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Abstract

Combining Natural Language with Vision represents a

unique and interesting challenge in the domain of Artifi-

cial Intelligence. The AI City Challenge Track 5 for Natu-

ral Language-Based Vehicle Retrieval focuses on the prob-

lem of combining visual and textual information, applied

to a smart-city use case. In this paper, we present All You

Can Embed (AYCE), a modular solution to correlate single-

vehicle tracking sequences with natural language. The main

building blocks of the proposed architecture are (i) BERT

to provide an embedding of the textual descriptions, (ii) a

convolutional backbone along with a Transformer model to

embed the visual information. For the training of the re-

trieval model, a variation of the Triplet Margin Loss is pro-

posed to learn a distance measure between the visual and

language embeddings. The code is publicly available at

https://github.com/cscribano/AYCE_2021.

1. Introduction

Vision and Natural Language (NL) understanding is a

relevant and challenging problem in computer vision. Re-

cently, researchers have been focusing on binding video and

NL to deal with tasks such as video captioning, action seg-

mentation, video question answering, or text-based video

retrieval. In this paper, we focus on a smart-city-specific

variation of the latter problem, i.e. the NL-based vehicle re-

trieval, introduced by Feng, Ablavsky, and Sclaroff [7] for

the AI City Challenge Track 51. The task under analysis

combines the need for spatio-temporal coherence with the

need to correlate video and NL, and is therefore non-trivial.

However, solving the problem would allow retrieving traf-

fic patterns or specific vehicle-related events just by typing

a sentence in a camera system, a convenient and useful fea-

ture for people involved in urban planning, traffic engineer-

ing, or law enforcement.

Inspired by other works that combine NL with im-

1https://www.aicitychallenge.org/2021-challenge-tracks/

1. A white pick up truck drives down the street and passes another truck.
2. A white pickup truck going straight down the street with cars parking on the side.

3. A white pickup runs on the street.

1. A red SUV runs down the street alongside parked cars.
2. Red SUV keeps straight followed by a maroon car.

3. A red SUV runs down the road followed by a black vehicle.

1. A blue sedan drives straight through an intersection in the right lane next to another blue vehicle.
2. A blue Sedan first wait at the intersection.

3. A blue sedan runs down an intersection with another blue vehicle followed aside.

(a) “A white pick up truck drives down the street and passes another truck.”,

“A white pickup truck going straight down the street with cars parking on the

side.”, “A white pickup runs on the street.”

Figure 1: A sample from the CityFlow-NL dataset.

ages [11] or video [26, 26, 34, 16, 15, 13, 12], we devel-

oped All You Can Embed (AYCE), an NL-based vehicle

retrieval system for a target object. Our approach builds

on the popular BERT (Bidirectional Encoder Representa-

tions from Transformers) model [5] to handle NL Process-

ing (NLP). Besides, we use two other Transformers to en-

code the visual features: a first one to embed the spatial

information of a single frame, and a second one to embed

the temporal information throughout all the frames of the

video sequence. The architecture has been tested on the

CityFlow-NL [7] dataset; Figure 1 depicts a sample out of

its 2.5k sequences.

Our contributions are summarized as follows:

1. We introduce a stacked spatio-temporal Transformer

Encoder to embed the frame-level spatial information

first, and the video-level temporal one later.

2. We adopt a custom loss, obtained from a variation

of the Triplet Margin Loss (TML) [23], to correlate

the visual and NL information. The objective is to

keep corresponding single-vehicle tracking sequence

and NL embeddings as close as possible.

3. In conclusion, we propose a novel architecture to com-

bine visual and NL information for the Vehicle Re-

trieval task, given three sentences (or sentence-triplet).

Section 2 gives an overview of the state-of-the-art works

we took inspiration from, while Section 3 reports some in-

sights of the specific task and dataset. Section 4 describes



the main contribution of this paper, giving all the details of

the AYCE architecture and, finally, a selection of significant

experiments can be found in Section 5.

2. Related Works

In the literature, the standard approach to extract mean-

ingful information from visual and textual sources is to gen-

erate proper embeddings. Over the years, several methods

have been proposed to obtain embeddings from images or

videos, from NL, or their combination.

2.1. Language Modeling

Regarding NL, pre-trained sentence encoders such as

ELMo [19] and BERT [5] have rapidly improved the state

of the art on many NLP tasks, e.g. question answering or

natural language inference, dominating the previous solu-

tions based on context-independent word embeddings such

as word2vec [17] and Glove [18]. The novelty introduced

by BERT is the use of the Transformer architecture instead

of LSTM (used for example in ELMo). Since its introduc-

tion, there has been continuous advancement in language

model pre-trainings.

2.2. Visual features embedding

To extract visual information, a common strategy is to

apply Convolutional Neural Networks (CNNs). CNNs have

been proposed to solve classic computer vision tasks such

as image classification or object detection. To do so, those

models learn an inner representation of the visual source.

Among the various existing CNNs, it is worth mention-

ing R-CNN [9], Fast R-CNN [8], and Faster R-CNN [20],

a family of regional convolution networks. The name of

these models is due to the presence of an explicit region

proposal network that proposes regions from convolution

features, picking the ones that are likely to carry the most

meaningful visual information of the image. Such latent

representation is then given to a classifier for the second

step of object detection, reason why R-CNNs are known as

two-staged object detectors.

Given their success in extracting valuable knowledge,

classifiers and object detectors have also been applied to

multi-modal tasks such as image or video captioning or

video understanding.

For example, Herdade et al. [11] make use of Faster

R-CNN to encode the visual information of an image and

transform objects into words. As a further step, the authors

introduce the Object Relation Transformer, an encoder-

decoder architecture designed specifically for image cap-

tioning, that incorporates information about the spatial re-

lationships between input detected objects through geomet-

ric attention. Indeed, even though Transformers have been

originally proposed for NLP tasks, they have also been suc-

cessfully applied, alone or in conjunction with a convolu-

tional part, in a wide variety of vision tasks such as classifi-

cation [6], object detection [1], object tracking [27], and

others.

2.3. Joint videotext embedding

Inspired by the BERT model’s success for NLP tasks,

numerous multimodal vision-language models have been

proposed. Those kinds of methods, that try to learn a joint

visual-textual embedding, can be divided into three cate-

gories (depicted in Figure 2): (i) single-stream shared en-

coder, (ii) separated-streams encoders with joint encoder;

(iii) separated-streams encoders with distance loss.
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Figure 2: Joint video-text embedding categories: (a) single-

stream shared encoder; (b) separated-streams encoders with

joint encoder; (c) separated-streams encoders with distance

loss

VideoBERT [26] and ActBERT [34] belong to the first

category: they employ a single Transformer based encoder

to learn joint embedding for video-text pairs, combining

a sequence of “visual words”, and a sequence of spoken

words. To create “visual words”, Sun et al. [26] sub-

sample the frames and apply a pre-trained video ConvNet,

i.e. S3D [32]. Starting from the BERTLARGE model ini-

tialized with the pre-training, they added support for video

tokens by appending 20,736 entries to the word embedding

lookup table for each “visual words”. The novelty intro-

duced by Zhu and Yang in ActBERT [34] is the additional

incorporation of global actions. They introduce a TaNgled

Transformer block to encode features from three sources,

i.e., actions embeddings, local regional objects obtained

with Faster R-CNN network [20], and linguistic tokens ob-

tained using Word-Piece [31].

In the second category, three encoders are employed: one

for the NL, one for the video, and a third one which re-

ceives the output of the previous two and learns a cross-

modal embedding. The idea was introduced by Sun et al.

with “Contrastive Bidirectional Transformer” (CBT) [25];

other meaningful examples are HERO [13], UniVL [15] and

CLIPBERT [12]. HERO learns contextualized embeddings

between the corresponding tokens and their associated vi-

sual frames. Instead, the peculiarity of CLIPBERT is that

it randomly samples few short clips from the full-length

videos at each training step.



The latter category is the only one without a shared

encoder: there are still two separate encoders for video

and NL, and the resulting embeddings are correlated only

through a loss function. The idea comes from the Siamese

network model, where the TML is applied to keep similar

objects closer and move dissimilar ones further away. Un-

like Siamese networks, the two branches are two separate

architectures, each with its weights. In the method proposed

by Miech et al. [16] the authors apply a 3D CNN back-

bone, specifically I3D [2], for the video embedding and pre-

trained word2vec [17] embeddings for NL. Then they intro-

duce a specific loss, the Multiple Instance Learning Noise

Contrastive Estimation Loss, to correlate the multi-modal

information. AYCE, the model proposed in this paper, be-

longs to this third category.

3. Data Analysis

Before diving into the design of the architecture, we

inspected the CityFlow-NL [7] dataset. This section re-

ports the insights that we have exploited to build the AYCE

model. The training set is composed of N = 2498 en-

tries, and each entry i has three objects: (i) three sentences

ti1, t
i
2, t

i
3 in NL describing a Single Vehicle Tracking (SVT)

sequence that appears in the video; (ii) a video of variable

length; and (iii) the bounding box annotation of the tracked

vehicle for each frame in the video. For all the informa-

tion concerning (ii), (iii) and the video more in general, we

will use the notation vi with i ∈ {1 . . . , N}. Each video

sequence has in average 81 frames (min: 1, max: 3620),

while each sentence tij is composed in average of 9 words

(min: 3, max: 30).

As also explained in the original work by Feng et al. [7],

each sentence describes the target vehicle in terms of type

of vehicle, color, and performed action. However, it also

occurs that some of this information is missing at sentence

level: the 0.76% of the 7494 sentences misses the vehicle

type, 4.68% the vehicle color, and 1.53% the performed

action. However, given that a SVT sequence is described

by a sentence-triplet and not only by a single sentence, it

never occurs that those data are missing in all three sen-

tences. Nevertheless, the three sentences are not consistent

with each other. Inside a sentence-triplet, there are on aver-

age 2.07 different target vehicle types, 1.85 different colors,

and 2.63 different performed actions. Therefore, it is clear

that the sentence-triplet plays a central role in the model.

Finally, we decided to analyze the heterogeneity of the

data both at sentence-level and at sentence-triplet-level. We

discovered that the sentences are very similar to each other.

In particular, at sentence-level, the most recurrent sentence

occurs 53 times, while at sentence-triplet-level 15 sentence-

triplets have two identical sentences among the three, and

in one case there are three identical sentences within a

sentence-triplet. Then, we did the same test removing one

of the previously mentioned features from the sentence, and

we compared the remaining part. From this analysis, we

discovered that there are up to 30 sentence-triplets with two

identical sentences (removing the type) which differ only

by one, meaningful, word. The same behavior, even more

obvious, can be noticed at sentence-level, where in some

cases there are up to 172 repetitions (removing the color).

4. Method

The proposed AYCE model is depicted in Figure 3. It

takes two separate inputs: (i) a Visual input, which includes

the representation of a unique SVT sequence, and (ii) a Nat-

ural Language (NL) input, which includes the three sen-

tences that describe the sequence. The final output is a dis-

tance value that quantifies the affinity degree between the

two inputs: the lower distance is, the higher is the likelihood

of the NL part to be a meaningful description for visual in-

put. From an architectural standpoint, the Visual branch

consists of a ResNet-family CNN, two stacked Transform-

ers Encoders, and a final Transformer Decoder. Instead, the

NL branch is a BERT model with the addition of a single

fully connected layer. The two branches are trained on sep-

arate stages: first, the BERT model is fine-tuned on the NL

descriptions; then, the Visual branch is trained from scratch

using a metric-learning approach to learn an embedding of

visual input projected onto the same latent space of the NL

embeddings.

4.1. Visual Branch

The i-th visual input vi is a tensor of shape

(M,O + 1, (256 + 5)) (omitting the batch dimen-

sion), where M defines a subsample of the total number

of frames in the i-th vehicle tracking sequence, O is the

number of objects detected by an off-the-shelf object

detector in the a-th frame and (256 + 5) is the size of an

object-embedding vector that encodes the representation

of each b-th object, carrying visual (256), spatial (4) and

classification (1) information. From now on, we will denote

with V i the output of the visual-branch corresponding to vi.

To keep a reasonable memory footprint, M is capped to

80, which is close to the average SVT length (Section 3)

hence sequences longer than 80 frames are online randomly

subsampled with a uniform probability distribution. The

whole frame is never fed to the trainable model, but a set

of object embeddings Oa
b is collected for each of the M

selected frames: for each one of the b objects detectable

by a two-stage object detector on the a-th frame, the cor-

responding representation is obtained by concatenating the

detection bounding box with and additional visual-features

vector, retrieved from the same detection model. The com-

plete process is detailed in Section 4.1.1. Conversely, the

object embedding associated with the tracked vehicle is ob-
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Figure 3: Overview of the best performing architecture with Visual Triple-Output and Language Triple-Output configurations.

tained by concatenating the provided tracking bounding box

with a visual embedding vector computed by a dedicated

convolutional backbone. This module, trained along with

the rest of the model, takes as input a sequence of M RGB

frames depicting only the tracking vehicle, and produces

a 256-dimensional visual representation. Padding must be

applied to vi both at batch level, since M i can differ be-

tween sequences, and at sequence level, given that different

frames can spot a different number of detectable objects.

The visual input vi obtained in this way is fed through

two identical Transformer encoders: the first Spatial En-

coder operates on the sequence of (O + 1) objects, treat-

ing the remaining dimension as an additional batch shape.

As in the original work [28], the output from the last block

of the encoder has the same shape as the input, therefore

the mean is computed over the object’s axis to produce a

fixed size embedding for each of the M timesteps. The av-

eraged output of the Spatial Encoder results in a tensor with

shape(M, 256), which is fed to the Temporal Encoder that

aggregates the temporal information of the visual input. Fi-

nally, a Transformer Decoder takes as input a NL-queries

set and the output of the Temporal Encoder to produce a

tensor (3, 256) of three individual embeddings.

The rationale for this particular architecture is threefolds.

(i) Capturing fine-grained details about the appearance of

the tracked vehicle. By using a dedicated convolutional

architecture to embed the sequence of the tracked vehicle

crops we aim to properly distinguish very similar sequences

which often differ only in details about the target vehicle

(e.g. the color or the type). (ii) Modelling the spatial rela-

tionships between the tracked vehicle and the surrounding

objects. These sort of interactions are often highly discrim-

inative of the described scene, given that a portion of the

descriptions refers to interactions between the tracked ve-

hicle and other road users ( e.g. “A 〈 target’s description〉
is [followed by — following — behind — ...] a 〈 other ve-

hicle’s description 〉”). The addition of the precomputed

object embeddings provides a strong insight regarding both

the arrangement and the visual appearance of subjects in-

volved in interactions with the target vehicle. (iii) Model-

ing the temporal dimension. To truly capture all the spatio-

temporal changes of the scene, the Temporal Encoder must

operate on the output of the Spatial Encoder. In this way we

expect the AYCE model to extrapolate trajectory details of

the vehicles such as “A 〈 target’s description〉 [turns left —

turns right — going straight — ...]”.

4.1.1 Precomputed object embeddings

A pre-trained object detector is employed to obtain an ad-

ditional set of detection bounding boxes and correspond-

ing visual representations for each frame of the video se-

quences. We use the Faster R-CNN detector [20] with a

ResNet-50 [10] backbone, trained on the 80-classes dataset

COCO [14]. Any detection with a confidence score lower

than 0.85 gets discarded. Among the remaining, we select

only objects belonging to classes relevant to our problem,

i.e. different types of vehicles, pedestrians, and other road

objects ( e.g. stop sign and traffic light).

The two-stage nature of Faster R-CNN has been ex-

ploited to obtain an additional visual embedding for each

detected object: right after the ROI-Pooling module, which

takes the output of the Region-Proposal Network and out-



puts a (7×7×256) vector for each proposed region, we ap-

ply an average pooling operation to obtain an (1×1×256)
vector of features. Then, we concatenate the corresponding

pooled feature vector to the values defining each detection

bounding box. With this addition, the final output of the ob-

ject detector becomes a (5+256) vector with the first value

being the object’s class, the next four the box coordinates

normalized by the image’s shape in the range (0, 1) and fi-

nally the visual features vector. We discard any detected

box that might be associated with the tracked vehicle and,

instead, we use the ground-truth tracking box provided by

the dataset. However, since the class index is not provided

we define a special index for the tracked vehicle. The visual

features vector corresponding to the tracking box is initial-

ized to zeros, to be then correctly filled by the convolutional

backbone.

4.1.2 Convolutional Backbone

The convolutional backbone is a plain ResNet-family con-

volutional network. Given the sequence of the M sampled

frames of a generic tracking sequence, the region delimited

by the tracking bounding box is cropped from each frame,

and the crops are resized to a common fixed size. The result-

ing tensor, of shape (M, 3,W,H), is fed into the convolu-

tional backbone. Each of the M frames along the temporal

axis is processed individually, treating the temporal dimen-

sional as a batch dimension. The resulting tensor, of shape

(M, 256), is used to correctly fill the target’s vector feature

previously initialized with zeros.

For the network, we chose the simplest approach of start-

ing from a ResNet model pre-trained on Imagenet [4], in

which we replaced the last fully connected layers used for

1000-classes classification with a newly initialized one, to

provide an output of 256 elements. Differently from the

Faster R-CNN used to produce the object embeddings, the

ResNet model is trained along with the remainder of the

model.

Considering the extreme range of variation in appearance

due to orientation, lightning condition, occlusion, and sev-

eral other factors, this component has been noted through

qualitative observations to be the most influential to the

overall effectiveness of the AYCE model.

4.1.3 Stacked Spatio-Temporal Transformer

For the next part of our model, we use two identical Trans-

former Encoders in cascade. The first one aggregates the

(O + 1) object embeddings for each of the M frames into

a single visual embedding, to provide a comprehensive

frame-level representation. The second one aggregates the

information along the temporal axis to infer the sequential

meaning of the depicted scene.

From a practical standpoint, we use the standard Trans-

former Encoder module [28]. Therefore the number of En-

coder blocks is set to NB = 6 and the number of Atten-

tion heads to NH = 8 in all the Multi-Head Self-Attention

(MHSA) modules. The architecture of the Transformer

modules is kept unchanged, with the self-attention sub-

module and the feed-forward submodule, each followed by

dropout with p = 0.1, a ReLU activation function, and Add

& Layer Norm. The bottleneck dimension in the linear sub-

module is also kept to the original value 2048.

The first Encoder module, namely the Spatial Encoder,

takes as input the complete visual input vi, including the

visual embedding produced by the CNN backbone. Before-

hand, a single linear layer is applied to reduce the embed-

ding dimensionality from 261 (or 5 + 256) to 256. This is

required to have a size divisible by the number of MHSA

Heads. Given the input tensor (Bs,M,O′, 256) where Bs

is the mini-batch size, the Spatial Encoder threats the num-

ber of frames (or timesteps) M as an additional batch di-

mension. The information of the object embeddings is in-

stead combined using the scaled dot-product Attention op-

erations, carefully masking padded elements to avoid at-

tending to padding values. Given that the Encoder’s output

is a tensor similar to the input, the mean between the O′

embeddings is computed to produce a single embedding for

each of the M timesteps.

The subsequent Temporal Encoder takes as input the

output of the previous one and operates almost in an iden-

tical way. The main difference is the definition of the Posi-

tional Encoding: being M a subset of a potentially signifi-

cantly larger set (recalling that the longest sequence count

3620 frames, when M is capped to 80), we use the indices

of the sampled timesteps as input to the positional encod-

ing, instead of the canonical sequence of incremental inte-

gers (0, 1, ...,M − 1). Using this sampling-aware encoding

we aim to make our AYCE model slightly more robust to

information loss due to subsampling, as well as improving

the overall generalization properties.

Visual Single-Output (VSO) We initially experimented

with the simplest approach of producing a single embed-

ding vector for the whole visual sequence (not depicted in

Figure 3), even though the NL branch might provide three

different embeddings. The single embedding vector is ob-

tained by applying a mean operator over the M output of the

Temporal Encoder’s output.

Visual Triple-Output (VTO) Instead, to obtain three em-

bedding vectors for the same visual input, we introduce an

additional Transformer Decoder block which takes as input

a set of NL-queries. Similarly to the object-queries pro-

posed by Carion et al. [1], NL-queries are just a sequence

of fixed length (equals to 3), only consisting in the corre-



sponding positional encoding. The output of the Tempo-

ral Encoder is fed as encoder output to the inner Encoder-

Decoder Attention modules of each decoder block. The out-

put V i of the last decoder’s block is a (3, 256)-shaped em-

bedding vector.

For the VTO approach, we use the notation V i
j to indicate

the j-th row of V i. Together with a careful redesign of the

loss function, this second approach outperformed the for-

mer one.

4.2. Natural Language Branch

The NL branch takes care of encoding the NL descrip-

tions and mapping them to the same latent space as the vi-

sual embeddings. This is necessary to compute a distance

measure between the visual input and the textual descrip-

tion as output of the pipeline. To fulfill this task we adopted

the popular model BERT [5] as the core part of the AYCE

model, with the addition of a single linear layer to reduce

the dimensionality of the embedding from the original 768
to the required 256. Given the i-th tracking sequence, we

denote as tij the j-th textual description out of the three as-

sociated ones, with i ∈ {1, . . . , N} and j ∈ {1, 2, 3}.

Similar to the distinction between VSO and VTO de-

scribed for the visual branch we experimented with two dif-

ferent embedding representations.

Language Triple-Output (LTO) This is the straightfor-

ward approach, each of the textual descriptions tij is inde-

pendently processed by BERT producing three distinct T i
j

embedding vectors.

T i
j = BERT (tij) for j = 1, 2, 3 (1)

Language Single-Output (LSO) In this alternative ap-

proach we experimented feeding a string-level concatena-

tion to the language model, producing a single embedding

for the whole tracking sequence.

T i
1+2+3 = BERT (ti1 ⊕ ti2 ⊕ ti3) (2)

where ⊕ is the concatenation operation between strings.
From now on, since the largest portion of our experi-

mentation is carried with the LTO approach, we refer to
this solution unless specified. Ideally we want the follow-
ing property to be met:

{

d(T i1
j1
, T

i1
j2
) ≪ d(T i1

j1
, T

i2
j2
)

d(T i
j1
, T i

j2
) ≈ 0

∀j : j1 6= j2 and i : i1 6= i2

(3)

In our experiments, the metrics used as distance are the Eu-

clidean distance and/or the Cosine Metric [21], an adapta-

tion of the Cosine Similarity, in which a constant term equal

to one is added to the opposite of Cosine similarity to obtain

a measure whose resulting values are between 0 and 2.

Textual descriptions associated with the same tracking se-

quence should be mapped close to each other in the latent

space, while the opposite must hold for descriptive sen-

tences of distinct tracking sequences. We experimented

with a popular implementation of BERT [30] pre-trained on

a corpus of English text with a Masked Language Model ob-

jective [24]. As shown in Section 5.1, the pre-trained model

fails to achieve the property Equation (3), hence in the next

section, we detail the proposed solution to finetune the lan-

guage model with a semi-supervised approach to make it

suitable for our retrieval task.

4.3. Optimization strategy

Natural Language Branch. We decided to train the Vi-

sual branch and the NL branch in separate stages. For

the latter, we aim to enforce the property defined in Equa-

tion (3), via a BERT fine-tuning performed in a semi-

supervised fashion. To fulfill this purpose, we adopt the

Triplet Margin Loss (TML) function[3, 22, 23, 29]

T L(A,P,N) =
1

Bs

Bs∑

i=1

max(0, d(A
i
, P

i
) − d(A

i
, N

i
) + m) (4)

By minimizing the TML, the distance from the baseline

(anchor) input Ai to the positive input P i is reduced to be

less than the distance from the baseline (anchor) input to the

negative input N i at least of m.

Given a tracking sequence, a random textual description

ti1j1 is selected out of the tree to serve as anchor, another

description ti1j2 is selected as positive example and a third

description ti2j is sampled as negative from a randomly se-

lected sequence.

For the LSO approach, we use the same procedure. How-

ever, in this case, the positive input and the anchors are a

concatenated random permutation of the same set of NL de-

scriptions. Following the same concept, the negative input

is the concatenation of the NL description set of a differ-

ent sequence. In Section 5.1 we detail the exact setup used

for the final training of the visual branch, and we provide a

comparison between the LSO and LTO approaches.

Visual Branch. The Visual branch is trained with a

metric-learning objective: after defining a distance func-

tion between the embedding V i1 resulting from a visual in-

put vi1 and a generic embedding T i2 obtained by the NL

branch; the Visual branch is trained to reduce d(V i1 , T i2)
with i1 = i2 to be less than the same distance with i1 6= i2
at least of m.

The exact definition of d depends on the considered con-

figuration of the Visual branch (VTO or VSO) and of the

Language branch (LTO or LSO). A schematic summary of

the explored combination is reported in Table 1.



Model Visual Branch Language Branch

VSO VTO LSO LTO

VS-LT X X

VS-LS X X

VT-LT X X

Table 1: Different experimented combination of Language

and Visual branches.

The best results have been obtained with the VT-LT ap-

proach, therefore hereafter the exact optimization process

for this solution is detailed. The overall procedure is sim-

ilar for other combinations, mainly differing for the defini-

tion of the distance measure used in the loss function.

The loss function used is the TML defined in Equa-

tion (4). In this case, the anchor Ai is defined as the Vi-

sual embedding V i1 , the positive input P i1 is the Language

embedding T i1 associated to the same sequence and the

Negative input N i2 with i1 6= i2 is the language embed-

ding obtained from a different sequence. Besides that, we

sum a scaled Euclidean distance term that seeks to minimize

the distance between the visual embeddings and the corre-

sponding positive. This additional loss term is supposed to

help to avoid local minima, given that during the optimiza-

tion process only the anchor is moved while the language

embeddings are fixed.

The comprehensive objective function L(A,P,N) is de-

fined in Equation (5).

L(A,P,N) = T L(A,P,N) +
1

Bs

Bs∑

i=1

β · Φ(Ai, P i) (5)

The employed distance function is an extension of Eu-

clidean distance. Since in the VT-LT approach both the vi-

sual and the language branch provide three separate embed-

ding vectors, the distance is computed for all the 9 permuta-

tions, resulting in a matrix of distances DT
V , in which each

element is defined as:

DT
V (m,n) = d(V i1

m , T i2
n ) m,n ∈ {1, 2, 3}. (6)

Φ(Ai, P i) is defined as the minimum distance among the

embeddings of the anchor and the positive NL in DT
V ,

namely min(DAi

P i). On the other hand, in T L we use the

average distance among the embeddings of the anchor and

the negative NL, namely mean(DAi

Ni). The value of β is

fixed to β = 0.1. In addition, we exploited a strategy of on-

line hard-negatives mining as suggested by Xuan et al. [33],

selecting the negative value N i as max(d(Ai, N i)) for i in

(0, Bs − 1). In Section 5.2 we detail the evaluation pro-

cess and present the results obtained on the CityFlow-NL

dataset.

5. Experiments and Evaluation

5.1. BERT finetuning

To evaluate the fine-tuning of the NL branch we use the

Cosine Metric to serve as a measure in Equation 3. We

refer to the average distance between descriptions associ-

ated with the same SVT as Intra-Tuple or dINTRA. On the

other hand, Inter-Tuple or dINTER is the average distance

between descriptions of different sequences. For both the

LTO and LSO approach we compute mean and variance of

dINTRA(T
i) for each i-th input and dINTER(T

i1 , T i2) for

all possible combinations of (T i1 , T i2 ), aiming to minimize

the first and maximize the second. Based on those metrics

we select a single best-performing model for each case to

be then used in the training of the visual branch. Table 2

reports a sample of the obtained results for different sets of

hyperparameters.

(a) Without fine-tuning (b) With fine-tuning

Figure 4: 2D representation of BERT embeddings, obtained

via Principal Component Analysis.

The result of the fine-tuning is qualitatively represented

in Figure 4. 30 sentence-triplets have been projected into a

2D space before (a) and after (b) the LTO∗
FT fine-tuning.

After the fine-tuning the sentences of each triplet are close

and far from the other ones; moreover, all the embeddings

are better spread in the latent space.

5.2. VehicleRetrieval Model

To produce the submission result in the required format

for AI City Challenge Track 5, we first compute all the pos-

sible visual embeddings V i and language embeddings T i

for i in (0, 530) ( where 530 is the length of the test set).

Since the two branches of the AYCE model are indepen-

dent, the number of inference steps grows linearly in the

number of sequences to be tested. For each visual embed-

ding V i1 we can compute the distance d(V i1 , T i2) for each

i2 in the dataset. At this point, for each V i we sort the dis-

tance to the descriptions in descending order. In this way,

it is possible to compute the Mean Reciprocal Rank (MRR)



Model Hyperparameters Intra-sentence-triplet Inter-sentence-triplet

loss margin # epoch Bs lr mean var mean var

LTOBASE - - - - - 0.1703 0.0068 0.1899 0.0057

LSOBASE - - - - - 0.0046 5.25E-06 0.1079 0.0015

LTO∗

FT Triplet 2.5 4 48 1E-04 0.2089 0.0376 0.6140 0.0723

LTOFT Triplet 2.5 4 48 5E-05 0.2464 0.0444 0.6935 0.0838

LSOFT Triplet 2.5 4 20 1E-04 0.0059 1.88E-05 0.4754 0.0409

LSO∗

FT Triplet 2.5 4 20 5E-05 0.0044 1.45E-05 0.4622 0.0260

Table 2: BERT fine-tuning details. The first two rows report intra-sentence-triplet and inter-sentence-triplet distances for the

BERT model without fine-tuning. In the rest, the hyperparameters and distances for the fine-tuned models can be found. The

models marked with a ∗ are the ones used in the training of the Visual branch.

on Test set

Name GPU Optimizer ResNet crop size initial LR MRR Recall@5 Recall@10

BASELINE [7] - - - - - 0.0269 0.0264 0.0491

VS-LT NO-FT A100 Adam Resnet18 (80,80) 1.0E-5 0.0224 0.0170 0.0358

VT-LT-A-18 A100 Adam ResNet18 (90, 110) 3.5E-5 0.1078 0.1321 0.2491

VS-LT-A-18 A100 Adam ResNet18 (90, 110) 2.5E-5 0.0960 0.1189 0.2283

VS-LT-A-34 A100 Adam ResNet34 (90, 110) 1.0E-5 0.0943 0.1283 0.2245

VS-LT-S-18 A100 SGD ResNet18 (90, 110) 2.5E-4 0.0834 0.1189 0.2000

VS-LS-A-34 Titan RTX Adam ResNet34 (90, 110) 7.5E-06 0.0738 0.1038 0.1679

Table 3: Results obtained by the proposed architecture on the public leaderboard of the AI City Challenge Track 5. The

first row reports the results obtained by the baseline model proposed by the dataset’s authors, while the second reports the

performance of the retrieval model without the BERT finetuning described in Section 4.3.

metric [7]. In this case the distance function d is defined as

min(DV
T ) with D defined as in Equation (6).

We carried on preliminary experimentations, selecting a

validation set by randomly sampling a 10% of the provided

training data, equal to 249 tracking sequences. The best per-

forming models were then trained from scratch on the full

dataset. However, given the time constraints of the chal-

lenge, we could not pursue an exhaustive ablation study,

and we hereafter report the explored experiments that led to

the best results. To avoid confusion, we report in Table 3

only the results on the official test set, computed through

the standard evaluation procedure of the AI City Challenge.

We compared the different architectural approaches sum-

marized in Table 1, on top of that we evaluated (i) the usage

of ResNet18 rather than ResNet34 as CNN backbones (Sec-

tion 4.1.2), (ii) the usage of several optimizers, e.g. Adam,

SGD with momentum and AdamW, (iii) the correct value

for the margin value for the TML (Equation (4)), (iv) other

typical hyperparameters such as the learning rate lr.

The results of the most successful methods on the test-

set can be found in Table 3. The margin value m is set to

1.0 for all of them. It can be noticed that all the meaningful

experiments outperform the baseline of the challenge [7].

The best model found follows the VT-LT configuration,

using ResNet18 as convolutional backbone with input size

equal to (w, h) = (110, 90). It has been trained for a total

of 680 epochs on two Nvidia A100 GPUs with a mini-batch

size of 48 per GPU (totaling 96). Adam is used as optimizer

and the learning rate has been initialized to 3.5e−5 and has

been decreased to 2.5e−5 and 1.5e−5 at epochs 450 and 650
respectively. The total training time was around 27 hours.

6. Conclusions

NL description offers a convenient and straightforward

way to specify vehicle track queries. The AICityChallenge

Track 5 aimed to perform vehicle retrieval given single-

camera tracks and corresponding NL descriptions of the

targets. After an exhaustive study of the state-of-the-art,

we have developed AYCE: an original architecture, based

on established and effective ideas, trained with an objective

function suited for the considered task.

Given the sheer size of the hyperparameters space, we

consider the obtained results as preliminary and promising

for future developments. However, we recognize the current

result already quite adequate, since, with a MRR > 0.1,

when querying with the NL descriptions the corresponding

SVT is placed in the top 10 positions, on average.
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