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Abstract

In this work, we consider two tracks of the 2021 NVIDIA
Al City Challenge, the City-Scale Multi-Camera Vehicle
Re-identification and Natural language-based Vehicle Re-
trieval. For the vehicle re-identification task, we employ
the state-of-art Excited Vehicle Re-Identification deep rep-
resentation learning model coupled with best training prac-
tices and domain adaptation techniques to obtain robust
embeddings. We further refine the re-identification results
through a series of post-processing steps to remove camera
and vehicle orientation bias that is inherent in the task of
re-identification. We also take advantage of multiple obser-
vations of a vehicle using track-level information and finally
obtain fine-grained retrieval results. For the task of Nat-
ural language-based vehicle retrieval we leverage the re-
cently proposed Contrastive Language-Image Pre-training
model and propose a simple yet effective text-based vehi-
cle retrieval system. We compare our performance against
the top submissions to the challenge and our systems are
ranked 8™ in the public leaderboard for both tracks.

1. Introduction

Lately, there has been a great focus on the realization of
automated and intelligent transportation systems at differ-
ent scales. An autonomous vehicle can benefit from such
automated systems to significantly reduce the risk of acci-
dents, improve passenger experience and minimize travel
distances. On the other hand, intelligent transportation sys-
tems can help large-scale traffic camera networks to dynam-
ically learn traffic patterns, manage the flow of traffic, col-
lect vehicle-level analytics such as speed, and retrieve a ve-
hicle of interest using different attributes and descriptions.
In recent years, the development of efficient and high per-
forming deep neural networks has made such advancements
quite possible. In addition, the NVIDIA Al City Challenge
has facilitated the path to the realization of smart trans-
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portation systems during the past couple of years. In the
2021 version of this challenge, we participated in the tasks
of City-Scale Multi-Camera Vehicle Re-Identification and
Natural Language-Based Vehicle Retrieval.

Vehicle Re-Identification is the task of locating all in-
stances of a particular vehicle identity in a gallery set con-
sisting of a large volume of vehicle images which have been
captured under diverse conditions using a network of traffic
cameras. This is particularly challenging as vehicles with
different identities can be of same manufacturer, model,
year and color, resulting in very small inter-class variation.
In addition, multiple images of a single vehicle identity can
look significantly different under different view-points and
angles, resulting in large intra-class variation. Therefore,
learning highly discriminative and robust embeddings that
are capable of handling both inter- and intra-class varia-
tions is critical. In this work, we employ the fast and accu-
rate Excited Vehicle Re-Identification (EVER) [27] model
which benefits from the Self-Supervised Residual Genera-
tion module [15] to excite the intermediate feature maps to
learn robust embeddings. Moreover, we train EVER within
the framework of FASTREID [ |] using state-of-the art re-
identification algorithm training techniques.

Natural Language-Based vehicle retrieval is a multi-
modal task for retrieving single-camera tracks of vehicles
that are consistent with a natural language query describ-
ing its visual and motion patterns. This is the first time Al
City Challenge has introduced this task. Text-based image
retrieval is inherently challenging due to the ambiguity of
textual descriptions. Secondly, using single camera tracks
might make the task of discerning the model of a vehicle
hard resulting in poor retrieval results. Therefore, it is es-
sential to train powerful multi-modal models that can effec-
tively deal with such difficulties. In this work, we leverage
a recently proposed multi-modal model CLIP (Contrastive
Language-Image Pre-training) [29]. CLIP jointly trains a
visual and text encoder by leveraging natural language de-
scriptions as supervisors to learn powerful image represen-
tations and has demonstrated impressive zero shot perfor-
mance in many image recognition tasks [29]. We design a



simple yet effective natural language-based vehicle retrieval
system that given natural language queries, ranks tracks
of vehicles using cosine similarity between visual and lan-
guage features extracted from CLIP.

The paper is organized as follows. In Section 2, we
briefly describe some of the recent works on vehicle re-
identification and natural language-based retrieval. Then,
we describe our method, experiments and results for the
Vehicle Re-identification and Natural language-based vehi-
cle retrieval tasks in Sections 3 and 4 respectively. Finally,
in Section 5 we briefly summarize our efforts for the 2021
NVIDIA Al City Challenge and suggest a few directions for
future research.

2. Related Works

Vehicle Re-Identification: Here we briefly review several
recent and most relevant works in the area of vehicles re-
identification. To learn discriminative vehicle embeddings,
several large-scale re-id benchmarks have been proposed.
VeRi [19], VehicleID [18], VERI-Wild [22] and Vehicle 1-
M [7] have made it possible to learn robust visual features
based on deep learning. Introduction of synthetic data [40]
with diverse attributes has also been shown to contribute
to the performance of re-identification models [41]. While
learning global visual features of vehicles can be done in a
straightforward fashion, learned embeddings are not robust
to occlusion and changes in view-points [37]. In addition,
the extracted features may usually fail to distinguish two
similar looking vehicles that are of same make, model, color
and year. Therefore, extracting local features from discrim-
inating regions of vehicles plays a critical role. [14, 8] ex-
plored the idea of supervised attention in the form of vehicle
key-points and vehicle parts location. In addition, the idea
of image alignment based on local regions while extracting
the features is shown to be effective [20]. Due to the scarcity
of additional annotations to perform supervised attention,
self-supervised models have been developed to overcome
this bottleneck. [!5, 27] by generating pseudo-saliency
maps. As an alternative to convolutional neural networks
(CNN), with the development of transformer models for vi-
sual domain [4], the idea of self-attention has been studied.
In [12], the authors show that transformer-based models can
yield competitive results to those based on CNNs.

Natural Language-Based Retrieval : Learning Cross-
Modal (image-text) representations is fundamental to a
wide range of vision-language (V+L) tasks, such as vi-
sual question answering, image-text retrieval, image cap-
tioning/grounding etc. Transformer-based [34] natural lan-
guage models like BERT [3], have resulted in success-
ful adaptation of similar architectures and training tech-
niques to image and image-text representation learning.
Lu et. al [23] proposed VILBERT that extends BERT
[3] to a multi-modal two stream architecture with novel

Co-Attention transformer layers for learning task agnostic
joint representations of image content and natural language
which has shown impressive results on twelve different vi-
sion and language tasks [24]. Li et. al [17] argue that the
self attention mechanism employed in contemporary Vision
Language Pretraining (VLP) methods lack explicit align-
ment between image regions and text. To alleviate this is-
sue, they propose OSCAR, a novel VLP method that lever-
ages object tags detected in images as anchor points to fa-
cilitate efficient semantic alignment between image regions
and text. Chen et. al [1] propose UNITER that uses con-
ditional masking on pre-training tasks as opposed to the
joint random masking of both modalities done in contem-
porary methods. UNITER is trained using four pre-training
tasks namely Masked Language Modeling (MLM), Masked
Region Modeling, Image-Text Matching (ITM), and Word-
Region Alignment (WRA). While ITM helps achieve global
image-text alignment, the proposed WRA leverages Op-
timal Transport (OT) to explicitly encourage fine-grained
alignment between words and image regions during pre-
training. While all the methods discussed above predict
the exact word of the text using transformer based archi-
tectures, CLIP [29] is trained on a relatively easier task of
matching the image to the right caption. CLIP is trained
in a contrastive fashion using a symmetric cross entropy
loss to assign a high similarity score to the correct (image,
text) pair while simultaneously reducing the score for the
incorrect pairings. CLIP has demonstrated impressive re-
sults in many image recognition tasks [29] and we employ
it to solve the Natural language-based vehicle retrieval prob-
lem. Finally, datasets used for training and evaluating all of
the text retrieval systems described above are generic, and
in this paper we work with visual feed of vehicles. Such
domain specific data presents its own set of challenges and
have to be addressed appropriately.

3. Vehicle Re-Identification

In this section, we present our method for the City-Scale
Multi-Camera Vehicle Re-Identification track of the 2021
NVIDIA AI City Challenge. Our approach has three dis-
tinct stages, namely Pre-Processing, Deep Feature Extrac-
tion, and Post-Processing. Figure 1 shows the overview of
our proposed pipeline.

3.1. Pre-Processing

The 2021 edition of CityFlow Re-ID dataset [32] has
85058 images in total which are split among training, test-
ing and query sets of size 52717, 31238 and 1103 respec-
tively. The training data consists of 440 identities. To pre-
pare the training data we performed margin removal and
domain adaptation techniques as described in the following
sections.
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Figure 1: Our proposed approach for the task of City-Scale Multi-Camera Vehicle Re-Identification. The proposed pipeline
consist of three distinct stages, namely pre-processing, deep feature extraction and post-processing.

3.1.1 Margin Removal (MR)

Cropped vehicle images in CityFlow Re-ID dataset often
have a significantly large margin which can be viewed as
background distractors. Therefore, following the practice
of [16, 41], we use Mask R-CNN object detector [9] imple-
mented in Detectron2 [39] to randomly tighten the bound-
ing box of a vehicle. This process helps the representation
learning model to better focus on the vehicle and its dis-
criminative regions. Figure 2 demonstrates the impact of
margin removal operation.

3.1.2 Domain Adaption (DA)

Typically high capacity deep learning models perform bet-
ter with the introduction of additional training data with
similar characteristics that resembles the original training
data in terms of probability distribution of images. Hence,
in an attempt to increase the size of training set, we use the
two publicly available multi-view vehicle re-identification
datasets, namely VeRi [19] and VERI-Wild [22]. How-
ever, the domain of these datasets is different from that of
CityFlow Re-ID dataset. To compensate for this domain
gap, we use CycleGAN [44] to perform the task of unpaired
Image-to-Image translation. Therefore, we learn two map-
ping functions, G and G2 that can map images of VeRI
and VERI-Wild datasets to the domain of CityFlow Re-
ID dataset respectively. Figure 3 shows the transformation
on a VeRi dataset image to the domain of CityFlow Re-ID
dataset.

3.2. Deep Feature Extraction

To deal with the aforementioned inter- and intra-class
similarities and variations that is prevalent in the vehicle
re-identification task, accurate deep neural network models
are required. These models should focus the attention to

subtle details in the vehicle images and extract robust em-
beddings. Therefore, we choose to employ Excited Vehi-
cle Re-Identification (EVER) model which was among the
top performers of the City-Scale Multi-Camera Vehicle Re-
Identification track of 2020 NVIDIA Al City Challenge.

EVER has a built-in self-supervised residual generation
module inspired by [15] that can highlight the high-level
details of vehicle corresponding to its identity and can help
to distinguish the vehicle’s identity from others. During
the course of training, EVER excites its intermediate fea-
ture maps with the goal of attending to the discriminative
regions within the vehicle image. However, as the training
progresses the amount of excitation reduces so that once the
model is fully trained, no more excitation is done. This can
significantly improve the inference time as it only involves
a single forward pass of the backbone ResNet [10] network
in our case.

In addition, the global pooling layer of the backbone
ResNet architecture that comes after the Res-5 block, is
typically an average pooling layer. In our work, we re-
placed this with a learnable Generalized-Mean (GEM) pool-
ing layer [28] due to the enhancements observed in FAS-
TREID framework for re-identification tasks, with the fol-
lowing formulation:
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In Eq. 1, f.(x) is the ¢! channel of the GEM layer’s
output for an input feature map x of shape C' « W *x H.
Further, the pooling parameter p is trainable and is initiated
with value of 1, i.e. the GEM layer performs average pool-

ing operation initially. After training, the final value of p is
2.79.



3.2.1 Optimization Objective Functions

To train EVER, we employ Triplet [13] and Cross entropy
loss functions. To ensure intra-class compactness while
having larger inter-class distances, triplet loss tries to make
the distance between an anchor and its positive pair smaller
than the distance between the anchor and its negative pair
by a distance margin. The integration of triplet loss with
the batch hard sampling method is achieved by minimizing
the loss function given below.
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In Eq. 2, B, b;, a, v, P(a) and A/(a) are the total num-
ber of batches, it" batch, anchor sample, distance margin
threshold, positive and negative sample sets corresponding
to a given anchor respectively. Moreover, x, T, T, are the
extracted features for anchor, positive and negative samples.
For the purpose of this loss, batches are constructed in a way
that they have exactly 16 instances of each ID used.

In addition, the Cross entropy loss with label smoothing
technique [31] to alleviate the issue of over-fitting is used.
Note that to effectively apply both cross entropy and triplet
losses to the extracted features, Batch Normalization Neck
(BNNECK) [25] has been inserted into EVER. The Cross
entropy loss is calculated as follows:
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corresponding to class j for the extracted feature x; of the
it" training sample after applying the softmax layer. Fur-
thermore, in Eq. 3, W}, b; are the classifier’s weight vec-
tor and bias associated with j* class respectively, and N
and C' represent the total number of samples and classes
in the training dataset. Since we use label smoothing,
y; =1- %e if 5 = ¢, otherwise y§ = & where cis

the true label of i*" sample.

3.3. Post-Processing

After we train EVER and extract visual embeddings for
images in the gallery and query sets we perform a set of
post-processing operations to enhance the accuracy of the
retrieval process.

3.3.1 Same Camera Removal (SCR)

Images captured through a same camera share similarities
in orientation, shape and background that can negatively

+

impact the re-identification results by severely reducing the
inter-class distance and lead to failure cases. In the 2021
version of CityFlow Re-ID dataset, camera labels are pro-
vided for the test set. Therefore, during the inference, we
remove all gallery images with the same camera label as the
query image. Given the recent improvements in the area of
Multi-object single camera tracking [43, 36], especially on
high quality data, the chance of occurring ID switches has
reduced. Hence, this is a reasonable assumption. Note that
this procedure contributes to the success of re-identification
task considerably as discussed in section 3.4.3.

3.3.2 Orientation Bias Removal (OBR)

Although we remove images captured from identical cam-
eras, there might be still query-gallery image pairs that
are under similar view-points which in turn can impose a
bias on visual similarity computed by EVER. Inspired by
[45, 41], we use the key-point and orientation estimation
model in [14] to extract orientation embeddings and adjust
the distance of an image pair accordingly. To train the key-
point and orientation estimation model, we use the domain
adapted VeRi dataset, introduced in section 3.1.2, in which
images are labeled with key-points and orientation annota-
tions [37]. Afterwards, we extract orientation embeddings
and adjust the distance of two given images I, and I as the
following:

9(1q)-9(1y)
d = A
ar ) = 7o) = X,
In Eq. 4, d(.,.), f(.) and g(.) represent the distance of an

image pair in Ly norm, EVER deep feature extractor and
key-point and orientation estimation model respectively.
The intuition behind Eq. 4 is that images that have similar
orientation have smaller visual distance, hence we increase
the distance by adding a fraction, i.e. A, of orientation sim-
ilarity calculated based on cosine similarity.

3.3.3 Image to Track Comparison (ITC)

Relative to image to image comparison, image to track com-
parison is much more realistic as single camera tracking in-
formation is readily available and hence the chance of hav-
ing similar images within the track to the query image from
the perspective of the EVER model increases. CityFlow Re-
ID dataset provides track-level information on the test set
and we use this knowledge to rank the gallery by only con-
sidering the two samples in a track with the least distance to
the query image.

3.3.4 Implementation details

We train the EVER model within the framework of FAS-
TREID that employs state-of-the-art training tricks suited



(a) Original Image

(b) Tightened

Figure 2: Margin removal via Mask R-CNN Object Detector

for the task of re-identification and thoroughly investigated
in[25, 11].

In our work, all the images have been resized to 320+ 320
pixels. Specifically during the training process the follow-
ing steps are taken:

* As a data augmentation technique, images are ran-
domly flipped with 0.5 probability.

e To address the issue of occlusion, Random Erasing
Augmentation [42] step is employed with the goal of
encouraging the network to learn more robust repre-
sentations.

Searched data augmentation policies from ImageNet
dataset based on AutoAugment [2] is applied. The
searched policy, involves translation, rotation, and
shearing image processing operations. In addition, it
carries information on the frequency and the degree to
which these operations should be applied.

To prevent the deep feature extraction model from
over-fitting to the initial training batches, the Learning
Rate Warm-up [5] technique is used.

* The backbone model is instantiated from ImageNet
pre-trained weights. For the purpose of training, the
classification layer of this model is replaced to meet
the number of training labels and is initiated with ran-
domly distributed weights. To improve this initializa-
tion, we used the backbone freeze technique in the
first 5000 iterations and merely train the newly added
classification layer. Subsequently, the entire model is
trained.

* To optimize the deep network, Stochastic Gradient De-
scent (SGD) with momentum of 0.9 and Cosine An-
nealing learning rate scheduling [21] is utilized.

3.4. Results

In this part, first we describe the evaluation metric used
to measure the performance and then present the evaluation

(a) Original Image (b) Mapped Image

Figure 3: Translation from VeRi to CityFlow Re-ID dataset

results of the top ten performers of the City-Scale Multi-
Camera Vehicle Re-Identification track in 2021 NVIDIA Al
City Challenge. Lastly, we perform an ablation study to
investigate the impact of each step in the proposed pipeline.

3.4.1 Evaluation Metric

To measure the performance, mean Average Precision
(mAP) metric is considered. mAP shows how well a gallery
set can be ranked based on a given query set and higher
values of this metric shows the superiority of the perfor-
mance. Note that in the city-scale multi-camera vehicle
re-identification track in 2021 NVIDIA AI City Challenge,
only the top 100 images in the ranked gallery participated
in the mAP calculation.

3.4.2 Leaderboard Rankings

Table 1, shows the top ten performers of the city-
scale multi-camera vehicle re-identification track in 2021
NVIDIA Al City Challenge. Our proposed pipeline,
achieves the mAP of 62.16% and is ranked 8" among sub-
missions to the public leaderboard.

3.4.3 Ablation Study

Here we investigate the contribution of each modules in the
pipeline to final performance. The baseline model is EVER
trained with FASTREID framework on CityFlow Re-ID
dataset without any further post-processing steps. Table 2
shows the result of this analysis. From Table 2 it can be
seen that removing images with same camera label as the
queried image significantly boosts the performance. In ad-
dition, we can appreciate the gain of margin removal (MR),
domain adaptation (DA) on additional data, image to track
comparison (ITC), and orientation bias removal to the over-
all performance.

4. Natural Language-Based Vehicle Retrieval

In this section we describe our method for the natural
language based vehicle retrieval track of the 2021 NVIDIA
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Figure 4: Our system pipeline for Natural Language-based vehicle retrieval. We leverage image and text embeddings from
CLIP to compute the average text and track features which are then used to rank all the tracks in the gallery given a natural
language query.

Table 1: Top 10 performers of city-scale multi-camera ve-
hicle re-identification track in 2021 NVIDIA AI City Chal-

lenge
Rank Team Name Score (mAP)
1 DMT 0.7445
2 NewGeneration 0.7151
3 CyberHu 0.6650
4 For Azeroth 0.6555
5 IDo 0.6373
6 KeepMoving 0.6364
7 MegVideo 0.6252
8 aiem2021 (Ours) 0.6216
9 CyberCoreAl 0.6134
10 Janus Wars 0.6083

Table 2: Ablation Study Results of our proposed pipeline
for the city-scale multi-camera vehicle re-identification

track.
Model Score (mAP)
Baseline 0.4019
Baseline + MR + ITC 0.4537
Baseline + MR + ITC + DA 0.4733
Baseline + MR + ITC + DA + SCR 0.6000
Baseline + MR + ITC + DA + SCR + OBR 0.6216

Al City Challenge. We first describe the approach followed
by the implementation details, results and suggestions for
future work.

4.1. Dataset and Metrics

The dataset for this track is built over the CityFlow-NL
[6] dataset and consists of 2498 single camera tracks of ve-
hicles for training. Each track is annotated with three nat-
ural language descriptions. Results for the challenge are
reported on a separate set of 530 unique vehicle tracks to-



Table 3: Top 10 performers of Natural Language-based ve-
hicle retrieval track in 2021 NVIDIA AI City Challenge.

Rank Team Name Score (MRR)
1 Alibaba-UTS 0.1869
2 TimeLab 0.1613
3 SBUK 0.1594
4 SNLP 0.1571
5 HUST 0.1564
6 HCMUS 0.1560
7 VCA 0.1548
8 aiem2021 (Ours) 0.1364
9 Enablers 0.1314

10 Modulabs 0.1195

gether with 530 natural language queries each with three
descriptions form the test set.

All the submissions are evaluated on the test set using
standard metrics for retrieval tasks, namely, Mean Recip-
rocal Rank (MRR) [35] and Recall @k (k € {5,10,25}).
Mean Reciprocal Rank (MRR) : Each individual query in
the test set receives a score of the reciprocal of the rank at
which the first correct response was returned. The value is
zero if none of the five responses is the correct response.
MRR is defined as the average of scores of all the queries.

Recall @k : Recall @k is the proportion of relevant items
found in the top-k recommendations.

4.2. Pipeline

In this section, we describe our proposed pipeline for
natural language-based vehicle retrieval in details. We
adopt the recently proposed Contrastive Language-Image
Pre-training (CLIP) [29] model for the task. We use CLIP
to extract frame wise features. We average the frame-wise
features of a track to obtain the track features. Similarly, we
extract language features of all three captions and average
them to get an average language descriptor. We then use
cosine similarity between the language and track features to
rank all the tracks in the gallery. In Section 4.2.1 we briefly
describe CLIP and its training algorithm. Finally, in Sec-
tion 4.2.2 we describe our pipeline. We present our vehicle
retrieval pipeline in Figure 4.

# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer

# I[n, h, w, c] - minibatch of aligned images

# T[n, 1] - minibatch of aligned texts

# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
# t - learned temperature parameter

# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]

T_f = text_encoder(T) #[n, d_t]

# joint multimodal embedding [n, d_e]

I_e = 12_normalize(np.dot(I_f, W_i), axis=1)

T_e = 12_normalize(np.dot(T_f, W_t), axis=1)

# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=8)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2

Figure 5: Numpy style pseudo code for CLIP. Figure bor-
rowed from [29]

4.2.1 Contrastive Language-Image Pre-training

Contrastive Language-Image Pre-training (CLIP) [29]
leverages natural language descriptors of images as supervi-
sion to learn rich visual representations. In contrast to meth-
ods that predict the exact words of the text accompanying
the image, CLIP solves an easier proxy task of predicting
only which text as a whole is correctly paired with which
image and not the exact words of the text. Next, we briefly
describe the training methodology and implementation de-
tails.

Training: Given a batch consisting of B (image, text)
pairs, CLIP is optimized to correctly predict the right (im-
age, text) combination among the B x B possibilities. To
achieve this, CLIP learns a multi-model embedding space
by jointly training an image and text encoders to maximize
the cosine similarity between the text and image embed-
dings of the B right pairs while simultaneously minimizing
the B? — B incorrect pairings. A symmetric cross entropy
loss, similar to the ones proposed in [30, 33], is optimized
to learn the text and image encoders. Refer to Fig.5 for a
pseudo code for the core implementation of CLIP.
Implementation Details: Authors of [29] consider two
architectures for the image encoder: a ResNet [10] (with
several modifications) and a Visual Transformer backbones
[38]. The text encoder is a 63M-parameter 12-layer 512-
wide transformer [34] model with eight attention heads.
For computational efficiency, the max sequence length was
capped at 76. For more specific details about architectures,
we refer the readers to [29]. All the CLIP models are trained
for 32 epochs using ADAM optimizer with a very large



batch size of 32678 and a cosine schedule for learning rate
decay. Mixed precision [26] was used to speed up training
and save memory.

4.2.2 CLIP for Natural Language Vehicle Retrieval

In this section, we describe our method that leverages CLIP
for natural language-based vehicle retrieval. We adopt
the publicly available CLIP model that uses the Visual
Transformer ViT-B/32 as the image encoder and a Text
Transformer as the text encoder for our purpose. Given a
track 7; = {I{,15,...,1; } consisting of t; crops centered
around the vehicle, we use the Image encoder of CLIP to
extract per frame features f} (j € {1,2,...,t;}). We re-
size the crops to 256 x 256, take a center crop of 224 x 224
and normalize the crops to zero mean and unit standard de-
viation as a part of pre-processing. Each query consists
of three natural language descriptions, ¢; (i € {1,2,3}).
We use the text encoder of CLIP to extract text features f
(i € {1,2,3}). The per frame features are then average

t; i

pooled to obtain the track feature f = ]t;lfj Similarly,

the text featurgs are averaged to obtain the average text fea-
ture f¢ = E%lffq We normalize these features and use
cosine similarity as the score for this pair. For each query
description, this process is repeated over all tracks and the
scores are sorted in descending order to get the retrieval out-
put. Refer to Figure 4 for the retrieval pipeline.

4.3. Results

In Table 3 we show the top ten performers of the Natu-
ral Language-based vehicle retrieval track in 2021 NVIDIA
Al City Challenge. Our method achieves a MRR score of
0.1364 and is ranked 8" among all the submissions to the
public leaderboard.

4.4. Future Research

CLIP [29] has shown impressive zero shot performance
in many tasks. It was shown that fine-tuning CLIP on the
target data can further improve results. One direction we
would like to explore is to fine-tune CLIP on the CityFlow-
NL dataset. In our current approach, we naively average
per-frame features to get the track features. However, not
all frames are equally important due to occlusions, view-
point variations etc and hence it is imperative to incorporate
temporal modeling into the pipeline. To this end, we would
like to explore self attention [34] as a way to intelligently
aggregate visual information across time. Finally, without
fine-tuning CLIP, it is unreasonable to expect the model to
discriminate between various vehicle models. Discriminat-
ing between models is crucial as it helps with rejecting false
positive recommendations due to color similarities.

5. Conclusion

In this paper, we summarizes our contributions in the
2021 NVIDIA AI City Challenge for City-Scale Multi-
Camera Vehicle Re-Identification and Natural Language-
Based Vehicle Retrieval tasks. We show how effective rep-
resentation learning techniques in conjunction with post-
processing steps and contrastive learning-based Language-
Image pre-training can result in impressive real world ve-
hicle retrieval systems. Both our proposed methods are
ranked 8™ on both the tasks.
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