, they are not capable

of running on a IoT device which is strictly constrained in

computational capability. The second strategy is to formu-

late rigorously the subsequent tracking and counting mod-

ule to supplement the detector. This strategy allows for the

scaling down of detectors to improve efficiency with accept-

able trade-offs in terms of overall effectiveness. This second

strategy was also tested in the vehicle counting task of AI

City 2020 to allow a smaller detector such as YOLOv3 used

in [28]. This strategy is more favorable for IoT solutions by

scaling down the computational demands of detectors.

3. Methodology

Our proposed approach for analyzing traffic behaviors

includes a system sequence of 3 modules, where each is

responsible for a specific task: 1) vehicle detection, 2) ve-

hicle tracking, and 3) path-specific vehicle counting. As

demonstrated in Fig. 1, in a multi-threaded manner, we re-

ceive a traffic video containing multiple vehicles of interest

and preprocess it along with predefined ROIs (regions-of-

interest) and MOIs (motions-of-interest) settings; then we

produce a list of detected vehicles via performing batch

object detection recognize vehicles in view (i.e. cars or

trucks); then we perform our proposed three-fold matching

scheme for tracking vehicles’ trajectories; finally, we record

vehicles of interest that have exitted the field of observation

based on MOIs configurations that represent real-life paths.

The design of the proposed solution is not only robust and

effective for a wide array of scenarios but also capable of

making efficient use of available computing resources.

3.1. Vehicle Detection on Batch Inputs

Simplifying traffic vision problems by means of cluster-

ing locally connected image pixels to only a number of 2D

bounding boxes representing vehicles of interest, our so-

lution takes advantage of one of the state-of-the-art object

detectors, the YOLOv4-Tiny object detector [29], as the

first step to analyzing vehicle behaviors on multiple street

scenarios in an online manner. Given an RGB image I

recorded at time step t, the detector function produces a

list of detections Di, with i (1 ≤ i ≤ P ) being the i-th

detection in P detections returned by the detector after non-

max-suppression on confidence scores:

Di = {di, ci} (1)

where di and ci denotes respectively the i-th detection’s

bounding box geometry vector [x, y, a, h]T (center at x and

y, aspect ratio a of width over height and height of h) and its

corresponding class (i.e. car or truck). Our strategy with the

object detector includes batch processing where we append

a list of consecutive 450 × 450 frames, from time step t to

t+N (where N is the batch dimension of an image batch of

shape N ×H ×W ×C) together as input, and produce the

corresponding time-step coherent list of appended detection

lists using the YOLOv4-Tiny model.

The YOLOv4-Tiny model is light-weighted and highly

accurate even in occlusion. Futhermore, it possesses an ad-

vantage over many state-of-the-art detectors (e.g. YOLOv4

[3]) in terms of deployment scalability, due to its suit-

ability for IoT devices. In training the YOLOv4-Tiny

detector, we labelled 7000 images manually to tune the

COCO-pretrained YOLOv4-Tiny model via transfer learn-

ing. The training configuration is the same as the one set

by YOLOv4-Tiny authors at an 80%-20% training-testing

split, except that we added Mosaic data augmentation [32]

to enhance the training data. In this augmentation, batches

of four training images are combined in specific ratios to

avoid overfitting and facilitate multi-scale adaptability. The

model parameters are determined by training the COCO-

pretrained YOLOv4-Tiny model for 100000 iterations with

stochastic gradient descent, in which the best weights eval-

uated on the test set are selected for inference.

On inference with the 5 hours of video dataset, the re-

sultant model is capable of detecting a diverse array of ve-

hicles from 31 different scenarios, including bird-eye view,

teleport view, or the different weather like dawn, snow or

rain. By leveraging batch processing, our choice with the

YOLOv4-Tiny model is further rationalized experimentally

as the object detector has acceptable trade-offs between ac-

curacy, resource demands and speed on IoT devices, such

as a Jetson Xavier NX. Specifically, it is able to achieve

good mAP@0.5 accuracy of 86% on a separate test set, and

it is capable of running by batches of 16 continuously with

a specially allocated thread and an NVIDIA Jetson Xavier

NX at approximately 700 fps on average.

3.2. Online Directional MultiVehicle Tracking

The tracking algorithm is one of our major contributions

in the proposed system. It is responsible for connecting



Figure 1. The overview workflow of our proposed approach for vehicle counting with thread-level paralellism. Thread 1 handles input

featching and proprocessing, Thread 2 handles batch vehicle detection with the GPU, Thread 3 handles sequential tracking and Thread 4

handles path-based vehicle counting using worker-crew processing. The threads communicate via intermediary queues.

vehicle detections representing the same real-life moving

cars or trucks across the temporal axis, thereby extracting

their trajectories of motion for further analysis (e.g. be-

havior understanding). Inspired by the lean approaches of

the [2] and [33] algorithms, we only make use of rudimen-

tary techniques (i.e. Kalman Filter [15], Hungarian Match-

ing [35]) and object features (i.e. bounding boxes, posi-

tions, and color encodings) to facilitate the tracing process

of each vehicle. As shown in Fig. 2, our tracking al-

gorithm is formulated around a three-fold data association

scheme supported by inter-frame predictions of vehicle po-

sitions. Specifically, by leveraging vehicle detections es-

timated by the object detector, our algorithm employs the

Kalman Filter (KF) to predict vehicles’ positional displace-

ments throughout a scene, thereby enabling effective data

association of each vehicle using the Hungarian Matching

algorithm on account of a target’s bounding box geometry,

its directional position with respect to the vehicle’s Kalman

Filter state, and its RGB color histogram.

3.2.1 The Kalman Filter Motion Estimation Model

Our adoption of the Kalman Filter is both similar to the orig-

inal formulation in [2] and that of DeepSORT [33], where

vehicles of interest are called tracklets with trajectories rep-

resented by lists consisting of 2D bounding box positions,

and with a class label signifying a car or truck. The track-

ing scenario is defined on an 8-D state space of the attributes

[x, y, a, h, ẋ, ẏ, ȧ, ḣ]T that contains a tracklet’s current cen-

ter at (x, y), and (a, h) being the aspect ratio width di-

vided by height and the actual height value of the bound-

ing box surrounding the tracklet’s appearance. The latter

4 features ẋ, ẏ, ȧ, ḣ represent the former features’ respec-

tive velocities, i.e. changes of the tracklet’s center coor-

dinate and bounding box geometry in image coordinates

using the Kalman Filter model of linear constant velocity.

The KF-state of a tracklet is updated on an observed vehi-

cle [x, y, a, h]T recognized by the object detector module.

At each time step t, prior to associating existing tracklets

of the tracking module with observed vehicle detections, ev-

ery tracklet T ’s current estimated bounding box geometry,

called µ = [x, y, a, h]T , is computed by predicting its new

image coordinates for the current time step. By exploiting

momentums with the Kalman Filter in this manner, cars and

trucks that are temporarily being occluded by rain blots or

other vehicles can be re-tracked once their respective ap-

pearances are re-observed.

3.2.2 Three-fold Data Association Scheme

The core of our tracking algorithm is a three-fold, sequen-

tial matching procedure that connects existing tracklets to

newly observed vehicle detections, as shown in Fig. 2.

We use the Hungarian Matching to facilitate optimal as-

signment of detection observations to tracklet predictions in

terms of IoU costs for all tracklets and observed detections,

then in terms of Mahalanobis distance costs, then histogram

distribution distance costs respectively for unmatched ones.

This order of matching metrics not only can balance be-

tween their computational demands and actual input sizes

for each metric, but each metric also serves a role:

IoU Matching: The use of IoU metric as the cost cri-

teria for optimal matching originates from the SORT ap-

proach [2], where it has significantly demonstrated its fast

and effective performance when used alongside the Kalman

Filter. It exploits an observation in practice that most ve-

hicles are recorded to be moving slowly enough that their

trajectories consist of bounding boxes that are close to one

another. Thus, for a detection Di, its cost of being matched

with any tracklet Tj is computed using IoU that is thresh-



Figure 2. The proposed three-fold sequential vehicle tracking method. With Hungarian Matching and Kalman Filter predictions, tracklets

and observed detections are matched by IOU, otherwise they are matched directionally by Mahalanobis distance, or by visual feature.

olded by ǫIoU = 0.1 at minimum.

costIoU (i, j) =
bbox(di) ∩ bbox(µj)

bbox(di) ∪ bbox(µj)
(2)

Centroid Matching: As there are some vehicles that

move quickly through observation areas, where the assump-

tion of slow movement of the IoU metric fails, we propose

using the Mahalanobis distance to accommodate the match-

ing of fast vehicles. The Mahalanobis distance measures the

proximity of a detection point Di from the distribution rep-

resented by the KF-state of a tracklet Tj , which grows as Di

is further away from the mean µ (also the current bounding

box location) of Tj’s KF-state along each of its principal

component axis of bounding box motion, independently of

the 2D image space. Thus, the tracklet vehicles’ tenden-

cies of motions are exploited to enable directional match-

ing, where axes of large standard deviations can correspond

with the vehicles’ fast motion along those axes, and axes of

smaller spread can correspond with slower displacements.

costcentroid (i, j) = (di − µ̂j)
T
S−1

j (di − µ̂j) (3)

where Sj is tracklet Tj’s covariance matrix, and µ̂j is the

mean of the projection of the j-th tracklet’s distribution into

the measurement space of (µ̂j , Sj).
Histogram Feature Matching: In much fewer cases of

sudden movements where vehicles suddenly jump from one

spot to another in a non-linear motion that the thresholded

centroid distance matching procedure may miss, we take

advantage of their normalized 3-channel histogram distribu-

tion of 8 bins extracted from the image based on the bound-

ing box geometry of a detection Di and a tracklet Tj to fa-

cilitate matching using Manhattan distance, thresholded by

ǫH = 3 at maximum.

costhistogram (i, j) = ‖H (di)−H (µj)‖1 (4)

where H(·) is a function mapping a vehicle’s appearance at

the time of extraction constrained by its bounding box to a

vector of normalized histogram feature values.

For centroid matching and histogram feature matching

criteria, we extend them with a Euclidean distance thresh-

olding constant empirically chosen at 50 image pixels to

avoid great-distance matching in some cases, and a forward

directional suppression scheme on tracklets to avoid erro-

neous matching with vehicle detections behind them or to

their sides as they exit the observational areas. For the latter,

we proceed with an angular approach using bounding box

centers (only x, y coordinates) on each pivot pj = [x, y]T

for a tracklet Tj , which is defined by averaging its five lat-

est center positions on the input space. The forward direc-

tional suppression procedure is described in Algo. 1. As our

implementations are largely in vectorized forms, computa-

tional overheads are well traded-off in terms of accuracy.

While matched tracklets are updated in terms of their

KF-state by the respective detections with the new posi-

tions appended to their trajectories, unmatched tracklets are

removed if they are still in the ROIs after 35 frames or if

they have just been initialized by no more than 3 time steps

prior. Otherwise, the unmatched tracklets are simply vehi-

cles temporarily missing observed detections and awaiting

re-tracking. On the other hand, unmatched detections are

used to initialize new tracklet vehicles at zero velocities.



Algorithm 1: Forward directional suppression

Input:

Tracklet indices Tj = {1, ..., A};
Tracklet pivots p; Tracklet current centers Tc;

Detection indices Di = {1, ..., B};
Detection current centers Dc;

Angle threshold θ0;

Output:

Binary mask M of shape (A, B), M[j, i]=1 if tracklet j-th

can be matched with detection i-th;

1 Procedure:

2 Initialize M of shape (A, B) at zeros;

3 foreach j ∈ Tj do

4 foreach i ∈ Di do

5 Compute vector of vj ← Tc[j]− pj ;

6 Compute vector of vi ← Dc[i]− pj ;

7 Calculate θj,i ← angle(vj , vi);
8 M [j, i] = θj,i < θ0;

9 end

10 end

11 return M ;

3.3. Pathspecific Vehicle Counting

Given trajectories of vehicles at time t, we record them in

terms of label (car or truck), motion path and time of exit as

they exit the ROIs. By defining scopes that constrain vehi-

cles’ legal locations, we assign motion paths to the vehicles

using a vector-based MOIs assignment on their trajectories.

A vehicle is determined to have exitted if its expected posi-

tion at the current time step is out of scope.

3.3.1 Vector-based Motions-of-interest Assignment

In order to assign MOIs that represents real-life paths to

all vehicles, we propose an approach that only takes into

account vehicles that fit within the scope of the MOIs labels,

then performs assignments of moving directions based on

the trajectories of all vehicles.

Scope Regions-of-Interest: Firstly, in order to define

the suitable scopes of interest, we construct two modified

types of ROIs based on those provided by the AI City 2021

challenge. These custom ROIs serve as a suppression ap-

proach for disregarding vehicles that are not within the field

of observation, and those that are within the field of obser-

vation but are moving in illegal directions.

Particularly, with the former type, we impose certain re-

strictions called extended ROIs (eROIs) on vehicle posi-

tions by manipulating the ROIs defined for the challenge,

as demonstrated by the white boundary polygon in the sub-

figures of Fig. 3. Accordingly, detected vehicles whose cen-

ters are not bound by the eROIs are removed. Thus, the do-

main is more constrained as the number of vehicles that the

algorithm needs to consider are fewer, thereby effectively

(a) (b) (c) (d)

Figure 3. Example of our tracking process with directional as-

signment settings: eROIs (white polygons), iROIs (red overlays),

MOIs (blue, red arrows), and trajectories (green lines).

eliminating out-of-scope vehicles altogether. To construct

eROIs, we typically modify the given ROIs by manipulating

their areas to avoid high-occlusion areas and accommodate

illegal directions for removal, while allowing us to leverage

KF-predictions of exit time. Otherwise, we leave them as

how they were originally.

For the latter type, where vehicles are moving in eROIs

but not in legal directions (e.g. turning from or into small

streets, parking lots, etc.), we track and exploit the tracking

trajectories of those moving vehicles by marking them for

later removal (without counting) if they enter illegal ROIs

(iROIs). An example is illustrated in subfigure (a) and (d)

in Fig. 3, where the red overlays signal regions where only

illegal paths will go through.

A vehicle is suppressed by mapping their position, or

trajectory, on the binary indicator functions of eROIs and

iROIs, respectively denoted as eROI(·) and iROI(·). Ve-

hicle detections are ignored if their centers of (x, y) cor-

respond to eROI(x, y) = 0. Vehicle tracklets are dis-

carded their trajectory has at least one positional center

(x, y) where iROI(x, y) = 0.

Vector-Point Motion Assignment: Having defined the

scope, we assign labels on motion trajectories following

a proposed two-point vector model. In this approach, we

manually label for each movement a vector denoting the

general path that vehicles in that movement would travel.

Specifically, by leveraging the results of our proposed track-

ing module, which would produce a trajectory for each ve-

hicle from entering to exiting ROIs, we label for its corre-

sponding movement a vector consisting of an exit point Em

that is close to the vehicle’s point of exit, and a start point

Sm which is close to the vehicle’s point of entrance. Hence,

as shown in Fig. 3, in order to assign a movement, we sim-

ply extract from a tracklet Tj’s trajectory a point Ŝm which

is closest to Sm from the first β portion of the trajectory,

and one other Êm closest to Em from the latest β. Specif-

ically, β is chosen to be 10% to facilitate fair consideration

against all movements in cases of fluctuating bounding box

predictions on large vehicles (e.g. freight trucks, close-up

cars). Thus, the multi-point trajectory with respect to the

movement vector is simplified as a vector.

The assignment of movement labels necessitates that

every trajectory vector is thresholded against its potential

movement vector by angle, and whose sum of distances be-



Algorithm 2: MOIs assignment

Input:

Tracklet indices Tj = {1, ..., A};
Tracklets T ;

Movement indices Mk = {1, ..., Q};
Movements M ;

Portion ratio β; Angle threshold θ0;

Output:

Tracklets are matched to movement labels;

1 Procedure:

2 foreach j ∈ Tj do

3 max distance← inf ;

4 foreach k ∈Mk do

5 Sm, Em ←M [k].points();

6 Ŝm ← T [j].closest in start(Sm, β);

7 Êm ← T [j].closest in end(Em, β);
8 v1← Em − Sm;

9 v2← Êm − Ŝm;

10 θ ← angle(v1, v2);
11 if θ < θ0 then

12 d← dist2D(Sm, Ŝm);

13 d← d+ dist2D(Em, Êm);
14 if d < max distance then

15 max distance← d;

16 T [j].assign motion(M [k].name());

17 return T ;

tween the heads and tails of vectors is minimized. Our pro-

cedure is shown in Algo. 2. An example of our MOIs labels

is shown in Fig. 3. We also define a few unwanted move-

ments in eROIs, which are labeled ‘u’ for signaling discard,

but we avoid defining so many that efficiency is affected.

KF-aided Counter: In order to record vehicles of in-

terest, we output the vehicles’ labels (car or truck) along

with their motion descriptions the moment their predicted

KF-projections completely exit observational areas. As de-

tections are suppressed if they are not within eROIs, vehi-

cles come very close to the inner boundaries without fully

exiting them via data association. Thus, by employing the

Kalman Filter to estimate exit times, vehicles are counted

following their linear constant velocity momentums.

3.4. DTC Framework on Threadlevel Parallelism

Elaborating Fig. 1, we implement our proposed DTC ve-

hicle counting solution from video input in a multi-threaded

CPU-, GPU-utilizing manner. As the three aforementioned

modules are mostly independent from one another, we take

advantage of current hardware development for IoT devices

of both multi-core CPU and CUDA-compatible GPU sup-

port, and propose a thread-level parallelism framework for

tackling the AI City 2021 challenge.

Our approach best performs with at least 5 threads and

a GPU, where each will be processing inputs continuously

throughout the given video sequence. From the main thread

(which is not Thread #1), we deploy our object detection

model on the GPU, initialize all necessary components of

the solution (i.e. input configurations, tracker and counter),

and deploy the other 4 threads of continuous processing that

only terminates once they receive ending flags:

Thread #1: We receive as input a traffic video contain-

ing multiple vehicles of interest and preprocess it along with

predefined ROIs and MOIs settings. This thread is respon-

sible for receiving input frame batches from video files, and

pushing them into a ‘Frame Queue’ that is used for batch

object detection.

Thread #2: From the ‘Frame queue’, we extract batches

of input images and produce the corresponding time-step

consistent lists of detected vehicles via performing batch

object detection with the GPU. This thread is used for effi-

ciently recognizing vehicles (cars, trucks) within view, and

continuously pushing each time-step list of detected vehi-

cles into ‘Detection Queue’ for sequential tracking.

Thread #3: From the ‘Detection Queue’, we perform

our proposed three-fold matching scheme for tracing vehi-

cles (tracklets) in a temporally sequential manner. Tracklets

that are predicted to have exitted the ROIs are pushed into

a ‘Tracklet Queue’ for matching their trajectories with real

paths, and for recording their expected exit time.

Thread #4: From the ‘Tracklet Queue’, this thread re-

moves tracklets that are no longer within observation, and

further makes use of a distributed worker-crew processing

to asynchronously record them. Thus, the thread deploys

multiple child threads where each will record a vehicle of

interest that has exitted the field of observation, after algo-

rithmically assigning it a path label based on its numerical

trajectory and MOIs configurations that represent real-life

paths. After recording all vehicles of interest, Thread #4

will wait for its deployed child threads to terminate.

After all execution steps for the input video, the main

thread will wait for Thread #1 to #4 to terminate and exit the

algorithm. This design of the proposed solution is experi-

mentally demonstrated to be not only robust and effective

for a wide array of scenarios, but it is also highly capable of

making efficient use of available computing resources.

4. Experiments

4.1. Experimental Setup

Our experiments are performed using the dataset pro-

vided by The AI City Challenge 2021. The dataset con-

tains 31 videos of different traffic scenarios which were

captured from 20 unique camera scenes in high resolution

at the total length of 5 hours. The dataset presents an ar-

ray of different traffic densities and vantage points, includ-



ing full intersections, highway segments, and city streets in

different light intensities, weather conditions and recording

distances. Taking into account a neural network’s learnabil-

ity, we utilize it to approximate a generalized mathemati-

cal model for recognizing vehicles on scenarios specific to

the dataset. For effectively counting vehicles from input

videos, our solution’s implementations are then constructed

in such a way that can efficiently take advantage of the do-

main comprehension. The resultant solution best performs

on a multi-threaded, GPU-supported machine.

We tested our solution on an NVIDIA Jetson Xavier

NX, which is an embedded AI mini-computer. With GPU-

support and a multicore processor, the Jetson Xavier NX

device (whose specification provides a CUDA-accelerated

GPU with a shared memory of 8GB) is adequately capable

of running our solution in real-time speed. Taking into ac-

count hardware developments, we also perform our solution

on a configuration of Intel Core i7 with a NVIDIA GeForce

RTX 2060 GPU to assess how the solution’s efficiency will

be boosted given more CPU and GPU computability.

4.2. Metrics

We judge the results with AI City Challenge evaluation

score which is defined as:

S1 = 0.3 ∗ S1Efficiency + 0.7 ∗ S1Effectiveness (5)

where SEfficiency is calculated based on the execution time

and is adjusted by the Base Factor which is dependent on

the running system’s CPU and GPU computability. It as-

sesses the solution’s ability to execute online within its

computing environment and resources. On the other hand,

SEffectiveness is computed for vehicle counts as a weighted

average of normalized weighted root mean square error

scores (nwRMSE) across all videos, movements, and vehi-

cle classes of the test sets. By splitting each video into seg-

ments for reducing jitters due to labeling discrepancies, it

penalizes errors via the weighted cumulative vehicle counts

from the start of the video to each segment’s end. Detailed

illustrations of all evaluation metrics can be found on the

official website of AI City 2021 Challenge1.

4.3. Results

4.3.1 Results on Computability

Evaluations of our solution on both computing envi-

ronments show high ratings of accuracy (with devia-

tions due to hardware architectural differences) at 0.94

S1 Effectiveness. As illustrated by S1 Efficiency in

Table 1, the rating for our solution significantly increases in

an environment of higher computability, where total execu-

tion time significantly decreases from 58.4701 minutes to

1https://www.aicitychallenge.org/2021-data-and-evaluation/

Table 1. The comparision of our proposed scheme on different

hardware configurations when evaluated on AI City 2021 Dataset

Device Exec. Time S1Effectiveness S1Efficiency S1

Jetson NX 58.4701 mins 0.9403 0.8763 0.9211

RTX 2060 14.0679 mins 0.9406 0.9581 0.9459

14.0679 minutes as the base factor increases from 0.6948
(on Jetson) to 0.9782 (on PC). Vehicle detections are ex-

tracted by batch at very high speed even on the Jetson de-

vice, so it is likely that sequentially processing on CPU is a

bottleneck, and that efficiency improvements for our solu-

tion can be made through streamlining CPU computations.

4.3.2 Final ranking

Our team achieved a very competitive final score of S1 =

0.9459 at the second place, and is only 0.0008 lower than

that of the top team. The final ranking results of the chal-

lenge are shown in Table 2. Nevertheless, supposing all

other teams run their solutions on the Jetson Xavier NX de-

vice, ours may only be at 5th place.

Table 2. The overall ranking on S1 score of the vehicle counting

task in AI City 2021 Track 1

Rank Team ID S1 score

1 37 0.9467

2 5 (Ours) 0.9459

3 8 0.9263

4 19 0.9249

5 118 0.9235

6 42 0.9157

5. Conclusion

In this paper, we have presented a DTC framework for

counting vehicles specific to many travel paths and scenes.

Our solution consists of a fast batch vehicle detector, a

three-fold matching scheme for vehicle tracking, and pre-

dictive counter that assigns motion labels on vehicles’ tra-

jectories in a vectorized manner. Both the effectiveness and

efficiency of our solution are experimentally illustrated.
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