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Abstract

Natural language-based vehicle retrieval is a task to find

a target vehicle within a given image based on a natural

language description as a query. This technology can be

applied to various areas including police searching for a

suspect vehicle. However, it is challenging due to the am-

biguity of language descriptions and the difficulty of pro-

cessing multi-modal data. To tackle this problem, we pro-

pose a deep neural network called SBNet that performs nat-

ural language-based segmentation for vehicle retrieval. We

also propose two task-specific modules to improve perfor-

mance: a substitution module that helps features from dif-

ferent domains to be embedded in the same space and a

future prediction module that learns temporal information.

SBnet has been trained using the CityFlow-NL dataset that

contains 2,498 tracks of vehicles with three unique natural

language descriptions each and tested 530 unique vehicle

tracks and their corresponding query sets. SBNet achieved

a significant improvement over the baseline in the natural

language-based vehicle tracking track in the AI City Chal-

lenge 2021. Source Code: https://github.com/

lsrock1/nlp_search

1. Introduction

Searching for a vehicle in an image database with natu-

ral language (NL) descriptions is a challenging problem in

computer vision[4, 15]. It can be widely applied in video

surveillance and traffic analysis. Currently, many surveil-

lance cameras are installed on roads and highways and gen-

erate a huge amount of video data per second. Manually

searching for a criminal suspect vehicle in such video data

can be time consuming. Therefore, the development of an

automatic vehicle search function is vital and urgent.

Vehicle retrieval using image-based queries is called ve-

hicle re-identification in computer vision[11, 23, 13, 14].

Given a query image, the algorithm obtains affinities be-
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Gray sedan runs down the road

A white SUV drives towards 
the intersection. 

Figure 1. Examples of proposed SBNet output. With natural lan-

guage and an image, it finds the corresponding area in the image

and shows high activation in that area. The left column is the nat-

ural language description, the center column is the model’s output

activation mask, and the right column is the input image.

tween the query and the vehicle images in the database and

retrieves the most similar vehicles. However, in many crim-

inal cases, there are no images of the suspected vehicle, only

verbal descriptions. Therefore, this method’s ability to find

the vehicle is significantly limited in these cases.

To overcome this limitation, searching for vehicles with

NL descriptions has been proposed. It is not necessary

to provide a vehicle photo as in the image-based query

method. NL also can precisely describe the details of the ve-

hicle appearance and does not require labelers to go through

the entire list of attributes.

In this work, the CityFlow-NL dataset [4] is used as

the benchmark dataset. According to our observations, the

main problems in this task are multi-modal question an-

swering and relational reasoning. The task can be assumed

as answering a visual question where the answer is yes or

no. We adopt the attention mechanism to deal with the

multi-modal dataset and the channel modulation method

proposed in [19]. In addition to this module, we propose

future prediction and substitution modules to improve per-

formance. The future prediction module is for embedding

vehicle movement information, while the substitution mod-

ule helps to describe two different types of domain data in

the same embedding space. Figure 1 illustrates our model’s



activation results for given sets of image and NL descrip-

tion. Our contributions are summarized below.

• We propose a new segmentation-based network model

called SBNet to perform NL-based vehicle retrieval.

• We introduce two specific modules to improve perfor-

mance: the future prediction and substitution modules.

• Our proposed SBNet outperforms the current baseline

model without post-processing.

2. Related Work

Natural language-based vehicle retrieval is a multi-target

and multi-camera task that uses multi-modal data for im-

ages and NL descriptions. Other tasks like object track-

ing via descriptions[2, 3, 16], video retrieval[24, 7], video

localization[5, 10, 22] shares some similar points with the

NL-based vehicle retrieval. In tracking tasks, they em-

ploy detection models and leverage language features from

the hidden states of the recurrent neural network(RNN)[2].

Liu et al. [16] used RNN and convolutional neural net-

work(CNN) models to extract embedding features and also

utilized the attention mechanism and dynamic filter genera-

tion method. In video retrieval and localization, Zhang et al.

[24] introduced a video embedding model and graph repre-

sentation. Hendricks et al. [7] exploited the context network

and distance loss to embed different modal data to the same

feature space. Gavrilyuk et al. [5] employed CNN architec-

tures for the language and video backbone model to predict

the segmentation mask of the target object.

NL-based person re-identification (re-id) is also a very

similar task with NL-based vehicle one [15] except for dif-

ferent targets just as personal re-id is very close to vehi-

cle re-id. However, in NL-based person re-id, only cropped

person images are given, and thus understanding the back-

ground context is not required unlike in NL-based vehicle

re-id. The spatial-temporal localization by NL description

task was first introduced by Yamaguchi et al. [22, 4]. The

ActivityNet dataset is annotated with NL descriptions to

facilitate the training and evaluation of the proposed task.

However, the temporal retrieval in [22] entails retrieving the

target video clip from a set of video clips. On the contrary,

the goal of the vehicle retrieval task is to temporally localize

the target object within one sequence of video. Addition-

ally, the targets in the ActivityNet-NL take up most of the

frame and cannot serve as a tracking benchmark.

Feng et al. [4] extended the widely adopted CityFlow

Benchmark with NL descriptions for vehicle targets and

introduce the CityFlow-NL Benchmark. The CityFlow-

NL contains more than 5,000 unique and precise NL de-

scriptions of vehicle targets, making it the first multi-target

multi-camera tracking with NL descriptions dataset. More-

over, the dataset facilitates research at the intersection of

multi-object tracking, retrieval by NL descriptions, and

temporal localization of events. They focus on two foun-

dational tasks: the Vehicle Retrieval by NL task and the Ve-

hicle Tracking by NL task, which take advantage of the pro-

posed CityFlow-NL benchmark and provide a strong basis

for future re- search on the multi-target multi-camera track-

ing by NL description task.

We introduced the CityFlow-NL Benchmark to develop

SBNet, an NL-based vehicle retrieval network. Our ap-

proach proposed in this paper is close to image localization

methods. However, we also consider the temporal infor-

mation using the future prediction module and employ the

co-attention mechanism and channel modulation to embed

relation features.

3. Problem Definition

In the AI City Challenge, the goal of the NL-based ve-

hicle retrieval task is to find a vehicle described in English

from images. Vehicles are presented as objects with bound-

ing boxes for each image in the scene video, not as cropped

objects. The image can have multiple vehicles, and the tar-

get vehicle is specified by a bounding box. Three different

NL descriptions are provided for one target vehicle.

The goal of this task is to segment the area where the

corresponding vehicle is located when the query is given.

For this task, we prepared a train dataset Dtrain and a set of

the ground truth segmentation labels G:

Dtrain = {(i1, n1
1, n

2
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3
1), (i2, n

1
2, n

2
2, n

3
2), . . . ,
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G = {(g1, g2, g3, . . . , gt), }, g ∈ Rh×w, (2)

where Dtrain has t sets of data, each of which has

image(ij), and three NL description(nk
j ). G is ground

truth segmentation labels for each train data. We introduce

bounding box segmentation, which assigns a class to every

pixel in the region of bounding box of the target in a given

image, and apply it throughout the work.

4. Proposed Method

To tackle the NL-based vehicle retrieval task, we propose

a multi-modal localization model. In the following sec-

tions, we first illustrate our overall architecture in Section

4.1. Then, we describe the NL module (NLM) and image

processing module (IPM) in Section 4.2 and Section 4.3, re-

spectively. Finally, we introduce the multi-modal module,

which handles the NL feature and image feature simultane-

ously and searches for the target vehicle using the language

feature, in Section 4.6.



Figure 2. Overall architecture of SBNet.

4.1. Overall architecture

As illustrated in Fig. 2, our proposed method has three

main feature modules: the NLM, IPM, and multi-modal

module. First, the raw image and NL descriptions are em-

beded using the IPM and NLM. We adopt ResNet50[6] for

the IPM and ELECTRA[1] for the NLM. ResNet50 is a

widely used backbone network for image processing, while

ELECTRA is a well-known pretrained model for NL. In

general, the pretrained NL models, like BERT and ELEC-

TRA, outperform the previous ones and show reasonable

performance on subtasks that have few datasets. In our

task, we adopt ELECTRA because ELECTRA outperforms

the transformer models that are not pretrained[21]. In ad-

dition, the multi-modal module is one of the most impor-

tant parts of our network, which was inspired by relational

reasoning[19, 20]. To combine two types of information,

image and NL, co-attention and channel mixture are used.

The three modules, IPM, NLM, and multi-modal mod-

ule, are the backbone of our network. The other modules

such as future prediction, substitution, and classification

modules were introduced additionally for boosting perfor-

mance. The details are described in the following sections.

4.2. NL module

The description type is English NL. To embed this

data, we use the pretrained language model ELECTRA[1].

ELECTRA consists of transformer modules and a self-

supervised language representation learning model and has

two parts: a generator and a discriminator. In the self-

supervised phase, the masked language is fed to the model.

The generator predicts adequate words for the mask and

the discriminator distinguishes the generated words. In

our model, we use ELECTRA’s small discriminator as the

NLM. The NLM process is as follows:

FN = NLM(n), FN ∈ Rl×e, (3)

where FN is the embedded language feature, l is the length

of the sentence, and e is the embedding dimension size. In

our work, we set l to 30 in training and e to 2048. It is note

that ELECTRA small output channel is 256, therefore we

use another 256× 2048 linear layer.

4.3. Image processing module

We exploit ResNet50 as IPM to embed the scene image.

The image feature is leveraged for segmenting the vehicle

box area. To maintain resolution, we set the stride of the

last five stages of ResNet to 1 rather than 2.

FI = IPM(i), F I ∈ Rc×h∗

×w∗

, (4)

where FI is an image feature, c is the embedding channel,

and h∗ and w∗ are feature height and width respectively. c

is 2048 in our work.

4.4. Classification module

In addition to the NLM and IPM, we attach simple clas-

sification modules to each module. With a rule-based al-

gorithm, we can extract the vehicle color and type. Using

these labels, we can attach classification modules to NLM

and IPM modules. In ELECTRA, CLS token is used for

the classification task. Following this, we use the CLS to-

ken position to classify color and type in the NLM. In the

IPM, we pool a vector via the bounding box and classify the

color and type with this vector.

Cn, Tn = Ln(FNcls), (5)

FIcls =
1

|b|

h∗∑

i=0

w∗∑

j=0

FI ∗ b, b ∈ R1×h∗

×w∗

, F Icls ∈ Rc,

(6)

Ci, Ti = MLPi(FIcls), (7)

where Cn and Tn are the predicted color and type from the

NL feature. FNcls is the CLS token feature and Ln is one

linear layer. FIcls is the masked pooled vector in the spatial

dimension. Via FIcls, we predict Ci and Ti, which are the

color and type of the vehicle in the image. MLPi has two

linear layers with a ReLU function.



4.5. Substitution module

This task assumes a one-to-one relation between each

image and language set. In other words, an image and NL

descriptions are semantically same. Inspired by this idea,

we devise and add a substitution module. This module gen-

erates an image feature from an NL feature and an NL fea-

ture from an image feature. In learning, we try to train these

two features so that they are exchangeable. This module’s

target features that should be generated are as follows:

FIgt =
1

h∗ × w∗

h∗∑

i=0

w∗∑

j=0

FI(i)(j), F Igt ∈ Rc, (8)

FNgt =
1

l

l∑

k=0

FN (k), FNgt ∈ Re, (9)

where FIgt is the target image feature that is the spatial

mean of FI , FI(i)(j) is a vector on the i, j point in the

spatial dimension, FNgt is the target NL feature that is the

mean of the sentence feature, FN (k) is a vector of the kth

word feature. The generated features are summarized as

follows:

FIg = MLP (FN), F Ig ∈ Rc, (10)

FNg = CNN(FI, b), FNg ∈ Re, (11)

The MLP is two stacked linear layers with one leaky ReLU

activation function. The CNN consists of two convolu-

tional layers with one ReLU activation function, and b is

the target vehicle’s bounding box.

4.6. Multimodal module

Multi-modal module is for interpreting two different

domain features: image and NL. First, we apply co-

attention[8] with the image and NL feature. Using an atten-

tion matrix, we enhance the NL and image feature informa-

tion from a different domain. Using channel modulation[9],

we inject the relation information of the query description.

Finally, we exploit the self-attention method for relation in-

formation in the spatial domain. The attention between two

features FN and FI is defined as follows:

A = al(FI)⊗ an(FN), (12)

A = σ(
A√
c
), A ∈ Rl×h∗w∗

, (13)

A is the resulting attention, al is a linear projection layer,

and an is a 1× 1 convolutional layer. ⊗ is matrix multipli-

cation. σ is a softmax function. We leverage A to enhance

the FN and FI . The enhancement is conducted as follows:

FNe = FN +A⊗ FI, (14)

FIe = FI +A⊗ FN (15)

The language description has relation information in the

scene situation such as the following:

White SUV keeps straight behind a line of ve-

hicles.

Leveraging relation reasoning method we modulate chan-

nel activation to inject relation information from language

feature. The modulating process is as follows:

FNm = FNe ∗MLP (FIe), (16)

The MLP has two linear layers, with ReLU activation as

the intermediate layer and the sigmoid function as the end

layer. The result of MLP is in the c×1×1 dimension. We

compute element-wise multiplication.

4.7. Mask prediction module

Finally, to conduct main task, vehicle area segmen-

taion, we adopt multiple convolutional layers to segment

the mask. The segmentation layers are follows:

M = G(FNm),M ∈ R1×h∗

×w∗

, (17)

where M is the mask and G is the convolutional layers (i.e.,

three non-linear layers and one convolution layer). The non-

linear layers have convolution, batch normalization, and

ReLU functions. All convolutional layers have a 3× 3 ker-

nel size and a 1 × 1 padding size. The output channels are

1024, 512, 256, and 1 in order.

4.8. Future prediction module

The image is part of a video. Thus, the description in-

volves temporal information such as the following:

A gray small car is turning left.

To embed this vehicle action, we add the future frame pre-

diction module. This simply predicts the next frame using

FI . The prediction is conducted as follows:

U = B(FI), U ∈ R3×h∗

×w∗

, (18)

where U is the predicted future frame, and B is the multiple

convolutional layers.

4.9. Probability computation

To perform the task, we compute the probability of

matching between the NL description and vehicle. As illus-

trated in Fig. 3, The probability has three parts: mask pre-

diction ratio (MPR), substitution similarity (SS), and color

and type matching probability (CTM).

MPR =

∑
M ∗ b∑

b
, (19)

SS = cs(FIgt, F Ig) + cs(FNgt, FNg), (20)

where cs is the cosine similarity, and



Figure 3. The probability computation process between the NL

description and image.

CTM = Ci[Cn] + Ti[Tn], (21)

where Ci[Cn] is the output of the softmax value of Ci of the

Cn color element, and Ti[Tn] is the output of the softmax

value of Ti of the Tn type element.

The final probability between a NL description and an

image is computed as follows:

Prob = MPR+ SS + λ ∗ CTM (22)

where λ is a weight and is set to 0.5.

5. Loss Function

The total loss function is defined as follows:

Ltotal = Lseg + λ1 × Lcls + Lsub + λ2 × Lfut (23)

where Lseg is vehicle segmentation loss, Lcls is vehicle

classification loss, Lsub is substitution loss, Lfut is future

prediction loss, and λ1 and λ2 are weights and are set to 0.2

and 0.2 respectively. The losses are described in the follow-

ing sections.

5.1. Vehicle segmentation loss

Vehicle segmentation loss is binary mask prediction loss

which is calculated using the binary cross entropy formula

as follows:

Lseg = −
∑

b× log(M), (24)

where b is the ground truth segmentation mask. It is note-

worthy that we use the bounding box area as the segmenta-

tion mask because we do not have a precise vehicle mask.

5.2. Vehicle classification loss

Vehicle classification loss is cross entropy loss for Cn,

Tn, Ci, and Ti. We define the prediction set as P =

{Cn, Ci, Tn, Ti} and the corresponding ground truth set as

Pgt:

Lcls = −
∑

Z∈P

Pgt[Z]× log(Z), (25)

where Pgt[Z] is the ground truth label of Z.

5.3. Substitution loss

The goal of this loss function is to train the FI and FN

so that they are semantically exchangeable.

Lsub = 2− cs(FIgt, F Ig) + cs(FNgt, FNg), (26)

where cs is the cosine similarity. This loss makes the gen-

erated features and ground truth features closer.

5.4. Future prediction loss

This loss is aimed for training the future prediction mod-

ule so that it forecasts next frame more precisely. The mean

squared error is calculated for each pixel and summed for

all pixels.

Lfut =
1

3× h× w

∑
(U − I)2 (27)

6. Dataset

6.1. CityflowNL

Our model has been developed using the Cityflow-NL

dataset. This dataset consists of 666 targets vehicles in

3,028 (single-view) tracks from 40 calibrated cameras, and

5,289 unique NL descriptions. Each track has a sequence

of scene images and three NL descriptions typically. The

average number of frames a target vehicle is 75.85.

6.2. Denoising the descriptions

To depress the noise in the learning process, we perform

pre-processing. Vehicle color and type are ambiguous in

perception. Therefore, in some cases, the three descriptions

are not match in terms of color and type. We use the extrac-

tion and voting method to clean the color and type. First,

we choose 12 colors and 10 types that exist in this dataset

as labels. Via a matching algorithm, we can extract the type

and color from the sentence. Because sentences are simple

and mostly have only one color and type specifier, it can be

easily conducted. One image has three NL descriptions, and

each has a color and type. To unify the color and type, we

choose the most likely type and color. Finally, we replace

the other colors and types with the chosen color and type to

denoise the data.

7. Experiment

7.1. Implementation detail

Preprocessing resizes all images to 384×384 pixels and

applies random translation effects. We use the Adam [12]



A white SUV drives 
towards the intersection.

A dark red SUV drives 
straight through

an intersection.

A white wagon 
approaches an intersection.

Figure 4. Examples of five highest matching images for each NL

description. The NL description is on the left, and the images are

sorted in descending order according to the matching probability

on the right.

optimizer with a weight decay of 3e-5 and a momentum of

0.9. The proposed model is trained with a batch size of 64, a

training epoch of 10, and an initial learning rate of 0.00003,

divided by 10 at 5 and 8 epochs. Label smoothing is also

applied to avoid overfitting in classification loss. Training

required 24 h on the Cityflow-NL datasets, using 4 NVIDIA

RTX 1080 GPU system. The training code was written in

PyTorch [18].

Figure 4 shows the examples of the SBNet’s output for

five highest matching images for each NL description. NL

descriptions are on the left while the images sorted in de-

scending order according to the matching probability are on

the right.

7.2. Evaluation metric and results

To evaluate, we use recall and Mean Reciprocal Rank

(MRR) metric, which are standard metrics for retrieval

tasks[17]. We use the baseline model for Cityflow-NL

Benchmark presented in [4].

7.2.1 Effects of modules

To evaluate the effects of each module, we conduct ablation

studies with and without the modules. Table 1 shows that

the performance gain depends on additional modules. With

each modules, its corresponding probability computation

are also added. The classification module brings about 0.5%

improvement in baseline (i.e., without any additional mod-

ules). The model with the substitution module shows an 1%

improvement, and the future prediction module achieves a

0.7% performance improvement.

7.2.2 Cityflow-NL performance

Our competition performance is shown in Table 2. We

achieve 10th place on the final leaderboard. We also make

a comparison with the baseline proposed in [4]. SBNet

Module Name Included

Classification No Yes Yes Yes

Substitution No No Yes Yes

Future Prediction No No No Yes

MRR 0.0977 0.1025 0.1124 0.1195
Table 1. Model performance on with and without modules from

the leaderboard. Without the three modules, the model consists of

the IPM, NLM, multi-modal module, and mask prediction module.

achieves a significant performance improvement from the

baseline as shown in Table 3.

Rank Name MRR

1 Alibaba-UTS 0.1869

2 TimeLab 0.1613

3 SBUK 0.1594

4 SNLP 0.1571

5 HUST 0.1564

6 HCMUS 0.1560

7 VCA 0.1548

8 aiem2021 0.1364

9 Enablers 0.1314

10 Modulabs (ours) 0.1195
Table 2. Leaderboard of the Track 5 in the AI City Challenge 2021.

Model MRR

SBNet 0.1195

Siamese baseline[4] 0.0269
Table 3. Performance comparison between the SBNet and baseline

models.

8. Conclusion

To tackle the NL-based vehicle retrieval task, we pro-

posed a segmentation-based network model called SBNet.

It consists of the IPM, NLM, and multi-modal module to

handle NL descriptions and images simultaneously. We

also introduce the substitution module and future predic-

tion module, which improve the performance. The match-

ing probability between the description and image is com-

puted with each module’s output. We achieved a significant

improvement over the baseline and ranked 10th in the nat-

ural language-based vehicle tracking track in the AI City

Challenge 2021.
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