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Abstract

In this paper, we propose an online movement-specific

vehicle counting system to realize robust traffic flow anal-

ysis at crowded intersections. Our proposed framework

adopts PP-YOLO as the vehicle detector and adapts the

Deep-Sort algorithm to perform multi-object tracking. In

order to realize online and robust vehicle counting, we fur-

ther adopt a shape-based movement assignment strategy to

differentiate movements and carefully designed spatial con-

straints to effectively reduce false-positive counts. Our pro-

posed framework achieves the overall S1-score of 0.9467,

ranking the first in the AICITY2021-track1 challenge.

1. Introduction

It is essential to count vehicles in the traffic scene, which

is expected to mitigate traffic congestion and elevate the

efficiency of the traffic light. Online vehicle counting by

movements of interest (MOI) is to find the number of vehi-

cles that are corresponding to MOI in a period of time in an

online pattern. Nevertheless, accurate vehicle counting is a

challenging task at crowded intersections, due to the diffi-

culties such as the occlusions between different vehicles and

poor weather conditions. Besides, the arrival time when ve-

hicles move out of the region of interest (ROI) should also

be calculated.

There are two solutions to the traditional vehicle count-

ing problem. The first one is frame-wise vehicle counting

[9, 1, 28, 31], which only counts vehicles in a single frame

rather than consecutive frames. Two strategies are used,

including the density-aware strategy and detection-based

strategy. Density-aware strategy [3, 10, 2] has been used,

which uses density estimation algorithms to regress the

number of vehicles. Besides, based on the recent progress

of deep learning methods for object detection [6, 27], more

studies turn to the detection-based strategy [8, 26, 9, 1, 28],

which is to detect vehicles then count the detected vehicles

afterwards. Nevertheless, due to the mutual occlusions be-

tween vehicles and the occlusions caused by roadside trees,

both density-aware and detection-based approaches usually

miss the occluded vehicles. The second one is instance-

wise vehicle counting, which counts vehicles in consecu-

tive frames. Hence, those vehicles that are not detected

can be counted by the usage of consecutive frame knowl-

edge. To be specific, these methods [7, 17] mainly follow

the detection-tracking-counting (DTC) framework, which

performs multiple object tracking based on the detection

results, then counts the vehicles according to the tracking

results afterwards.

Different from the above mentioned traditional vehicle

counting problems, this paper tackles the task of online

movement-specific vehicle counting. Specifically, online

movement-specific vehicle counting requires to not only

count the total vehicle number for each MOI, but also record

the timestamp when each vehicle moves out of the ROI

and stream out the counting result in a limited time. Our

proposed approach mainly follows the DTC pipeline, in

which we choose PP-YOLO [20] and DeepSORT [30] as

the baseline methods for vehicle detection and multi-object

tracking, respectively. Though been carefully fine-tuned,

this tracking-detection pipeline still performs poorly: the

partially occluded vehicles are usually missed by the de-

tector in crowded traffics, which severely increases the id-

switches in the tracking results. To remedy the defect of

the detector, we propose a detection augmentation method,

which aims to generate additional detections with high con-

fidence for missing/occluded objects to prevent identity

switches. Specifically, we propose two augment detections

strategies, including the detection re-match strategy and the

single object tracking (SOT) strategy. Besides, due to the

fact that the velocity of vehicles frequently changes sharply

in the intersections, it is difficult to set a fixed threshold for

the Mahalanobis distance in DeepSORT. For instance, when

the vehicle accelerates sharply, the variance could be very

large. As a consequence, the Mahalanobis distance could

be extremely small. To avoid such situation, we propose

a Mahalanobis distance smoothness method for a reason-

able distance. We also propose tracking spatial constraints

to remove the interference of vehicles outside the ROI. The
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Figure 1. The visualization of the movements of interest (MOI)

and region of interest (ROI) at one intersection. Each arrow line

indicates one movement and the green lines outline the ROI.

tracklets predicted as having exited the ROI will enter into

the online vehicle couting module.

Furthermore, to deal with movement-specific vehicle

counting problem, we propose a shape-based movement as-

signment method. The main idea of this method is to gen-

erate a typical trajectory for each MOI, and calculate the

shape similarity between a tracklet trajectory and each typ-

ical trajectory. The optimal movement of one trajectory can

be generated by the typical trajectory with the best shape

similarity among the typical trajectory set. Unlike [15]

which also uses vehicle trajectories, our method does not

need zones to delimit trajectory and the trajectories in our

method is mostly selected from tracklets set in videos. Be-

sides, the distance measurement method between tracked

vehicle and trajectories in our method is more efficient. Our

method is evaluated on AICity 2021 Track-1 Dataset. Ex-

perimental results show the effectiveness and efficiency of

our method.

The main contributions are as follows: (1) We propose a

DTC system for online movement-specific vehicle count-

ing problem, which is a new and challenging task. (2)

The detection augmentation method, Mahalanobis distance

smoothness method and tracking spatial constraints are pro-

posed to improve the multi-object tracking performance. (3)

A shape-based movement assignment method with count-

ing spatial constraints is carefully designed to accurately

categorize each trajectory into different movements.

2. Methodology

In this paper, we propose an online movement-specific

vehicle counting system to realize robust traffic flow analy-

sis at crowded intersections. Figure 2 shows the framework

of our proposed system. With a video stream as input, we

sequentially detect vehicles in each frame, track their tra-

jectories and stream out the online vehicle count. In subse-

quent sections, we will elaborate each step in detail.

2.1. Object Detection

We adopt PP-YOLO [20] with a Resnet50 [11] back-

bone as our frame-wise vehicle detector. PP-YOLO is

an optimized model based on YOLOv3[23], which com-

bines various existing tricks, including Grid Sensitive[5],

Matrix NMS[29], CoordConv[18] and Spatial Pyramid

Pooling[12] to improve performance and inference speed.

Implementation details could be found in [22]. We adopt

a COCO pre-trained model and then perform finetuning on

our annotated AICity 2021 Dataset.

2.2. Online MultiObject Tracking

Next, we perform online multi-vehicle tracking to get the

trajectories inside ROI. We adopt DeepSORT [30] as the

baseline method, which contains three major steps: motion

prediction, feature extraction and data association.

2.2.1 Motion Prediction

As in [30], we use Kalman filter to predict motion and up-

date state in the eight-dimensional tracklet state space (x, y,

a, h, ẋ, ẏ, ȧ, ḣ), including the bounding box center position

(x,y), aspect ratio a which is the ratio of width to height,

bounding box height h and their respective velocities in im-

age coordinates. The unmatched detections are applied to

initialize new tracklets and the matched detections are ap-

plied to update the corresponding tracklets.

2.2.2 Feature Extraction

To reduce computational complexity, we adopt a feature

combination with color histogram feature, motion feature

and shape feature [32] instead of CNN appearance descrip-

tor. The similarity distance between tracks and detections is

calculated as:

dappearance (i, j) = 1− cosine(Ci , Cj ) (1)

dmotion (i, j) = 1− e−w1 ∗((Xi −Xj

W j
)2+(Y i −Y j

Hj
)2)

(2)

dshape (i, j) = 1− e−w2 ∗(
|W i −W j |
W i +W j

+Hi −Hj

Hi +Hj
)

(3)

d(i, j) = dappearance (i, j) + dmotion (i, j) + dshape (i, j) (4)

where we denote i, j as a tracked object and a detected ob-

ject, C denotes the color histogram feature, X, Y as the

bounding box location coordinates and W, H denote the

bounding box width and height, respectively. The cosine

in equation (1) represents the cosine distance. We combine

the three similarities with weights w1 and w2 as the final

similarity distance.
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Figure 2. Our proposed Online detection-tracking-counting framework. Best viewed in color.

2.2.3 Data Association

We adopt the Matching Cascade algorithm from [30] to get

the track ID for each detected vehicle. Hungarian algo-

rithm [16] is performed to match the detections and tracklets

based on the similarity distance we calculate above. The

Mahalanobis distance [21] gate is used to disregarded in-

feasible assignments based on possible object locations in-

ferred by the Kalman filter. Same as [19], we add iden-

tity matrix to the denominator to smooth the Mahalanobis

distance result and avoid sudden change during non-linear

motion stage. After Matching Cascade, we run intersec-

tion over union (IoU) association as proposed in the original

SORT algorithm [4] to avoid mismatch caused by sudden

appearance changes.

Detection Augmentation Strategy As we proposed

in [19], additional detection augmentation strategies are

adopted to improve the vehicle detection performance in

some severe occluded scenes. It is very likely that only one

object could be detected in two heavily occluded vehicles.

In this case, two tracklets will compete for the same detec-

tion in the matching phase. One of the tracklets will switch

into the unmatched state and easily cause ID switch. Due

to this, we propose a detection rematch strategy. If both

tracklets meet the IoU distance threshold, we will copy a

new detection and update the Kalman state space of the two

tracklets by the weighed position between the last histori-

cal position and the matched detection. For the unmatched

tracklets after above stage, we used the single object track-

ing strategy to predict their position. The predicted position

will be used as matched detection hypothesis and for the

updating of Kalman state space. The single object tracking

strategy will be stopped when the tracklets exceed a prede-

fined maximum age, or the predicted confidence is lower

than the predefined threshold.

Tracking Spatial Constraints We propose to utilize

spatial constrains to better connect vehicle tracking and

movement-specific counting tasks. ROI masks generated

according to official ROI definition are used to filter the ve-

hicles completely outside the ROI. It could bring us benefits

from two aspects. On the one hand, it avoids the interfer-

ence of external vehicles on tracking. On the other hand,

it allows us to easily get the last frame before the vehicle

completely exits the ROI. In order to avoid id switch at the

ROI boundary, we mark a tracklet out if its location pre-

dicted by kalman filter is completely outside the ROI. When

a tracklet has not been updated for a long time or has been

marked out, we suppose its trajectory is ended and perform

online vehicle counting to count the movement-specific ve-

hicle number.

2.3. Online Vehicle Counting

For each ended tracklet, we assign one movement based

on the shape similarity between the tracklet and the typi-

cal trajectories. After that, the certain frame ID when the

vehicle existed the ROI together with movement type and

vehicle class name are streamed out for online traffic flow

analysis.

2.3.1 Trajectory Modeling

The semi-automatic selected trajectories we proposed in

[19] are used as typical trajectories for each movement. Fig-

ure 3 visualizes the typical trajectories.

2.3.2 Movement Assignment

We mainly utilize shape-based trajectory similarity and spa-

tial constraints to get the correct movement type.

Shape-based Trajectory Similarity Follow [19], we get

shape similarities between a tracklet and typical trajectories

by calculating Hausdorff distance [25] and angle between

directions. We set thresholds for the Hausdorff distance

and direction separately to remove wrong movement assign-

ments.
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Figure 3. The visualization of the typical trajectories for each

movement. The arrow lines indicate movements and the colored

lines indicate the selected typical trajectories.

Figure 4. An example of counting spatial constraints. The tracklets

whose last detected location is in the blue box area will not be

counted because the area is a traffic light waiting zone near the

start line.

Counting Spatial Constraints Furthermore, we set spa-

tial constraints to disregard infeasible vehicle counts. False

detection or tracking id switch could still happen in severe

weather or heavy traffic scenes and lead to incomplete track-

let trajectory. The trajectory fragments are likely to match

the wrong movement type. We manually collected some

camera-specific spatial constraints to facilitate more robust

movement assignment. Tracklets with too short length com-

paring to the typical trajectories or last detected in the traffic

light waiting area are ignored when counting. An example

of counting spatial constraints is shown in Figure 4. The

movement assignment with smallest Hausdorff distance and

satisfied counting spatial constraints is determined as the fi-

nal matching result.

2.3.3 Counting Number

Finally, given the tracklet and the corresponding movement

assignment, we record the frame ID that a certain vehicle

exiting the ROI as the counting output. The results are

streamed out for further real-time traffic flow analysis.

3. Experiments

3.1. Datasets

AICity 2021 Dataset The dataset is composed of about 9

hours video which is divided into 31 video clips. The video

clips are captured from 20 unique camera views of typi-

cal traffic situation including intersection single approaches,

full intersections, highway segments and city streets. Some

of them are captured under various lighting and weather

conditions including dawn, rain and snow. Region of inter-

est (ROI) and movements of interest (MOI) of each camera

view are annotated in detail. The 9 hours of video in Track-

1 are split into datasets A and B. Dataset A is provided with

instruction document and a small subset of ground truth

labels for demonstration purpose and it can be used for

training and validation. Meanwhile, dataset B is reserved

for later testing. We will show our experiment results on

dataset A since dataset B is not available to participants.

We picked 17918 frames from AICity2021 Track-1 dataset

A and 3516 frames from AICity2021 Track-3 dataset and

annotated them with vehicle detection label.

3.2. Evaluation Metrics

Evaluation Metrics for vehicle Counting Following

the official guide, AICity2021 dataset is evaluated with

Track-1 efficiency score (S1efficiency) and Track-1 effec-

tiveness score (S1effectiveness):

S1 = αS1efficiency + βS1effectiveness

where α = 0.3, β = 0.7
(5)

Since counting accuracy and the program efficiency

should be combined to evaluate the performance of

our model, weighted combination of S1efficiency and

S1effectiveness shown above can be more accurate.

The S1efficiency score is calculated based on the to-

tal running time and adjusted by a efficiency base factor

which is measured on specific test systems the experiments

are executed on. Finally S1efficiency is normalized within

[0, 1.1× video play − back time].
The S1effectiveness score is calculated as a weighted

average of normalized weighted root mean square error

scores (nwRMSE) across all videos, movements and ve-

hicle classed in test set, with proportional weights based

on the number of vehicles of the given class in the move-

ment. Each video is split into k continual segments and

we consider the cumulative vehicle counts from the start
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of the video to the end of each segment. The nwRMSE

score is the weighted RMSE (wRMSE) between the pre-

dicted and true cumulative vehicle counts, normalized by

the true count of vehicles of that type in that movement. To

further reduce that impact of errors on early segments, the

wRMSE score weighs each record incrementally in order to

give more weight to recent records.

wRMSE =

√√√√
k∑

i=1

wi (x̂l − xi)
2

where wi =
i

∑k

j=1 j
=

2i

k(k + 1)

(6)

3.3. Implementation details

We employ PP-YOLO with backbone ResNet50 as our

detection network. The pre-trained parameters on COCO

dataset from [22] is used. The model is fine-tuned on AIC-

ity2021 dataset with momentum optimizer for 100000 itera-

tions. Learning rate is initialized as 0.0025 and is decreased

by 0.1 at the 20000 and 60000 iters. The input resolution

during training is random selected from 320 to 608. Ten-

sorRT INT8 mode is used during the inference period.

We run our experiments on a machine with 1 NVIDIA

GTX1080Ti GPU which has 0.874121 AICity Track1 effi-

ciency base factor. GPU is only used for running vehicle

detection.

3.4. Ablation Experiments

The ablation study on the AICity Track-1 dataset A is

intended to show two aspects:(1) the affect of detection on

counting results; (2) the effectiveness of online tracking and

counting strategies.

Comparisons between detection Models. As a key part

of three-stage vehicle counting method, detection model

can be crucial to the whole process, so we trained and tested

several potential detection models on AICity 2021 Dataset,

including PP-YOLO with MobileNet V3 [14] / ResNet50

[13] as backbone and Faster R-CNN [24] with ResNet50 as

backbone, which we used in [19]. The test results are listed

in Table 1. Considering that both performance and speed

are vital to vehicle counting task, we choose PP-YOLO with

backbone ResNet50 as our detector.

Online tracking and counting strategies. In this sec-

tion, we will introduce our tracking and counting strategies.

The last two stages of vehicle counting pipeline determine

the final counting result. In Table 2, we show our results

with different combination of strategies which bring further

improvement. Following previous work, the baseline repre-

sents the method used in [19]. TSC denotes tracking spatial

constraint, including filtering the detection results with 0-

1 ROI mask generated from ROI provided by official and

marking the end of tracks which are predicted out of the

model mAP FPS

Faster R-CNN(Res50) 0.399 19.5

PPYOLO(MobileNet v3) 0.347 120.5

PPYOLO(Res50) 0.452 72.9

Table 1. Detection results based on different detection model. The

test set is split from AICity2021 Dataset with 8205 images. The

mAP is evaluation results of IoU=0.5:0.95, the fps is calculated

without pre-processing and post-processing

Method S1effectiveness

baseline 86.44

baseline + TSC 92.06

baseline + TSC + CSC 93.44

Table 2. Comparison with different methods in tracking and count-

ing stage. TSC means tracking spatial constraint and CSC means

counting spatial constraint.

TeamID S1 score

37(Ours) 0.9467

5 0.9459

8 0.9263

19 0.9249

118 0.9235

Table 3. Top 5 overall scores of the vehicle counting task in AIC-

ity2021 track 1. Our proposed method outperforms all the other

competitors in terms of the overall score S1.

boundaries of ROI. It reminds what we should focus and

also rules out the detection results out of ROI which may

cause false positive counts. S1effectiveness of method with

TSC surpasses the baseline with 5.6%. At the same time,

another constraint CSC denotes counting spatial constraint.

Tracks in restricted area (e.g. edge of MOI, the area around

traffic lights) and tracks with too short time span should not

be taken into consideration. These strategies can apparently

improve our effectiveness.

3.5. Overall Score on AICity2021 Track1 Dataset

Comparisons of the overall scores As shown in Table

3, our proposed vehicle counting method shows superior-

ity on effectiveness and efficiency, outperforms all the other

competitors in terms of the overall score S1.

4. Conclusion

In this paper, we present our approach for the CVPR2021

Workshop AICity Challenge Track1. A robust online

movement-specific vehicle counting system is proposed for

traffic flow analysis. Our online tracking and counting

strategies have shown good performance at crowded inter-

section traffic scenes in both effectiveness and efficiency.
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