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Abstract

In this paper we present our approach to the Track 1

of the 2021 AI City Challenge. The goal of the challenge

track is to to analyse footage captured with traffic cameras

by counting the number of vehicles performing various pre-

defined motions of interest. Our approach is based on the

CenterTrack object detection and tracking neural network

used in conjunction with a simple IoU-based tracking algo-

rithm. In the public evaluation server our system achieved

the S1 score of 0.8449 placing it at the 8th place on the

public leaderboard.

1. Introduction

Accurate and efficient analysis of traffic flows is an im-

portant component of intelligent transportation system de-

sign. Recent advances in camera technology and computer

vision made it possible to efficiently and accurately anal-

yse traffic flows based on video footage captured by traffic

cameras. This task is the subject of the Track 1 of the 2021

AI City Challenge. Specifically the goal of the challenge is

to design an algorithm which receives footage from a traffic

camera observing an intersection and outputs the counts of

two main types of vehicles for various possible movements

of interest through the observed intersection in real-time on

an edge device embedded with the camera. In this paper

we describe our approach 1 to the challenge track which is

based on the CenterTrack [26] object detection and track-

ing network used in conjunction with a simple IoU-based

tracking algorithm.

Since CenterTrack is based on a single stage keypoint-

based object detection network CenterNet [27] it is well-

suited for applications with limited computational re-

sources. Compared to the pure object detection network

CenterTrack has an additional output for each detected ob-

ject which denotes the displacement of the object from its

1The code is available online: https : / / github . com /

kocurvik/aicc

previous position. We use this information to track the ob-

jects across multiple frames using a greedy algorithm based

on the IoU metric. Since there are no annotations of vehi-

cle bounding boxes or tracks provided for this challenge we

used a model pre-trained on the MS COCO dataset [13].

To classify the tracks into various movements we use the

2D field modeling of routes as proposed by Yu et al. [25] in

their submission to the 2020 version of the challenge. How-

ever we use simpler classification criteria. To classify the

category of the vehicle we use non-maximum suppression

for overlapping bounding boxes of cars, trucks and buses

inspired by [25] as well. To determine the time when a

tracked vehicle leaves the region of interest we use a sim-

ple linear regression on the positions of the suitable corner

of the bounding box in the 2D completeness field for the

movement.

Overall we present a conceptually simple approach to

the Track 1 of the challenge. Our method achieved

S1Effectivness score of 0.8882 and S1Efficiency score of

0.7439 resulting in the combined S1 score of 0.8449 plac-

ing our submission at the 8th place on the leaderboard.

2. Related work

Since the 2020 AI City Challenge [16] also included an

almost identical challenge track in this section we mostly

provide an overview of the various methods submitted for

the 2020 challenge. We concentrate on the most impor-

tant aspects of the various strategies used in the last year’s

challenge while mostly omitting minor tricks and smooth-

ing mechanisms.

2.1. Vehicle Detection

In recent years the task of object detection has been dom-

inated by methods based on convolutional neural networks.

Most approaches use a general purpose backbone architec-

ture to extract features from the images with an additional

structure enabling the network to output bounding boxes

and classes for the detected objects. In general these ap-

proaches can be divided into two major categories: single-

stage and two-stage object detectors.

https://github.com/kocurvik/aicc
https://github.com/kocurvik/aicc


Two-stage detectors first use a network to generate pro-

posals for possible positions of objects. In the second stage

the proposals are checked to determine if the proposals ac-

tually correspond to an object. At this stage the bounding

boxes are also refined to better fit the objects. The most

prominent example of a two-stage object detector is Faster

R-CNN [20]. Its extension Mask R-CNN [9] also enables

detection of masks of objects along with their bounding

boxes. The two best scoring teams [14, 17] in the last year’s

challenge both used Faster R-CNN. Mask R-CNN was also

used by two teams [6, 25].

As the name suggests single-stage object detectors out-

put refined bounding boxes in one pass of the network. This

can either be achieved with a structure of anchorboxes in

methods such as YOLO [19] or RetinaNet [12]. YOLO was

used by multiple teams [5, 7, 22] and an improved version

of RetinaNet was used by one team [2]. A more recent type

of single-stage object detectors treats object detection as a

task of detecting keypoints of bounding box corners [11] or

centers [27] with additional regression outputs used to fully

define the bounding boxes. The latter method called Center-

Net [27] was used by one team [21] in the challenge. In our

approach we opt to use an extension of CenterNet called

CenterTrack [26]. We opt to use this method based on its

good speed-accuracy tradeoff.

2.2. Tracking

Kalman filter [10] has been a widely used method for

tracking for several decades. A popular tracking algorithm

SORT [3] uses a simple combination of the Kalman filter

with the Hungarian algorithm to perform online tracking.

Its extension DeepSORT [23] adds deep learned appearance

based features to aid the tracking. DeepSORT has been used

as a basis for multiple submissions to the last year challenge

[2, 5, 7, 14, 22].

Alternatively some approaches [6, 17, 25] have used fea-

tures or proposals extracted during object detection to aid

in formation of tracks. These approaches either incorpo-

rate appearance information which requires no additional

computational overhead since it is already computed by the

object detection network [17, 25] or they use a standalone

network to compute it [5].

Bochinksi et al. [4] have shown that a simple tracker

based on the IoU metric of object bounding boxes in con-

secutive frames can outperform more complicated trackers

when the objects are detected reliably. A similar IoU based

strategy was employed by one of the teams in the last year’s

challenge [21].

In our approach we opt to use the CenterTrack network

[26] which is an extension of the CenterNet [27] object de-

tector. In addition to the current frame CenterTrack requires

the previous frame as an additional input and outputs object

bounding boxes along with the estimated displacement vec-

tor for bounding box center in the previous frame which

can be used to improve tracking. Even though the princi-

ple behind the tracking mechanism is simple CenterTrack

achieves state of the art perfomance on multi-object track-

ing benchmarks [8, 15]. In our method we use the displace-

ment vectors in a greedy algorithm tracking scheme based

on the IoU metric.

2.3. Vehicle type classification

As presented in subsection 2.1 all of the teams used deep

learning based object detectors. Some teams [17, 25] used

object detectors trained on the general purpose MS COCO

dataset [13]. The definition of truck in the MS COCO

dataset is different from the definition used by the challenge.

This discrepancy could be resolved by considering the sizes

of detected vehicles [17] or merging all of the detections

into single class via NMS and deciding on the final class

based on the proportions of MS COCO classes assigned to

the given track [25]. In our method we use a very similar

strategy to the latter approach.

Some teams have avoided this issue completely by fine-

tuning a model pre-trained on MS COCO on a manually an-

notated dataset [14, 22] or by performing the whole training

on a custom dataset [6, 21]. We found that models trained

on MS COCO are sufficiently accurate and therefore we

chose to not pursue this strategy.

2.4. Movement counting

Given the detected tracks it is necessary to identify the

movement of interest they belong to as well as determining

the frame during which the vehicles leave region in ques-

tion. To achieve movement of interest assignment many

methods have used manually annotated regions correspond-

ing to whole movements [6, 21], pairs of entry and exit re-

gions [7], multiple regions [5] or tripwire-like lines [17].

Other approaches assign the movements of interest based

on distance of the track from a typical path [14, 25]. We opt

to use a similar strategy by utilizing the 2D proximity and

completeness fields proposed in [25]. However we use a

simpler assignment criterion.

Almost all of the teams also propose some form of filter-

ing or joining of tracks. Additionally most teams also use

various forms of simple modelling to determine the frame

during which the vehicle should be counted.

2.5. Efficiency

The main goal of the challenge this year is to investigate

the potential of vehicle counting systems which can be de-

ployed on edge devices ideally directly integrated within the

camera setup. In the last year’s challenge the top-5 systems

[2, 14, 17, 22, 25] from the leaderboard have been bench-

marked on a single machine with 32GB RAM, i7-5930K

CPU (12 Cores) and one NVIDIA TITAN Xp GPU (12GB



memory). Even on this relatively high-end machine the sys-

tems reached FPS rates in the range of 6.41 [25] to 34.82

[22]. This was somewhat in contradiction with the leader-

board efficiency results from the first stage of the challenge

as the teams which used multiple high-end GPUs to bench-

mark their results were at a significant advantage as their

total execution times were relatively low and the automated

efficiency base calculation script [16] failed to account for

such setups.

To investigate how the 5 systems perform on edge de-

vices Anastasiu et al. [1] attempted to run them on an

Nvidia Jetson NX edge device. Due to technical limitations

only two of the methods [17, 22] have been benchmarked

successfully. Of these two only [22] performed with at least

somewhat meaningful efficiency at around 5 FPS while the

stream was at 10 FPS for most of the videos. This indi-

cates that there is still room for improvement before these

methods can be applied on edge devices.

In our approach we attempt to optimize our system with

the use of a multithreaded approach to the overall data flow

of the system and utilization of the automatic mixed preci-

sion inference which automatically runs the inference of the

network with halved precision where applicable.

3. Method

In this section we present the details of the method we

used for our submission to the challenge. The purpose of

the proposed method is to analyze traffic flow captured by a

video camera observing a road or an intersection by count-

ing the number of vehicles which crossed the observed area

and classify them into various types of movements (e.g.

coming from left and turning right on the intersection).

3.1. CenterTrack

To detect the vehicles we use the CenterTrack [26] object

detection and tracking network with the DLA-34 backbone

[24]. The network is trained on the MS COCO dataset [13]

with input images with resolution of 512 × 512 px. In ad-

dition to the standard object detection output the network

also outputs displacement vectors for each detected object.

These displacement vectors correspond to the estimated rel-

ative position of the object in the previous frame (see Fig.

1).

In order for this to work the network takes at input the

current frame of the video as well as the previous frame.

In some variants a third input is added which contains the

heatmap with all of the detected centers of objects from the

previous frame. However the off-the-shelf model trained on

the MS COCO dataset we use does not require such input.

Note that the MS COCO dataset is composed of still im-

ages and does not contain any tracking annotations. There-

fore the network is trained using simple augmentation tech-

niques which emulate object movement [26].

During inference we keep all vehicles which are detected

with a confidence score above 0.2.

3.2. Vehicle class NMS

The MS COCO dataset [13] contains three classes of ve-

hicles: car, bus and truck. In the challenge the category

truck refers only to long freight and utility trucks whereas

in the MS COCO trucks also refer to smaller vehicles in-

cluding vans, SUVs etc. Additionally the CenterTrack de-

tector sometimes outputs two or more overlapping bound-

ing boxes for two or even three of these classes. To rem-

edy this we perform non-maximum suppression of the spu-

rious detections in a fashion similar to the one employed in

[25]. Whenever two bounding boxes corresponding to the

classes bus and truck overlap with IoU greater than 0.7 we

discard the bus detection. Any bus detections which were

not discarded are then reclassified as trucks. In the next step

we check for overlaps between trucks (which now includes

buses) and cars and we again discard any truck detections if

the IoU is greater than 0.7.

3.3. Tracking

In the original implementation CenterTrack uses a sim-

ple greedy algorithm which associates objects in consecu-

tive frames based on distances of bounding box centers. The

distance is calculated between the center of the bounding

box in the previous frame and the center of the bounding

box in the current frame shifted by the displacement vec-

tor. This approach adds only a very small computational

overhead over the base CenterNet architecture and is sur-

prisingly effective. However we found this approach to not

be suitable especially in very crowded scenes with vehicles

of various sizes present. To remedy this we use the IoU

metric of the object bounding boxes instead of distance of

the centers. Similarly to the approach based on the centers

we use the displacement vector to shift the bounding box in

the current frame. This process is visualized in Fig. 1.

If a detection does not have IoU greater than 0.1 with

bounding boxes of any of the active tracks which have not

had a new bounding box assigned to them for that frame so

far we either discard it if has a confidence score lower than

0.4 or we create a new track if this threshold is met.

During tracking we do not care about the labels of the

vehicles e.g. one track can contain bounding boxes labeled

as both trucks and cars.

3.4. Movement counting

When a track is considered for counting we first check

if it contains at least 15 detections. Any tracks which do

not reach this threshold are discareded. Next we calculate

the ratio of detecions with the truck labels and car labels. If

there are more than 30 percent truck labels we consider the

vehicle to be of the truck class.
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Figure 1: a) Detected bounding box (blue) of a vehicle. b) In the next frame the vehicle is detected with a bounding box

(green) and a displacement vector (red). c) The displacement vector is used to shift the bounding box (green) detected in b to

the estimated position in the previous frame (red). d) To determine whether to associate the two detections the IoU metric is

calculated as the ratio of intersection (yellow) and union (blue-red) of the two bounding boxes.
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Figure 2: The red points represent the positions of the bottom-right corner of the bounding box of the vehicle which just

moved outside of the region of interest. The blue line in the graph represents the regressed linear model of motion based on

eight corner positions. The dashed gray line shows that the projected frame in which the vehicle should be counted is 74. In

the image the green points represent the positions of the the center of the vehicle bounding box and the yellow overlay shows

the part of image which lies outside of the region of interest for the camera.

To determine the movement of interest for the track we

use the 2D proximity and completeness fields from [25].

However we design a different set of classification criteria.

For a given image coordinate ~x the value of the proxim-

ity field Pi for the coordinate Pi(~x) represents the distance

from the manually annotated path for a given movement i.

Similarly the completeness field Ci(~x) represents what por-

tion of the given path i would be passed e.g. the value is 0
at the start of the motion and 1 when the vehicle leaves the

region of interest.

In a first step we eliminate the movements which are ori-

ented in the opposite direction of the motion of the track

thus keeping only a subset of valid movements:

V = {i|C1(~x1) < Cn(~xn)} , (1)

where ~x1, ~x2 ... ~xn are the temporally ordered positions of

the centers of bounding boxes for a given track. We then se-

lect the movement from V with the smallest cost Di defined

as

Di = P i + 3 · σ(Pi), (2)

where P i is the mean and σ(Pi) is the standard deviation

over the positions of the bounding box centers.

To determine the frame at which the vehicle leaves the

region of interest we model the movement of the corner of

the vehicle bounding box which should leave the region of

interest last for the selected movement. Given the positions

of the corners ~y1, ~y2 ... ~yn and the corresponding frames

f1, f2 ... fn we calculate

m = argmax
1≤j≤n

(Ci(~yj)). (3)

Afterwards we filter out results which do not conform to

the following conditions:

Ci(~ym) > 0.3, (4)

Ci(~ym)− min
1≤j≤m

(Ci(~yj)) > 0.25 ·min

(

1,
fm

50

)

. (5)



The condition (4) prevents false positives for vehicles for

which the tracking was interrupted in the beginning of the

motion which is often the case when vehicle stops at an in-

tersection and is then occluded by a vehicle passing through

the intersection. The second condition (5) sets a threshold

for minimal distance traveled to reduce the false positive

rate. The minimum in the relation serves to slowly increase

the threshold during the first 50 frames of the video. This

is intended to prevent discarding of vehicles which are al-

ready close to exiting the region of interest at the start of the

video.

Finally we apply linear regression to the values of C(~yj)
and fj for j ∈ {k|m − 7 ≤ k ≤ m}. From the regression

we obtain the parameters which represent the linear model

of motion of the corner P (~yj) ≈ a·fj+b. We then calculate

the frame at which the vehicle leaves the region of interest

as the closest integer to the value 1−b
a

. An example of the

values for a track and a resulting linear model is shown in

Fig. 2.

3.5. Implementation details

The CenterTrack network is implemented in the PyTorch

framework [18]. We run the network in the automatic mixed

precision mode which should increase the inference speed

especially on edge devices.

We run the system in a threaded fashion. The system

spawns three threads one for loading frames and prepro-

cessing the images, one for running model inference and

one for processing the results of the inference and perform-

ing tracking. This approach significantly improves system

efficiency.

4. Evaluation

We evaluated our method using the evaluation server

hosted by the challenge organizers. The target metric is the

S1 score which is calculated as:

S1 = 0.7 · S1Effectiveness + 0.3 · S1Efficiency . (6)

The effectiveness score reflects the accuracy of the sys-

tem and the efficiency score reflects its computational ef-

ficiency [16]. The final scores our system achieved are

S1Effectivness score of 0.8882 and S1Efficiency score of

0.7439 resulting in the combined S1 score of 0.8601 plac-

ing our submission at the 8th place on the leaderboard.

5. Experiments

Since every team had only ten attempts at submission

to the evaluation server there was only a limited room for

ablation studies and parameter tuning. Sadly our first 4 sub-

missions had an incorrect format and we thus could gain

Type Precision S1Effectiveness S1Efficiency S1
S FP32 0.8885 0.4661 0.8045

T AMP 0.8734 0.6086 0.8016

TT AMP 0.8882 0.7439 0.8601

Table 1: The results from the evaluation system for various

implementations of our model. Type S refers to a simple

serial pipeline, T refers to threaded pipeline and TT refers

to threaded pipeline processing two videos at the same time.

Precision FP32 refers 32-bit floating point precision during

inference and AMP refers to the PyTorch automatic mixed

precision.

no relevant information from them. As can be seen in Ta-

ble 1 our first correct submission achieved a relatively good

result in terms of effectiveness we therefore directed our

efforts at improvements in terms of efficiency. Replacing

the serial execution of the system with a threaded one and

a enabling the PyTorch automatic mixed precision led to

a significant increase in efficiency while slightly decreas-

ing effectiveness. The change in effectiveness score is rea-

sonable since changing the inference precision of a neural

network usually results in slight changes to the output. To

achieve even greater speedup we ran the system for two

video streams concurrently and fed the images into the net-

work in a batched form. This led to further improvement

in efficiency. The slight improvement of effectiveness was

caused by fixing a bug in which the active tracks at the end

of the stream were not processed. All of the experiments

were run on a Google Cloud Compute Engine instance with

an Nvidia T4 GPU and n1-highmem CPUs. Note that from

the experiments which we did not submit to the evaluation

server we found out that enabling automatic mixed preci-

sion has only a very slight positive effect on efficiency. We

hope that the effect can potentially be greater when tested

on an edge device, but we have no means of verifying this.

6. Conclusion

In this paper we have presented the method developed

for our submission to the Track 1 of the 2021 AI City Chal-

lenge. Our approach is conceptually simple while achieving

reasonable effectiveness. Since the bulk of the computa-

tional complexity of our system lies in the CenterTrack net-

work we see a potential for a further study of effectivness-

efficiency tradeoffs when using different potentially more

lightweight backbone architectures. Such study might un-

cover the best possible configurations in terms of effec-

tiveness when faced with constrained computational power

which might lead to efficient real-world applications.
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