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Abstract

In this work, we consider two tracks of the 2021 NVIDIA

AI City Challenge, the City-Scale Multi-Camera Vehicle

Re-identification and Natural language-based Vehicle Re-

trieval. For the vehicle re-identification task, we employ

the state-of-art Excited Vehicle Re-Identification deep rep-

resentation learning model coupled with best training prac-

tices and domain adaptation techniques to obtain robust

embeddings. We further refine the re-identification results

through a series of post-processing steps to remove camera

and vehicle orientation bias that is inherent in the task of

re-identification. We also take advantage of multiple obser-

vations of a vehicle using track-level information and finally

obtain fine-grained retrieval results. For the task of Nat-

ural language-based vehicle retrieval we leverage the re-

cently proposed Contrastive Language-Image Pre-training

model and propose a simple yet effective text-based vehi-

cle retrieval system. We compare our performance against

the top submissions to the challenge and our systems are

ranked 8th in the public leaderboard for both tracks.

1. Introduction

Lately, there has been a great focus on the realization of

automated and intelligent transportation systems at differ-

ent scales. An autonomous vehicle can benefit from such

automated systems to significantly reduce the risk of acci-

dents, improve passenger experience and minimize travel

distances. On the other hand, intelligent transportation sys-

tems can help large-scale traffic camera networks to dynam-

ically learn traffic patterns, manage the flow of traffic, col-

lect vehicle-level analytics such as speed, and retrieve a ve-

hicle of interest using different attributes and descriptions.

In recent years, the development of efficient and high per-

forming deep neural networks has made such advancements

quite possible. In addition, the NVIDIA AI City Challenge

has facilitated the path to the realization of smart trans-
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portation systems during the past couple of years. In the

2021 version of this challenge, we participated in the tasks

of City-Scale Multi-Camera Vehicle Re-Identification and

Natural Language-Based Vehicle Retrieval.

Vehicle Re-Identification is the task of locating all in-

stances of a particular vehicle identity in a gallery set con-

sisting of a large volume of vehicle images which have been

captured under diverse conditions using a network of traffic

cameras. This is particularly challenging as vehicles with

different identities can be of same manufacturer, model,

year and color, resulting in very small inter-class variation.

In addition, multiple images of a single vehicle identity can

look significantly different under different view-points and

angles, resulting in large intra-class variation. Therefore,

learning highly discriminative and robust embeddings that

are capable of handling both inter- and intra-class varia-

tions is critical. In this work, we employ the fast and accu-

rate Excited Vehicle Re-Identification (EVER) [27] model

which benefits from the Self-Supervised Residual Genera-

tion module [15] to excite the intermediate feature maps to

learn robust embeddings. Moreover, we train EVER within

the framework of FASTREID [11] using state-of-the art re-

identification algorithm training techniques.

Natural Language-Based vehicle retrieval is a multi-

modal task for retrieving single-camera tracks of vehicles

that are consistent with a natural language query describ-

ing its visual and motion patterns. This is the first time AI

City Challenge has introduced this task. Text-based image

retrieval is inherently challenging due to the ambiguity of

textual descriptions. Secondly, using single camera tracks

might make the task of discerning the model of a vehicle

hard resulting in poor retrieval results. Therefore, it is es-

sential to train powerful multi-modal models that can effec-

tively deal with such difficulties. In this work, we leverage

a recently proposed multi-modal model CLIP (Contrastive

Language-Image Pre-training) [29]. CLIP jointly trains a

visual and text encoder by leveraging natural language de-

scriptions as supervisors to learn powerful image represen-

tations and has demonstrated impressive zero shot perfor-

mance in many image recognition tasks [29]. We design a



simple yet effective natural language-based vehicle retrieval

system that given natural language queries, ranks tracks

of vehicles using cosine similarity between visual and lan-

guage features extracted from CLIP.

The paper is organized as follows. In Section 2, we

briefly describe some of the recent works on vehicle re-

identification and natural language-based retrieval. Then,

we describe our method, experiments and results for the

Vehicle Re-identification and Natural language-based vehi-

cle retrieval tasks in Sections 3 and 4 respectively. Finally,

in Section 5 we briefly summarize our efforts for the 2021

NVIDIA AI City Challenge and suggest a few directions for

future research.

2. Related Works

Vehicle Re-Identification: Here we briefly review several

recent and most relevant works in the area of vehicles re-

identification. To learn discriminative vehicle embeddings,

several large-scale re-id benchmarks have been proposed.

VeRi [19], VehicleID [18], VERI-Wild [22] and Vehicle 1-

M [7] have made it possible to learn robust visual features

based on deep learning. Introduction of synthetic data [40]

with diverse attributes has also been shown to contribute

to the performance of re-identification models [41]. While

learning global visual features of vehicles can be done in a

straightforward fashion, learned embeddings are not robust

to occlusion and changes in view-points [37]. In addition,

the extracted features may usually fail to distinguish two

similar looking vehicles that are of same make, model, color

and year. Therefore, extracting local features from discrim-

inating regions of vehicles plays a critical role. [14, 8] ex-

plored the idea of supervised attention in the form of vehicle

key-points and vehicle parts location. In addition, the idea

of image alignment based on local regions while extracting

the features is shown to be effective [20]. Due to the scarcity

of additional annotations to perform supervised attention,

self-supervised models have been developed to overcome

this bottleneck. [15, 27] by generating pseudo-saliency

maps. As an alternative to convolutional neural networks

(CNN), with the development of transformer models for vi-

sual domain [4], the idea of self-attention has been studied.

In [12], the authors show that transformer-based models can

yield competitive results to those based on CNNs.

Natural Language-Based Retrieval : Learning Cross-

Modal (image-text) representations is fundamental to a

wide range of vision-language (V+L) tasks, such as vi-

sual question answering, image-text retrieval, image cap-

tioning/grounding etc. Transformer-based [34] natural lan-

guage models like BERT [3], have resulted in success-

ful adaptation of similar architectures and training tech-

niques to image and image-text representation learning.

Lu et. al [23] proposed ViLBERT that extends BERT

[3] to a multi-modal two stream architecture with novel

Co-Attention transformer layers for learning task agnostic

joint representations of image content and natural language

which has shown impressive results on twelve different vi-

sion and language tasks [24]. Li et. al [17] argue that the

self attention mechanism employed in contemporary Vision

Language Pretraining (VLP) methods lack explicit align-

ment between image regions and text. To alleviate this is-

sue, they propose OSCAR, a novel VLP method that lever-

ages object tags detected in images as anchor points to fa-

cilitate efficient semantic alignment between image regions

and text. Chen et. al [1] propose UNITER that uses con-

ditional masking on pre-training tasks as opposed to the

joint random masking of both modalities done in contem-

porary methods. UNITER is trained using four pre-training

tasks namely Masked Language Modeling (MLM), Masked

Region Modeling, Image-Text Matching (ITM), and Word-

Region Alignment (WRA). While ITM helps achieve global

image-text alignment, the proposed WRA leverages Op-

timal Transport (OT) to explicitly encourage fine-grained

alignment between words and image regions during pre-

training. While all the methods discussed above predict

the exact word of the text using transformer based archi-

tectures, CLIP [29] is trained on a relatively easier task of

matching the image to the right caption. CLIP is trained

in a contrastive fashion using a symmetric cross entropy

loss to assign a high similarity score to the correct (image,

text) pair while simultaneously reducing the score for the

incorrect pairings. CLIP has demonstrated impressive re-

sults in many image recognition tasks [29] and we employ

it to solve the Natural language-based vehicle retrieval prob-

lem. Finally, datasets used for training and evaluating all of

the text retrieval systems described above are generic, and

in this paper we work with visual feed of vehicles. Such

domain specific data presents its own set of challenges and

have to be addressed appropriately.

3. Vehicle Re-Identification

In this section, we present our method for the City-Scale

Multi-Camera Vehicle Re-Identification track of the 2021

NVIDIA AI City Challenge. Our approach has three dis-

tinct stages, namely Pre-Processing, Deep Feature Extrac-

tion, and Post-Processing. Figure 1 shows the overview of

our proposed pipeline.

3.1. Pre­Processing

The 2021 edition of CityFlow Re-ID dataset [32] has

85058 images in total which are split among training, test-

ing and query sets of size 52717, 31238 and 1103 respec-

tively. The training data consists of 440 identities. To pre-

pare the training data we performed margin removal and

domain adaptation techniques as described in the following

sections.
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Figure 1: Our proposed approach for the task of City-Scale Multi-Camera Vehicle Re-Identification. The proposed pipeline

consist of three distinct stages, namely pre-processing, deep feature extraction and post-processing.

3.1.1 Margin Removal (MR)

Cropped vehicle images in CityFlow Re-ID dataset often

have a significantly large margin which can be viewed as

background distractors. Therefore, following the practice

of [16, 41], we use Mask R-CNN object detector [9] imple-

mented in Detectron2 [39] to randomly tighten the bound-

ing box of a vehicle. This process helps the representation

learning model to better focus on the vehicle and its dis-

criminative regions. Figure 2 demonstrates the impact of

margin removal operation.

3.1.2 Domain Adaption (DA)

Typically high capacity deep learning models perform bet-

ter with the introduction of additional training data with

similar characteristics that resembles the original training

data in terms of probability distribution of images. Hence,

in an attempt to increase the size of training set, we use the

two publicly available multi-view vehicle re-identification

datasets, namely VeRi [19] and VERI-Wild [22]. How-

ever, the domain of these datasets is different from that of

CityFlow Re-ID dataset. To compensate for this domain

gap, we use CycleGAN [44] to perform the task of unpaired

Image-to-Image translation. Therefore, we learn two map-

ping functions, G1 and G2 that can map images of VeRI

and VERI-Wild datasets to the domain of CityFlow Re-

ID dataset respectively. Figure 3 shows the transformation

on a VeRi dataset image to the domain of CityFlow Re-ID

dataset.

3.2. Deep Feature Extraction

To deal with the aforementioned inter- and intra-class

similarities and variations that is prevalent in the vehicle

re-identification task, accurate deep neural network models

are required. These models should focus the attention to

subtle details in the vehicle images and extract robust em-

beddings. Therefore, we choose to employ Excited Vehi-

cle Re-Identification (EVER) model which was among the

top performers of the City-Scale Multi-Camera Vehicle Re-

Identification track of 2020 NVIDIA AI City Challenge.

EVER has a built-in self-supervised residual generation

module inspired by [15] that can highlight the high-level

details of vehicle corresponding to its identity and can help

to distinguish the vehicle’s identity from others. During

the course of training, EVER excites its intermediate fea-

ture maps with the goal of attending to the discriminative

regions within the vehicle image. However, as the training

progresses the amount of excitation reduces so that once the

model is fully trained, no more excitation is done. This can

significantly improve the inference time as it only involves

a single forward pass of the backbone ResNet [10] network

in our case.

In addition, the global pooling layer of the backbone

ResNet architecture that comes after the Res-5 block, is

typically an average pooling layer. In our work, we re-

placed this with a learnable Generalized-Mean (GEM) pool-

ing layer [28] due to the enhancements observed in FAS-

TREID framework for re-identification tasks, with the fol-

lowing formulation:

fc(x) =





1

|W ∗H|

W
∑

i=1

H
∑

j=1

(xc,i,j)
p





1/p

(1)

In Eq. 1, fc(x) is the cth channel of the GEM layer’s

output for an input feature map x of shape C ∗ W ∗ H .

Further, the pooling parameter p is trainable and is initiated

with value of 1, i.e. the GEM layer performs average pool-

ing operation initially. After training, the final value of p is

2.79.



3.2.1 Optimization Objective Functions

To train EVER, we employ Triplet [13] and Cross entropy

loss functions. To ensure intra-class compactness while

having larger inter-class distances, triplet loss tries to make

the distance between an anchor and its positive pair smaller

than the distance between the anchor and its negative pair

by a distance margin. The integration of triplet loss with

the batch hard sampling method is achieved by minimizing

the loss function given below.

Lt =
1

B

B
∑

i=1

∑

a∈bi

[

γ + max
p∈P(a)

||xa − xp||2 − min
n∈N (a)

||xa − xn||2

]

+

(2)

In Eq. 2, B, bi, a, γ, P(a) and N (a) are the total num-

ber of batches, ith batch, anchor sample, distance margin

threshold, positive and negative sample sets corresponding

to a given anchor respectively. Moreover, xa, xp, xn are the

extracted features for anchor, positive and negative samples.

For the purpose of this loss, batches are constructed in a way

that they have exactly 16 instances of each ID used.

In addition, the Cross entropy loss with label smoothing

technique [31] to alleviate the issue of over-fitting is used.

Note that to effectively apply both cross entropy and triplet

losses to the extracted features, Batch Normalization Neck

(BNNECK) [25] has been inserted into EVER. The Cross

entropy loss is calculated as follows:

Lc =
1

N

N
∑

i=1

C
∑

j=1

[

yij log ŷ
i
j + (1− yij) log(1− ŷij)

]

(3)

Where ŷij = log e
(WT

j
xi+bj)

(

∑

C
j=1 e

WT
j

xi+bj

) is the predicted logit

corresponding to class j for the extracted feature xi of the

ith training sample after applying the softmax layer. Fur-

thermore, in Eq. 3, Wj , bj are the classifier’s weight vec-

tor and bias associated with jth class respectively, and N

and C represent the total number of samples and classes

in the training dataset. Since we use label smoothing,

yij = 1 − C−1

C ǫ if j = c, otherwise yij = ǫ
C where c is

the true label of ith sample.

3.3. Post­Processing

After we train EVER and extract visual embeddings for

images in the gallery and query sets we perform a set of

post-processing operations to enhance the accuracy of the

retrieval process.

3.3.1 Same Camera Removal (SCR)

Images captured through a same camera share similarities

in orientation, shape and background that can negatively

impact the re-identification results by severely reducing the

inter-class distance and lead to failure cases. In the 2021

version of CityFlow Re-ID dataset, camera labels are pro-

vided for the test set. Therefore, during the inference, we

remove all gallery images with the same camera label as the

query image. Given the recent improvements in the area of

Multi-object single camera tracking [43, 36], especially on

high quality data, the chance of occurring ID switches has

reduced. Hence, this is a reasonable assumption. Note that

this procedure contributes to the success of re-identification

task considerably as discussed in section 3.4.3.

3.3.2 Orientation Bias Removal (OBR)

Although we remove images captured from identical cam-

eras, there might be still query-gallery image pairs that

are under similar view-points which in turn can impose a

bias on visual similarity computed by EVER. Inspired by

[45, 41], we use the key-point and orientation estimation

model in [14] to extract orientation embeddings and adjust

the distance of an image pair accordingly. To train the key-

point and orientation estimation model, we use the domain

adapted VeRi dataset, introduced in section 3.1.2, in which

images are labeled with key-points and orientation annota-

tions [37]. Afterwards, we extract orientation embeddings

and adjust the distance of two given images Iq and Ig as the

following:

d(Iq, Ig) = ||f(Iq)− f(Ig)||2+λ
g(Iq).g(Ig)

||g(Iq)||2||g(Ig)||2
(4)

In Eq. 4, d(., .), f(.) and g(.) represent the distance of an

image pair in L2 norm, EVER deep feature extractor and

key-point and orientation estimation model respectively.

The intuition behind Eq. 4 is that images that have similar

orientation have smaller visual distance, hence we increase

the distance by adding a fraction, i.e. λ, of orientation sim-

ilarity calculated based on cosine similarity.

3.3.3 Image to Track Comparison (ITC)

Relative to image to image comparison, image to track com-

parison is much more realistic as single camera tracking in-

formation is readily available and hence the chance of hav-

ing similar images within the track to the query image from

the perspective of the EVER model increases. CityFlow Re-

ID dataset provides track-level information on the test set

and we use this knowledge to rank the gallery by only con-

sidering the two samples in a track with the least distance to

the query image.

3.3.4 Implementation details

We train the EVER model within the framework of FAS-

TREID that employs state-of-the-art training tricks suited



(a) Original Image (b) Tightened

Figure 2: Margin removal via Mask R-CNN Object Detector

(a) Original Image (b) Mapped Image

Figure 3: Translation from VeRi to CityFlow Re-ID dataset

for the task of re-identification and thoroughly investigated

in [25, 11].

In our work, all the images have been resized to 320∗320
pixels. Specifically during the training process the follow-

ing steps are taken:

• As a data augmentation technique, images are ran-

domly flipped with 0.5 probability.

• To address the issue of occlusion, Random Erasing

Augmentation [42] step is employed with the goal of

encouraging the network to learn more robust repre-

sentations.

• Searched data augmentation policies from ImageNet

dataset based on AutoAugment [2] is applied. The

searched policy, involves translation, rotation, and

shearing image processing operations. In addition, it

carries information on the frequency and the degree to

which these operations should be applied.

• To prevent the deep feature extraction model from

over-fitting to the initial training batches, the Learning

Rate Warm-up [5] technique is used.

• The backbone model is instantiated from ImageNet

pre-trained weights. For the purpose of training, the

classification layer of this model is replaced to meet

the number of training labels and is initiated with ran-

domly distributed weights. To improve this initializa-

tion, we used the backbone freeze technique in the

first 5000 iterations and merely train the newly added

classification layer. Subsequently, the entire model is

trained.

• To optimize the deep network, Stochastic Gradient De-

scent (SGD) with momentum of 0.9 and Cosine An-

nealing learning rate scheduling [21] is utilized.

3.4. Results

In this part, first we describe the evaluation metric used

to measure the performance and then present the evaluation

results of the top ten performers of the City-Scale Multi-

Camera Vehicle Re-Identification track in 2021 NVIDIA AI

City Challenge. Lastly, we perform an ablation study to

investigate the impact of each step in the proposed pipeline.

3.4.1 Evaluation Metric

To measure the performance, mean Average Precision

(mAP) metric is considered. mAP shows how well a gallery

set can be ranked based on a given query set and higher

values of this metric shows the superiority of the perfor-

mance. Note that in the city-scale multi-camera vehicle

re-identification track in 2021 NVIDIA AI City Challenge,

only the top 100 images in the ranked gallery participated

in the mAP calculation.

3.4.2 Leaderboard Rankings

Table 1, shows the top ten performers of the city-

scale multi-camera vehicle re-identification track in 2021

NVIDIA AI City Challenge. Our proposed pipeline,

achieves the mAP of 62.16% and is ranked 8th among sub-

missions to the public leaderboard.

3.4.3 Ablation Study

Here we investigate the contribution of each modules in the

pipeline to final performance. The baseline model is EVER

trained with FASTREID framework on CityFlow Re-ID

dataset without any further post-processing steps. Table 2

shows the result of this analysis. From Table 2 it can be

seen that removing images with same camera label as the

queried image significantly boosts the performance. In ad-

dition, we can appreciate the gain of margin removal (MR),

domain adaptation (DA) on additional data, image to track

comparison (ITC), and orientation bias removal to the over-

all performance.

4. Natural Language-Based Vehicle Retrieval

In this section we describe our method for the natural

language based vehicle retrieval track of the 2021 NVIDIA
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Figure 4: Our system pipeline for Natural Language-based vehicle retrieval. We leverage image and text embeddings from

CLIP to compute the average text and track features which are then used to rank all the tracks in the gallery given a natural

language query.

Table 1: Top 10 performers of city-scale multi-camera ve-

hicle re-identification track in 2021 NVIDIA AI City Chal-

lenge

Rank Team Name Score (mAP)

1 DMT 0.7445

2 NewGeneration 0.7151

3 CyberHu 0.6650

4 For Azeroth 0.6555

5 IDo 0.6373

6 KeepMoving 0.6364

7 MegVideo 0.6252

8 aiem2021 (Ours) 0.6216

9 CyberCoreAI 0.6134

10 Janus Wars 0.6083

Table 2: Ablation Study Results of our proposed pipeline

for the city-scale multi-camera vehicle re-identification

track.

Model Score (mAP)

Baseline 0.4019

Baseline + MR + ITC 0.4537

Baseline + MR + ITC + DA 0.4733

Baseline + MR + ITC + DA + SCR 0.6000

Baseline + MR + ITC + DA + SCR + OBR 0.6216

AI City Challenge. We first describe the approach followed

by the implementation details, results and suggestions for

future work.

4.1. Dataset and Metrics

The dataset for this track is built over the CityFlow-NL

[6] dataset and consists of 2498 single camera tracks of ve-

hicles for training. Each track is annotated with three nat-

ural language descriptions. Results for the challenge are

reported on a separate set of 530 unique vehicle tracks to-



Table 3: Top 10 performers of Natural Language-based ve-

hicle retrieval track in 2021 NVIDIA AI City Challenge.

Rank Team Name Score (MRR)

1 Alibaba-UTS 0.1869

2 TimeLab 0.1613

3 SBUK 0.1594

4 SNLP 0.1571

5 HUST 0.1564

6 HCMUS 0.1560

7 VCA 0.1548

8 aiem2021 (Ours) 0.1364

9 Enablers 0.1314

10 Modulabs 0.1195

Figure 5: Numpy style pseudo code for CLIP. Figure bor-

rowed from [29]

gether with 530 natural language queries each with three

descriptions form the test set.

All the submissions are evaluated on the test set using

standard metrics for retrieval tasks, namely, Mean Recip-

rocal Rank (MRR) [35] and Recall @k (k ∈ {5, 10, 25}).

Mean Reciprocal Rank (MRR) : Each individual query in

the test set receives a score of the reciprocal of the rank at

which the first correct response was returned. The value is

zero if none of the five responses is the correct response.

MRR is defined as the average of scores of all the queries.

Recall @k : Recall @k is the proportion of relevant items

found in the top-k recommendations.

4.2. Pipeline

In this section, we describe our proposed pipeline for

natural language-based vehicle retrieval in details. We

adopt the recently proposed Contrastive Language-Image

Pre-training (CLIP) [29] model for the task. We use CLIP

to extract frame wise features. We average the frame-wise

features of a track to obtain the track features. Similarly, we

extract language features of all three captions and average

them to get an average language descriptor. We then use

cosine similarity between the language and track features to

rank all the tracks in the gallery. In Section 4.2.1 we briefly

describe CLIP and its training algorithm. Finally, in Sec-

tion 4.2.2 we describe our pipeline. We present our vehicle

retrieval pipeline in Figure 4.

4.2.1 Contrastive Language-Image Pre-training

Contrastive Language-Image Pre-training (CLIP) [29]

leverages natural language descriptors of images as supervi-

sion to learn rich visual representations. In contrast to meth-

ods that predict the exact words of the text accompanying

the image, CLIP solves an easier proxy task of predicting

only which text as a whole is correctly paired with which

image and not the exact words of the text. Next, we briefly

describe the training methodology and implementation de-

tails.

Training: Given a batch consisting of B (image, text)

pairs, CLIP is optimized to correctly predict the right (im-

age, text) combination among the B × B possibilities. To

achieve this, CLIP learns a multi-model embedding space

by jointly training an image and text encoders to maximize

the cosine similarity between the text and image embed-

dings of the B right pairs while simultaneously minimizing

the B2 − B incorrect pairings. A symmetric cross entropy

loss, similar to the ones proposed in [30, 33], is optimized

to learn the text and image encoders. Refer to Fig.5 for a

pseudo code for the core implementation of CLIP.

Implementation Details: Authors of [29] consider two

architectures for the image encoder: a ResNet [10] (with

several modifications) and a Visual Transformer backbones

[38]. The text encoder is a 63M-parameter 12-layer 512-

wide transformer [34] model with eight attention heads.

For computational efficiency, the max sequence length was

capped at 76. For more specific details about architectures,

we refer the readers to [29]. All the CLIP models are trained

for 32 epochs using ADAM optimizer with a very large



batch size of 32678 and a cosine schedule for learning rate

decay. Mixed precision [26] was used to speed up training

and save memory.

4.2.2 CLIP for Natural Language Vehicle Retrieval

In this section, we describe our method that leverages CLIP

for natural language-based vehicle retrieval. We adopt

the publicly available CLIP model that uses the Visual

Transformer ViT-B/32 as the image encoder and a Text

Transformer as the text encoder for our purpose. Given a

track Ti = {Ii
1
, Ii

2
, . . . , Iiti} consisting of ti crops centered

around the vehicle, we use the Image encoder of CLIP to

extract per frame features f i
j (j ∈ {1, 2, . . . , ti}). We re-

size the crops to 256× 256, take a center crop of 224× 224
and normalize the crops to zero mean and unit standard de-

viation as a part of pre-processing. Each query consists

of three natural language descriptions, qi (i ∈ {1, 2, 3}).
We use the text encoder of CLIP to extract text features f

q
i

(i ∈ {1, 2, 3}). The per frame features are then average

pooled to obtain the track feature f i =
∑ti

j=1 fi
j

ti
. Similarly,

the text features are averaged to obtain the average text fea-

ture fq =
∑3

j=1 fq
j

3
. We normalize these features and use

cosine similarity as the score for this pair. For each query

description, this process is repeated over all tracks and the

scores are sorted in descending order to get the retrieval out-

put. Refer to Figure 4 for the retrieval pipeline.

4.3. Results

In Table 3 we show the top ten performers of the Natu-

ral Language-based vehicle retrieval track in 2021 NVIDIA

AI City Challenge. Our method achieves a MRR score of

0.1364 and is ranked 8th among all the submissions to the

public leaderboard.

4.4. Future Research

CLIP [29] has shown impressive zero shot performance

in many tasks. It was shown that fine-tuning CLIP on the

target data can further improve results. One direction we

would like to explore is to fine-tune CLIP on the CityFlow-

NL dataset. In our current approach, we naively average

per-frame features to get the track features. However, not

all frames are equally important due to occlusions, view-

point variations etc and hence it is imperative to incorporate

temporal modeling into the pipeline. To this end, we would

like to explore self attention [34] as a way to intelligently

aggregate visual information across time. Finally, without

fine-tuning CLIP, it is unreasonable to expect the model to

discriminate between various vehicle models. Discriminat-

ing between models is crucial as it helps with rejecting false

positive recommendations due to color similarities.

5. Conclusion

In this paper, we summarizes our contributions in the

2021 NVIDIA AI City Challenge for City-Scale Multi-

Camera Vehicle Re-Identification and Natural Language-

Based Vehicle Retrieval tasks. We show how effective rep-

resentation learning techniques in conjunction with post-

processing steps and contrastive learning-based Language-

Image pre-training can result in impressive real world ve-

hicle retrieval systems. Both our proposed methods are

ranked 8th on both the tasks.

6. Acknowledgement

This research is supported in part by the Northrop Grum-

man Mission Systems Research in Applications for Learn-

ing Machines (REALM) initiative, It is also supported in

part by the Office of the Director of National Intelligence

(ODNI), Intelligence Advanced Research Projects Activity

(IARPA), via IARPA R&D Contract No. D17PC00345.

The views and conclusions contained herein are those of

the authors and should not be interpreted as necessarily rep-

resenting the official policies or endorsements, either ex-

pressed or implied, of ODNI, IARPA, or the U.S. Govern-

ment. The U.S. Government is authorized to reproduce and

distribute reprints for Governmental purposes notwithstand-

ing any copyright annotation thereon.

References

[1] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,

Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter:

Universal image-text representation learning. In ECCV,

2020. 2

[2] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V Le. Autoaugment: Learning augmentation

policies from data. arXiv preprint arXiv:1805.09501, 2018.

5

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. BERT: Pre-training of deep bidirectional trans-

formers for language understanding. In Proceedings of the

2019 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), pages

4171–4186, Minneapolis, Minnesota, June 2019. Associa-

tion for Computational Linguistics. 2

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint

arXiv:2010.11929, 2020. 2

[5] Xing Fan, Wei Jiang, Hao Luo, and Mengjuan Fei. Spher-

ereid: Deep hypersphere manifold embedding for person re-

identification. Journal of Visual Communication and Image

Representation, 60:51–58, 2019. 5



[6] Qi Feng, Vitaly Ablavsky, and Stan Sclaroff. Cityflow-nl:

Tracking and retrieval of vehicles at city scale by natural lan-

guage descriptions, 2021. 6

[7] Haiyun Guo, Chaoyang Zhao, Zhiwei Liu, Jinqiao Wang,

and Hanqing Lu. Learning coarse-to-fine structured feature

embedding for vehicle re-identification. In Proceedings of

the AAAI Conference on Artificial Intelligence, volume 32,

2018. 2

[8] Bing He, Jia Li, Yifan Zhao, and Yonghong Tian. Part-

regularized near-duplicate vehicle re-identification. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 3997–4005, 2019. 2

[9] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017. 3

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 3, 7

[11] Lingxiao He, Xingyu Liao, Wu Liu, Xinchen Liu, Peng

Cheng, and Tao Mei. Fastreid: A pytorch toolbox for general

instance re-identification. arXiv preprint arXiv:2006.02631,

6(7):8, 2020. 1, 5

[12] Shuting He, Hao Luo, Pichao Wang, Fan Wang, Hao Li,

and Wei Jiang. Transreid: Transformer-based object re-

identification. arXiv preprint arXiv:2102.04378, 2021. 2

[13] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In de-

fense of the triplet loss for person re-identification. arXiv

preprint arXiv:1703.07737, 2017. 4

[14] Pirazh Khorramshahi, Amit Kumar, Neehar Peri, Sai Saketh

Rambhatla, Jun-Cheng Chen, and Rama Chellappa. A

dual-path model with adaptive attention for vehicle re-

identification. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 6132–6141, 2019. 2,

4

[15] Pirazh Khorramshahi, Neehar Peri, Jun-cheng Chen, and

Rama Chellappa. The devil is in the details: Self-supervised

attention for vehicle re-identification. In European Confer-

ence on Computer Vision, pages 369–386. Springer, 2020. 1,

2, 3

[16] Pirazh Khorramshahi, Neehar Peri, Amit Kumar, Anshul

Shah, and Rama Chellappa. Attention driven vehicle re-

identification and unsupervised anomaly detection for traffic

understanding. 3

[17] Xiujun Li, Xi Yin, Chunyuan Li, Xiaowei Hu, Pengchuan

Zhang, Lei Zhang, Lijuan Wang, Houdong Hu, Li Dong,

Furu Wei, Yejin Choi, and Jianfeng Gao. Oscar: Object-

semantics aligned pre-training for vision-language tasks.

ECCV 2020, 2020. 2

[18] Hongye Liu, Yonghong Tian, Yaowei Wang, Lu Pang, and

Tiejun Huang. Deep relative distance learning: Tell the dif-

ference between similar vehicles. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2167–2175, 2016. 2

[19] Xinchen Liu, Wu Liu, Huadong Ma, and Huiyuan Fu. Large-

scale vehicle re-identification in urban surveillance videos.

In 2016 IEEE International Conference on Multimedia and

Expo (ICME), pages 1–6. IEEE, 2016. 2, 3

[20] Xinchen Liu, Wu Liu, Jinkai Zheng, Chenggang Yan, and

Tao Mei. Beyond the parts: Learning multi-view cross-

part correlation for vehicle re-identification. In Proceedings

of the 28th ACM International Conference on Multimedia,

pages 907–915, 2020. 2

[21] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-

tic gradient descent with warm restarts. arXiv preprint

arXiv:1608.03983, 2016. 5

[22] Yihang Lou, Yan Bai, Jun Liu, Shiqi Wang, and Ling-Yu

Duan. Veri-wild: A large dataset and a new method for

vehicle re-identification in the wild. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3235–3243, 2019. 2, 3

[23] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vil-

bert: Pretraining task-agnostic visiolinguistic representations

for vision-and-language tasks. In Advances in Neural Infor-

mation Processing Systems, pages 13–23, 2019. 2

[24] Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi

Parikh, and Stefan Lee. 12-in-1: Multi-task vision and lan-

guage representation learning. In The IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June

2020. 2

[25] Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei

Jiang. Bag of tricks and a strong baseline for deep person

re-identification. In The IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR) Workshops, June 2019.

4, 5

[26] P. Micikevicius, Sharan Narang, Jonah Alben, G. Diamos,

Erich Elsen, D. Garcı́a, Boris Ginsburg, Michael Houston, O.

Kuchaiev, Ganesh Venkatesh, and H. Wu. Mixed precision

training. ArXiv, abs/1710.03740, 2018. 8

[27] Neehar Peri, Pirazh Khorramshahi, Sai Saketh Rambhatla,

Vineet Shenoy, Saumya Rawat, Jun-Cheng Chen, and Rama

Chellappa. Towards real-time systems for vehicle re-

identification, multi-camera tracking, and anomaly detec-

tion. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition Workshops, pages 622–

623, 2020. 1, 2
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