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Abstract

Retrieving specific vehicle tracks by Natural Language

(NL)-based descriptions is a convenient way to monitor ve-

hicle movement patterns and traffic-related events. NL-

based image retrieval has several applications in smart

cities, traffic control, etc. In this work, we propose TIED,

a text-to-image encoder-decoder model for the simultane-

ous extraction of visual and textual information for vehicle

track retrieval. The model consists of an encoder network

that enforces the two modalities into a common latent space

and a decoder network that performs an inverse mapping to

the text descriptions. The method exploits visual semantic

attributes of a target vehicle along with a cycle-consistency

loss. The proposed method employs both intra-modal and

inter-modal relationships to improve retrieval performance.

Our system yields competitive performance achieving the

7th position in the Natural Language-Based Vehicle Re-

trieval public track of the 2021 NVIDIA AI City Challenge.

We demonstrate that the proposed TIED model obtains six

times higher Mean Reciprocal Rank (MRR) than the base-

line, achieving an MRR of 15.48. The code and models will

be made publicly available.

1. Introduction

Vehicle track retrieval from traffic cameras [9] is an es-

sential component of upstream systems aiming for urban

planning and traffic-flow control. Large-scale retrieval of

vehicle tracks is difficult to obtain with conventional im-

age or video retrieval methods, due to the immense variety

of motion patterns and vehicle semantics that need to be

considered. Descriptions for these tracks in Natural Lan-

guage (NL) is an appealing alternative method to enable the

retrieval system to directly interact with human-given de-

scriptions [33, 2]. The objective of NL-based vehicle track

retrieval [9] is to match a given NL description to the corre-
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A blue sedan runs down the street.

A red cargo truck pulls a yellow cement mixer.

Figure 1: Qualitative vehicle retrieval results using the base-

line method (Rows 1, 3) and our method (Rows 2, 4) of a

frame from the retrieved tracks. The queries are “A blue

sedan runs down the street.” and “A red cargo truck pulls a

yellow cement mixer.”

sponding vehicle track. The NL description is given as one

or more text queries, and the vehicle tracks are a sequence

of frames from a single camera, where the location of the

vehicle is known. This task combines visual and textual

modalities, thus solutions should simultaneously account

for intra- and inter-modality challenges. Vehicle tracks in-

clude a wide variety of vehicle types, colors, and motion

types. NL queries often have variations and ambiguities,

since different people can describe the same vehicle seman-



tics and actions differently. An additional complexity to the

problem is introduced by requiring to identify vehicle ma-

neuvers over a time interval. Contrary to NL-based image or

object retrieval [14, 11], an NL-based track retrieval system

should address the time dimension of the task, as indicated

by the related NL-based visual object tracking task defined

in literature [23, 8].

We propose a system that can jointly leverage both lan-

guage and visual modalities by extracting feature embed-

dings and then aligning them with cycle-consistent intra-

and inter-modality metric loss functions. Because addi-

tional cues increase retrieval performance, we additionally

use the visual semantics of the vehicles, i.e. color, and type

information. The contributions of this work are summarized

as follows.

• A Text-to-Image Encoder-Decoder (TIED) network

that maps both visual and textual inputs to a latent

space and jointly maps it back to the text queries.

• A cross-modal training objective that models both

intra/inter-modal relations between the image and lan-

guage queries as well the cycle-consistent objective.

• Additionally, we also present a semi-automated

method to extract attributes from language descrip-

tions.

2. Related Work

A. Vehicle Re-Identification. Vehicle Re-Identification

(Re-ID) is an important topic in the context of smart cities

and traffic management, which relates to vehicle retrieval

from natural language descriptions. In this task, the system

should match images of the same vehicle instance across

different camera views and locations. The key dataset is

the CityFlow dataset [9, 32], which is extended by the

CityFlow-NL dataset [9].

A summary of the best performing methods is found

in [26]. Noticeable trends from these methods are the ex-

traction of additional attributes [6, 39, 3] (color, type, ori-

entation), the deployment of state-of-the-art classification

networks such as ResNet-IBN [27], and the combination of

classification and metric losses [38, 31, 10].

The work of Zhu et al. [39] exploits additional attributes

at the vehicle and geographic level. They propose a multi-

task network that learns to identify vehicles, orientation,

and cameras. Meanwhile, the authors of [12] deploy a

strong baseline architecture [25] in conjunction with a two-

step training process that leverages the availability of syn-

thetic data. The best performing system [38] uses both

style transform and content manipulation, to reduce the

synthetic-to-real domain gap and enhance the training data.

These improvements, together with camera and orientation-

aware models, yield excellent performance for vehicle Re-

ID.

However, while vehicle Re-ID and text-to-image re-

trieval share some challenges, the latter requires specialized

solutions and architectures. These are necessary to accu-

rately model cross-domain relationships and reduce the do-

main gap. We discuss some of the common approaches be-

low.

B. Text-to-Image retrieval. In cross-modal retrieval, the

objective is to identify the correspondences between a set

of query and database elements, belonging to two different

modalities. Since each modality is different, the embed-

dings produced by specific feature extractors (text, images,

video) will not be inherently aligned. Therefore, the most

frequent approach in the literature is to construct a common

feature space [7, 16, 34]. We summarize some of the recent

solutions to this problem below.

The authors of [4] propose to bridge the domain gap

by imposing a cycle-consistent transformation from the

text and image domains. To this end, they train a two-

branch model for text-to-image embedding translation and

vice versa. A GRU processes the textual inputs, whereas

a CNN processes the visual inputs. The embeddings are

compared and the triplet hinge loss [7, 18, 15] is mini-

mized. An additional reconstruction loss is employed to

reduce the error between the original sentence and the one

generated by the visual feature embedding. While the pre-

vious method uses global image information, most of the

solutions present in the literature deploy a more localized

approach. In these works, the images and accompanying

textual descriptions may contain more than one single ob-

ject. Therefore, bounded image regions or patches are fed

through the CNN to learn saliency as well as word-to-image

semantic relationships [10, 21, 35, 37]. These systems de-

ploy region proposal systems like Faster R-CNN [30] with

bottom-up attention [1] to find salient and semantically rel-

evant regions. In [21], these regions are then processed by

a Graph Convolutional Network and a GRU to produce se-

mantically enhanced features. The authors of [35] eschew

the relational graph by employing a novel message-passing

module between the textual and visual branches. The fea-

tures are then fused and the branches are trained jointly.

Similarly, explicit inter-modal and intra-modal attention is

learned in [37]. Meanwhile, the system presented in [10]

does not employ a region proposal network, but instead di-

rectly partitions the image into patches. This is done to

create a visual analog of the tokens used by the language

model. Hence, each patch of the image resembles each

word of a sentence. The textual tokens and the patches are

then fed into BERT [5] and trained using the triplet hinge

loss. Recent work has extended the text-to-image retrieval

into a text-to-video retrieval problem, presenting solutions
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Figure 2: Word frequency for the additional attributes on the training set. We consider 18 color and 15 vehicle type attributes

for training our model.

that exploit temporal and language correlations [19, 22]

by producing video-level representations/predictions. How-

ever, we limit our efforts and consider only the individual

image frames as in [9].

C. Vehicle retrieval from natural language. While the

works summarized above perform text-to-image retrieval,

there is a fundamental difference between the scenes ana-

lyzed in previous work and those present in the CityFlow-

NL dataset [9]. The available temporal and geographic re-

lationships are unique for the multi-camera CityFlow-NL

dataset. Other datasets for language and vision tasks such

as Flicker30K [36], Flicker30K Entities [28] and Visual

Genome [17] provide textual information on the scene. This

can include actions and qualities of the imaged objects and

their surroundings. However, the CityFlow-NL dataset also

contains other temporal information that does not occur in

the above-mentioned datasets. These temporal relationships

make it possible to describe the maneuvers that the depicted

vehicles take, e.g. ’turns right’. While this information can

differentiate the specific vehicles, it also makes individual

frames less informative, since part of the textual informa-

tion describes actions that occur over many images.

In [9], an architecture is presented to bridge the modal-

ity gap existent between textual and visual features. Each

modality is represented separately by a ResNet50 [12]

branch for visual features and by BERT for language fea-

tures. This network is trained jointly and minimizes the dis-

tance between the modality-specific embeddings.

The previously described model achieves moderate suc-

cess in producing discriminative cross-modal features.

However, it does not explicitly learn identifying informa-

tion such as color or vehicle type. Instead, this is learned

intrinsically by minimizing the distance between the textual

and visual embeddings. To yield better features, we propose

to leverage additional attributes present in the text corpus as

well as deploying a multi-task network that attempts to re-

duce the modality gap.

3. Natural Language attribute pre-processing

The proposed approach primarily consists of two parts.

In the first part, additional labels are generated using a semi-

automated method. The second part comprises an encoder-

decoder architecture with cycle consistent inter/intra-modal

losses as the objective regularization function.

One of the key components of our work is the extraction

of identifying features from textual data and their exploita-

tion during training. We extract simple labels, specifically

color and vehicle type, in a semi-automated manner from

the textual descriptions of the tracks. This is motivated by

the sentence structure presented by the annotations and the

frequency of specific words in the dataset.

As a preliminary step, each sentence in the training

dataset is split into words. They are converted into lower-

case, while stopwords are removed. Lemmatization is done

to avoid counting conjugations and plural forms as different

words. Afterward, we calculate the frequency of the re-

maining words across the training corpus. Figure 2 depicts

the frequency of the extracted attributes in the corpus after

preliminary processing. From these pre-processed words,

we extract additional attributes by comparing the words in

each textual description against a collection of words for

either color or vehicle type. This results in 18 colors and

15 car types. Needless to say, a consensus is not always

present in the annotations. Due to variations in illumina-

tion, certain colors can be confused with one another. For

example, one annotator may consider a car to be gray while

another may assess it as silver. To facilitate attribute extrac-

tion, we produce a multi-label attribute. Each image track is

accompanied by two binary vectors lc, and lt for color and
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Figure 3: Overview of the TIED architecture. The input image is supplied to the image encoder to produce image-level

embeddings. Similarly, the input sentence (at the right) is fed to the BERT encoder to obtain language-level embeddings.

Both of the generated embeddings are fed to the BERT decoder to map back to the input language inputs. During test time,

the embeddings after BNNeck are extracted across the entire database, and similarity is computed to obtain the top tracks.

Each color represents different tracks.

type, respectively. If a word relating to either of these at-

tributes is present in the textual descriptions, its correspond-

ing position is set to unity. Therefore, in the aforementioned

case of conflicting descriptions, the car is both silver and

gray. Additionally, when extracting these attributes, sen-

tences are split into parts using common connective words

(‘follow’, ‘behind’, ‘before’, ‘after’), and only the first part

is used. This is done to avoid introducing features from

vehicles not associated with the track being analyzed, but

present in part of the frames.

4. Text-to-Image Encoder-Decoder

The text-to-image encoder-decoder model consists of

two parts, an image encoder to extract visual embeddings

and a language encoder to extract textual embeddings. A

decoder model that jointly models the visual and textual em-

beddings that reconstructs the input text.

4.1. Model

As both input modalities are different, this requires

both to be mapped to a common latent space. Let I =

{c1, c2, c3, ..., cn}, be the set of image crops from a video

clip, and Q = {q1, q2, q3, ..., qn} its corresponding language

queries. Our goal is to learn a common latent space between

two different modalities X and Y. Given an image model F

and a language model G, the objective is to learn a mapping

F: X → L and G: Y → L, where X denotes the image modal-

ity, Y is the language modality and L is the latent space.

Image Model. To generate the image-level embeddings,

ResNet50-IBN-a is pretrained on ImageNet and utilized as

the image-level model. Each crop ci is fed to the image

model, and the output from the last block is pooled to pro-

duce a 2,048-sized embedding. This is followed by a fully

connected layer (FC layer) to produce a 768-dimensional

embedding output. Finally, a BNNeck [25] is applied to

obtain a 512-dimensional embedding, and a classification

head (FC layer) is utilized to produce the label predictions.

Language Model. For the language model, a pretrained

BERT with encoder-decoder architecture is utilized. This

consists of a contextual embedding model that encodes the

textual descriptions associated with each query. Its purpose

is to produce highly descriptive representations from the



text inputs. The encoder-decoder architecture is typically

used for sequence-to-sequence modeling tasks [24, 20],

such as language translation, image captioning, etc. For

the BERT model, we use word piece tokenization as in [5].

For generating the text embeddings, the text inputs are fed

through the BERT encoder. The resulting outputs are av-

eraged and are supplied to a BNNeck to minimize both

multi-label classification (attribute) loss and embedding dis-

tances. Additionally, the proposed architecture also uses a

BERT decoder to reduce the cross-modal distance between

the textual and image embeddings. The decoder attempts

to predict the sentence tokens based on the original input,

as well as the embeddings generated through the image en-

coder. Figure 3 depicts the overview of the TIED architec-

ture.

Joint Decoder. Because the mapping from the input

modality space to the latent space is ill-posed, an inverse

mapping from the latent space to the language modality is

added. The inverse mapping can be formulated as

Gd(F (ci), Ge(qi)) ≈ qi, (1)

where crop ci ∈ I and qi ∈ Q. The function F is the im-

age encoder, Ge is BERT encoder and Gd is BERT decoder.

The BERT decoder jointly optimizes the image and text em-

beddings by reconstructing the input tokens. In essence, the

BERT decoder acts as a regularization, performing cycle-

consistent learning conjointly. Note that our network can

be seen as the input textual embedding being conditioned

by an image embedding and a textual sequence-to-sequence

model. The conditioned mapping is specified by the expres-

sion F ◦Gd: X → Y and the sequence-to-sequence mapping

by Ge ◦ Gd: Y → Y. The operator ‘◦’ denotes the function

composition. Both F and Ge map to a latent representation

that is used during retrieval.

4.2. Training objective

For training the network, several different objectives are

utilized, mapping intra/inter-modal relationships. Multi-

label classification losses are applied to preserve the vi-

sual and textual cues. For attribute classification, we apply

cross-entropy loss across both vehicle color and type. The

attribute loss is given as

Lattr =

N∑

i

ti · log(yi), (2)

where yi is the predicted label probability of the attribute i

and ti is the target label. The attribute loss is applied across

both the language as well as the image modalities. To model

both inter-modal and intra-modal relations, we employ the

triplet loss function, which is given as

Ltriplet(a, p, n) =
∑

a,p,n

max[Da,p −Da,n +m, 0], (3)

where Da,p is the distance between anchor (a) and positive

sample (p), and Da,n is the distance between anchor and

negative sample (n). The triplet margin is denoted as m.

Depending on the inter/intra-modal loss, the anchor, pos-

itive, and the negative sample can be an image crop or a text

query. Both the inter-modal Linter and intra-modal loss Lintra

are defined as

Linter = λ1Ltriplet(aq, pc, nc) + λ2Ltriplet(ac, pq, nq), (4)

Lintra = λ3Ltriplet(aq, pq, nq) + λ4Ltriplet(ac, pc, nc), (5)

where aq, pq, nq , and ac, pc, nc are the anchor, positive and

negative samples for the query and image crops, respec-

tively. The Linter minimizes the distance across the image

and text modalities, whereas the Lintra minimizes the dis-

tances between each modality itself. The inter-modal loss

minimizes the distance from the text descriptions to the im-

ages and vice-versa, generating a rich representation in la-

tent space. The final objective function models the relation

within a modality as well as against others. Therefore, the

final training objective is given as

Ltotal = Lintra + Linter + λ5Lattr + λ6Lcycle, (6)

where Lcycle predicts the input tokens that are supplied

to the BERT encoder, utilizing both image and language

embeddings. The coefficients λ1, ..., λ6 are the weights as-

signed to each of the losses. Section 5.3 compares each of

the losses independently, including Lintra, Linter and Lattr.

We show that each loss function plays a vital role in im-

proving the retrieval performance.

5. Experiments

5.1. Dataset and evaluation metrics

In this work, we use the CityFlow-NL [9] dataset. This

is a multi-camera multi-track vehicle dataset composed of

2498 training and 530 test tracks. Each of those is com-

posed of a variable number of frames, averaging roughly

75 frames per track. Three natural language descriptions of

the vehicle and the maneuver (‘goes straight’, ‘turns right’)

accompany the tracks. We produce a validation set from

the original by selecting 500 tracks. We report on the Re-

call@N (R@N) and Mean Reciprocal Rank (MRR), defined

as

MRR =
1

N

N∑

i=1

1

ri
, (7)

where N is the number of queries and ri is the rank of the

first relevant element in the database.

5.2. Implementation details

Our TIED architecture is composed of a BERT [5]

encoder-decoder for processing natural language and a



Attribute
Intra-

modal

Inter-

modal
MRR R@5 R@10

Encoder Model

✓ 1.2 0.0 1.4

✓ 1.5 0.0 2.8

✓ 24.2 39.4 55.8

✓ ✓ 32.4 51.0 68.0

✓ ✓ 32.1 51.4 68.8

✓ ✓ ✓ 33.4 49.2 68.0

TIED Model

✓ ✓ ✓ 31.9 47.4 65.4

Table 1: Performance of each of the losses and their combi-

nations on the encoder-based and TIED models. The listed

results are reported on the validation set.

ResNet50-IBN-a [27] backbone for the visual inputs. The

branches are trained jointly using Stochastic Gradient De-

scent with a learning rate of 2×10−4 and decays by an order

of magnitude after a fixed number of epochs. The model is

trained for 250 epochs. For the intra-/inter-modal losses,

the triplet margin is set to 1.2, and batch hard sampling [13]

is employed for mining the triplets. For each mini-batch,

4 frames from 8 different tracks are sampled. The coef-

ficient of the attribute classification, intra/inter-modal and

the cycle losses are set to λ1 = 2, λ2 = 2, λ3 = 1, λ4 =
1, λ5 = 2, λ6 = 1 . These values are selected empirically.

The input images are resized to 224 × 224 pixels and are

augmented with horizontal flips and color jitter.

At test time, 512-dimension descriptors are extracted and

are L2 normalized. The query-to-track distances are com-

puted per frame and averaged as in [9]. The final embed-

dings are computed after ensembling four identical models,

trained with a learning-rate decay threshold of 50, 50, 60,

and 70 epochs, respectively. The experiments are conducted

on a GTX 1080Ti GPU using PyTorch.

Attribute
Intra-

modal

Inter-

modal
MRR R@5 R@10

Encoder Model

✓ ✓ ✓ 14.5 22.6 36.6

TIED Model

✓ ✓ 15.5 22.8 40.0

✓ ✓ ✓ 15.0 21.9 37.7

Table 2: Performance of the proposed encoder-based and

TIED models on the test set. The addition of intra-modal

losses is detrimental on the overall test set.

5.3. Ablation studies

We conduct ablation experiments to study the impact

of the several losses applied for training. For the ablation

experiments, the TIED model without the decoder is con-

sidered. Table 1 summarizes the performance with MRR,

R@5, and R@10. By applying attribute or intra-modal

losses only, it is evident that the model has poor perfor-

mance. This is because each query is assigned non-unique

attributes. Essentially, this means that each attribute is as-

sociated with several queries. Similarly, the intra-modal

loss only minimizes the distance within the same modal-

ity, which fails to learn the similarity between the image

and language inputs. Only the inter-modal loss offers good

performance independently since it exploits the relation be-

tween both image and language modality.

When combining either intra-modal losses with inter-

modal or attribute losses, the performance improves by 8%

MRR. The attribute loss further separates each language and

image modality in feature space, thereby improving perfor-

mance when combined with the inter-modal loss. Similarly,

the addition of intra-modal losses regularizes the features

by separating features within the same modality. By com-

bining all the three losses, the performance improves on our

validation set to reach an MRR of 33.4.

The results with cycle loss are provided when the TIED

model is applied. On our validation set of 500 queries, it

lowers performance. However, our submission on the test

set shows that the addition of the decoder improves the per-

formance. Although the intra-modal loss is beneficial on the

validation set, the results on the private test set show that it

was not helpful. The results on the private test set are shown

in Table 2.

5.4. Results on the 2021 AI City Challenge

The proposed method is employed to generate retrieval

rankings on the test set. The results are submitted to the

NL-based Vehicle Retrieval track of the 2021 AI City Chal-

lenge. The top positions and our results are summarized in

Table 3. We have obtained an MRR of 15.48 without using

any additional data. This is a significant improvement over

the baseline MRR of 2.69. Compared to the top teams, our

performance has only a difference of less than 0.65 MRR to

the teams from position two until six. A visual comparison

of the retrieval results between the baseline model and our

best model is depicted in Figure 4.

6. Discussion

During the competition, we have conducted experiments

with several models that are potentially effective at the text-

to-image retrieval task. Our submissions suggest that there

1Accessed April 11, 2021: https://eval.aicitychallenge.

org/aicity2021/submission/leaderboard.



(a) Queries: “A green go to the straight.”, “A green van runs on the street.”, “A green wagon crossing the intersection.”

(b) Queries: “White mini cooper.”, “Mini cooper keep straight on the road.”, “A white hatchback goes straight at the street followed by

another white vehicle.”

(c) Queries: “A white SUV drives towards the intersection.”, “A white SUV runs down the street.”, “A white SUV runs down the street.”

(d) Queries: “A red SUV drives up a hill in the left lane.”, “A red SUV runs across an intersection.”, “A dark-red SUV is going straight.”

Figure 4: Retrieval results for the baseline [9] model (top rows) and our best-performing model (bottom rows).

are methods that performed well on our validation set, but

are not effective on the 50% test set. At the same time, some

methods perform poorly on the validation set but not on the

private test set. We discuss this aspect briefly here so that

it can benefit future versions of the challenge. In our ex-

periments, CLIP [29] and label smoothing perform poorly

on the validation set as well as the 50% test set. However,

both methods offer good performance on the overall test set.

We have also experimented with multi-head models as well

as video-based models. Both models offer high R@10 per-

formance with a lower MRR on the full test set. Generally

in our case, we attribute the differences in performance due

to overfitting on the validation set. The additional models

from our work will also be made publicly available.

7. Conclusion

In this paper, we propose TIED, a text-to-image encoder-

decoder model that leverages both language and visual in-

puts to improve text-to-vehicle retrieval. The proposed



Rank Team name MRR

1 Alibaba-UTS 18.69

2 TimeLab 16.13

3 SBUK 15.94

7 VCA (ours) 15.48

Baseline [9] 2.69

Table 3: Final ranking1of the top teams and our results for

the NL-based Vehicle Retrieval track of the 2021 AI City

Challenge. The MRR is reported on the private test set.

method maps both inputs to latent spaces and utilizes the

joint information of visual and textual embeddings to re-

construct the text queries. The TIED model is trained with

a combination of intra/inter-modal losses as well as the at-

tribute and cycle-consistent losses to improve performance.

The inter-modal loss enforces the embeddings from the dif-

ferent modalities to a common multi-modal feature space,

as validated from the experiments. We have also performed

ablation experiments to study the impact of each compo-

nent of the final objective function. Finally, the proposed

system yields comparable performance to the top runner-up

positions in the 2021 NVIDIA AI City Challenge, achiev-

ing the 7th position in the Natural Language-Based Vehicle

Retrieval public track.
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