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Abstract

Multi-target multi-camera (MTMC) tracking is one of the

important fields in computer vision, where multiple objects

are tracked across multiple cameras. MTMC tracking can

be applied to various tasks such as crowd analysis, city-

scale traffic management, and transportation systems anal-

ysis for intelligent city planning. However, it is challeng-

ing due to the large variety of conditions of each camera,

such as perspective and illumination. Furthermore, MTMC

tracking for vehicles is more problematic because of the rel-

atively large inter-class similarity and intra-class variabil-

ity. In this paper, we tackle the MTMC tracking problem

for vehicles by dividing it into three main steps: (i) vehi-

cle detection and feature extraction, (ii) multi-target single-

camera tracking using the appearance feature of each ve-

hicle, and (iii) multi-camera association of local trajecto-

ries from each camera. Our method shows comparable re-

sults with other highly-ranked methods in AI City Challenge

2021 and outperforms a recent MTMC tracking method that

ranked first place in AI City Challenge 2020.

1. Introduction

Multi-target multi-camera (MTMC) tracking aims to

track multiple objects of interest across multiple cameras.

It has various range of applications such as crowd analysis

[5, 16] and city-scale traffic management [18]. In particu-

lar, for city-scale traffic management [18], MTMC tracking

can be used for city-scale vehicle tracking, which can play

a critical role in traffic analysis and management. MTMC

tracking is a difficult problem since the perspective, illumi-

nation, and video quality of each camera can largely vary, as

shown in Figure 1. Also, they often do not share any over-

lapping areas. It means that even for the same object, its ap-

pearance can be widely different for each camera. Further-

more, vehicle tracking is even more problematic because

*Both authors contributed equally to this work.

Figure 1. Multi-target multi-camera tracking aims to track multi-

ple objects in multiple cameras. The appearance largely varies due

to the different conditions, such as perspective, viewpoint, illumi-

nation, and video quality, of each camera. It is particularly more

difficult for vehicle tracking because of their large inter-class sim-

ilarity and intra-class variability.

vehicles tend to have relatively large inter-class similarity

and intra-class variability [3].

Most methods divide the problem into the following

sub-problems: object detection, multi-target single-camera

tracking, and connecting the local trajectories through the

cameras using appearance features and spatial-temporal in-

formation [5, 16]. As illustrated in Figure 2, our method

also follows a similar pipeline. From Mask R-CNN [4] de-

tection results, we extract appearance features. Then we

measure the similarity between the detected objects based

on the extracted features and associate the detected boxes

in the same identity and form trajectories through the Hun-
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Figure 2. The overall pipeline of our MTMC tracking model.
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Figure 3. Structure of the Mask R-CNN [4] network.

garian algorithm [12]. Finally, we connect the trajectories

across the cameras with the Hungarian algorithm [12] and

their pairwise similarity calculated with the appearance fea-

tures.

2. Related Works

2.1. Object Detection

Object detection is one of the classic and fundamental

computer vision tasks, which aims to detect objects in im-

ages and videos. More precisely, given an input image, ob-

ject detection aims to produce bounding boxes and classify

each object. Two-stage methods, which handle region pro-

posal and classification separately, have been proposed to

deal with both localization and classification. For example,

Mask R-CNN [4] employs Region Proposal Network (RPN)

and an additional regressor to suggest bounding boxes, and

it classifies the objects inside the proposals. On the other

hand, one-stage detectors such as YOLO [14], SSD [9], and

RetinaNet [8] handle two tasks simultaneously through a

single model, making them much simpler and faster than

other two-stage detectors.

2.2. Multi­Target Single­Camera Tracking

Multi-target single-camera (MTSC) Tracking, also

known as multi-object tracking (MOT), aims to estimate

objects’ trajectories across the frames in each video. Most

of the methods follow the tracking-by-detection paradigm,

which divides MOT into two separate tasks. First, it detects

objects independently for each frame. Then, the detected

instances of the same identity are linked to create a single

trajectory. In this paradigm, most methods mainly focus on

association problems. For example, Xu et al. [21] have pre-

sented Spatial-Temporal Relation Networks to estimate the

similarity scores between existing trajectories and objects

in the frame, and they have applied the Hungarian algo-

rithm [12] to match the bipartite graph constructed by the

similarity scores.

More recently, Bergmann et al. [1] have suggested a

single-stage multi-object tracker named Tracktor. It ex-

ploits a bounding box regressor of Faster-RCNN [15] to

find bounding boxes of objects in the current frame from

their bounding boxes in the previous frame. Other methods

like Retina-Track [10], JDE [19], and FairMOT [22] are

also recently proposed single-stage trackers, which detect

objects and extract their appearance features at once. They

have adopted various detectors and association algorithms

to connect the detected objects using the extracted features

and other spatial-temporal information such as distance and

intersection over union (IoU).

2.3. Multi­Target Multi­Camera Tracking

Most methods attempt to solve MTMC tracking with

the following pipeline: generating the trajectories of de-



Figure 4. Example detection results with Mask R-CNN [4]. As shown in these examples, very small vehicles are also detected and

sometimes more than one box is predicted for a single object.

(a) Pre-process 1 (b) Pre-process 2

Figure 5. There are two pre-processing steps to refine the detection results: (a) we discard object bounding boxes with an objective score

lower than 0.2 or size smaller than 660 pixels; (b) If there are two bounding boxes with IoU greater than 0.5, they are regarded as duplicated

boxes for the same object, and the box with the lower objectiveness score is discarded.

tected objects for each camera, then connecting those tra-

jectories across multiple cameras to infer complete trajecto-

ries. For example, Ristani and Tomasi [16] have proposed

the MTMC tracking method that uses adaptive weighted

triplet loss to train a feature extraction network and cor-

relation clustering to match the trajectories. Similarly, He

et al. [5] have modified the trajectory matching problem

to the tracklet-to-target assignment problem and used the

Restricted Non-negative Matrix Factorization algorithm to

solve the problem. For MTMC tracking on vehicles, the

CityFlow dataset [18] has provided an important bench-

mark from city-scale traffic cameras. Facilitated by public

datasets and challenges, Hsu et al. [6] and Qian et al. [13]

have shown developments to track each vehicle on multi-

camera.

3. Method

Our proposed framework is composed of three main

steps: (i) detection and feature extraction, (ii) multi-target

single-camera tracking, and (iii) multi-target multi-camera

tracking. We explain each of the steps in detail in the fol-

lowing sections.

3.1. Detection

Our method follows the tracking-by-detection paradigm,

similar to other state-of-the-art multi-target single camera

(MTSC) tracking methods. To detect vehicles and find their

bounding boxes, we use Mask R-CNN [4], a well-known

object detection method illustrated in Figure 3. From its de-

tection results shown in Figure 4, we pre-process before we

apply our multi-target single-camera algorithm as shown in

Figure 5. First, we delete detected boxes with an objective-

ness score lower than 0.2 an area smaller than 660 pixels.
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Figure 6. Each detected object embeds to appearance features of the 2048 dimension. With triplet loss, the feature distances between the

same objects are minimized, and the distances between different objects are maximized. Also, the features are classified into corresponding

object identities after the dropout, batch normalization, and fully connected layer.

Besides, we apply an inter-class non-maximum suppression

(NMS) for each frame, which sorts the detection results in

descending order with their objectiveness score and delete

the detection box of the lowest score until boxes with IoU

greater than 0.5 does not exist.

3.2. Feature Extractor

After detecting the vehicles, a feature extractor is re-

quired to extract an appearance feature for each detected

object. These features are used during the association pro-

cess of MTSC and MTMC tracking by comparing their pair-

wise feature distance. For the feature extractor, we adopts

ResNeXt-50 [20] as the backbone network and attach the

dropout [17], batch normalization [7], and fully connected

layer similar to BNNeck [11], as shown in Figure 6. The

ResNext-50 [20] network of our feature extractor is ini-

tialized using ImageNet [2] pre-trained weight. We train

the extractor using SGD with Nesterov momentum for 20

epochs after five epochs of warm-up. In the warm-up stage,

the learning rate started at 0.002 and increased by 0.002 for

each epoch. Then, the learning rate started at 0.01 and mul-

tiplied by 0.1 at 10 and 15 epochs. Every input patch is re-

sized as 320x320 using the letterbox algorithm to maintain

the aspect ratio of objects, which is important appearance

information for vehicles. During the training, we augment

the data by applying random horizontal flip, random color

jittering. Also, we generate input patches from randomly

adjusted ground truth boxes of objects, since the detection

boxes used in the testing process are often bounded with a

noisy margin. In particular, the width and height of ground

truth boxes are randomly resized in a ratio of 0.8 to 2 and

0.8 to 1.2, respectively.

3.3. Multi­Target Single­Camera Tracking

To perform multi-target single-camera tracking, we con-

nect trajectories tracked until frame T − 1 and detected

bounding boxes from frame T by comparing their appear-

ance. We first calculate pairwise Euclidean distance be-

tween extracted appearance features of the last object boxes

of the trajectories and newly detected boxes at frame T .

Then, we apply the Hungarian algorithm and connect the

trajectories with the boxes only if the feature distance is

less than a threshold ψmtsc and their IoU is greater than

0.25. Note that we estimate the bounding box of the ob-

ject at frame T for each trajectory by the Kalman filter and

calculate the IoU between the newly detected boxes with

the estimated box. We also connect the trajectories with

the remaining bounding boxes if IoU between the estimated

boxes and detected boxes is greater than 0.5.

If some boxes are not connected, we try to connect them

with trajectories disconnected during the previous tracking

process. This time, we also calculate pairwise Euclidean

distances and connect them based on the Hungarian algo-

rithm in a similar way. Boxes that still remained are then

considered as newly starting trajectories. We finish to track

the disconnected trajectories if they are not re-connected for

more than ten frames, their estimated object position after

three frames is out of the image, or their estimated box res-

olution after three frames is less than 660 pixels. Also, we

delete disconnected trajectories if they were tracked in less

than three frames. Finally, we update states of the not fin-

ished but still disconnected trajectories with the estimated

object boxes at frame T .

After the tracking, we apply several more post-

processing steps shown in Figure 7. First, we delete tra-

jectories tracked in less than five frames. Then we clas-

sify whether this trajectory is stationary or not by com-

paring the IoU of its first object box and its last object



Figure 7. Post-processing is applied to remove trajectories that do not move. Stationary trajectories may track inappropriate objects, such

as a traffic sign (left) or a parked vehicle (right). We remove the trajectory if its first and last box’s IoU is greater than 0.5.

Figure 8. Camera locations of S06, which is for the test.

box. We compare the appearance feature of the station-

ary trajectories and connect them through the Hungarian al-

gorithm if their feature distance is less than the threshold

ψmtsc, the frame number difference is less than 100, and

IoU is more than 0.5. Similarly, we re-connect stationary-

moving, moving-stationary, and moving-moving trajectory

pairs step-by-step. After that, we delete trajectories, which

are still stationary. The next step of post-processing is find-

ing previous and later object boxes with the Kalman filter

for each trajectory and comparing their appearance feature

with the trajectory. If their distance is less than the threshold

ψmtsc, we append the newly find boxes to the trajectory and

lengthen the trajectory. Finally, we only select and leave the

trajectories, which pass through the roads connected to the

other cameras.

3.4. Multi­Target Multi­Camera Tracking

Since the test scene does not include any overlapping ar-

eas and connected in order with a single highway, as shown

in Figure 8, we match the trajectories from camera 41 to

46 one-by-one. First, we select five boxes with a top-5 ob-

jectiveness score for each trajectory and calculate pairwise

euclidean feature distance and take the minimum value as

the distance between two trajectories. Then we match them

through the Hungarian algorithm if their distance value is

less than a threshold ψmtmc. During the matching, we also



Detector IDF1 IDP IDR Precision Recall

DLA-34 0.5311 0.5284 0.5339 0.6387 0.6455

Mask R-CNN 0.5452 0.5736 0.5195 0.7112 0.6441

Table 1. Quantitative results of our proposed method with different

detectors, DLA-34 [22] and Mask R-CNN [4].

care about the direction of the vehicles, whether it goes to

the next camera or previous camera, and the minimum time

difference, which represents the minimum time that must

require to show up on the adjacent camera after passing the

current camera. The minimum time difference is calculated

based on the physical distance between the trajectories. If

some trajectories are not matched, we stop to match that

trajectory with trajectories from other cameras.

The threshold ψmtsc and ψmtmc are calculated using the

validation data. We first generate image patches for each

object with randomly adjusted ground truth boxes and ex-

tract their features. Then we randomly sample 25,000 ob-

ject pairs for each case: the same camera and same identity,

the same camera and different identity, the different cam-

era and same identity, and the different camera and different

identity. After that, we calculate the feature distance of each

pair and select the threshold value that best distinguishes

whether it is the same identity or different identity within

the same camera and the threshold value that best distin-

guishes whether the identity is the same or different identity

in different cameras. In this paper, ψmtsc and ψmtmc are set

as 0.837 and 1.175, respectively.

4. Experiments

4.1. Dataset

We used the CityFlow benchmark [18] for our experi-

ments. The dataset includes videos collected from 46 cam-

eras across 16 intersections in a U.S. city. The whole

videos are 215.03 minutes long and divided into six sce-

narios, three for training, two for validation, and one for

testing. The dataset contains 313931 bounding boxes with

880 unique vehicle IDs, where only the vehicles featured

on more than one camera are annotated. Each video has a

resolution of at least 960p, and most of the videos have a

frame rate of 10 FPS.

4.2. Quantitative Results

We have tested our algorithm with two different detec-

tors, Mask R-CNN [4] and the advanced version of DLA-34

[22]. As shown in Table 1, using Mask R-CNN [4] shows

better performance than using DLA-34 [22]. With this re-

sult, we have participated in AI City Challenge 2021 Track

3: City-Scale Multi-Camera Vehicle Tracking, where par-

ticipants are expected to design an MTMC vehicle track-

ing algorithm that tracks vehicles across multiple cameras

Rank Team ID IDF1 Rank Team ID IDF1

1 75 0.8095 11 3 0.2974

2 29 0.7787 12 45 0.2908

3 7 0.7651 13 110 0.2568

4 85 0.6910 14 60 0.2526

5 42 0.6238 15 82 0.2285

6 27 0.5763 16 67 0.2038

7 15 0.5654 17 11 0.1924

8 48 0.5534 18 123 0.1343

9 79 0.5458 19 61 0.1157

10 112 (Ours) 0.5452 20 129 0.0558

Table 2. AI City Challenge 2021 Track 3 results.

Rank Team ID IDF1 Rank Team ID IDF1

- Ours 0.5452 4 111 0.3411

1 92 0.4616 5 72 0.1245

2 11 0.4400 6 75 0.0620

3 63 0.3483 7 30 0.0452

Table 3. Our result compared to AI City Challenge 2020 Track 3

methods.

in different intersections across a city. Table 2 shows the

leaderboard. Our team has made top-10 IDF1 score of

0.5452 among the total of 20 teams. Note that team #3

ranked 11th shows a 0.2974 IDF1 score, which is signifi-

cantly lower than our result. Also, our method shows com-

parable performance with the result of team #27 ranked

sixth. We further have compared with AI City Challenge

2020 Track 3 in Table 3. It shows much more advanced

performance than the other top-ranked methods.

4.3. Qualitative Results

In Figure 9, we show four example vehicles tracked

across the six cameras in the test scene. Green boxes de-

note true positive results where each vehicle ID is accurately

predicted. Red boxes denote false-negative results where a

wrong ID is assigned to the vehicle. Crossed-out boxes in-

dicate that the vehicle does not appear in the corresponding

camera. As shown in Figure 1, vehicles #280 and #419 are

accurately tracked across multiple cameras. Vehicles #282

and #443 are sometimes assigned wrong IDs due to differ-

ent perspectives and illumination of the cameras.

5. Conclusion

Multi-target multi-camera vehicle tracking is an essen-

tial step towards intelligent city-scale traffic management.

In this paper, we proposed an efficient MTMC method for

vehicle tracking with the following pipeline. First, the ap-

pearance feature of each vehicle is extracted for each detec-

tion bounding box predicted by Mask R-CNN [4]. Second,



Cam 

#41

Vehicle #280 Vehicle #419Vehicle #282 Vehicle #443

Cam 

#42

Cam 

#43

Cam 

#44

Cam 

#45

Cam 

#46

280

280

280

280

122

282

282

301

419

419

419

419

419

443

443

445
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assigned to the vehicle are marked with a red box with the incorrect ID at the top.



trajectories are generated for each vehicle in the same cam-

era by association through feature-based similarity match-

ing followed by the Hungarian algorithm. Lastly, the tra-

jectories are associated across multiple cameras using their

pairwise similarity calculated with appearance features and

the Hungarian algorithm. We also designed simple pre-

processing and post-processing strategies to enhance the

performance of our MTMC tracking framework further.

Our method outperforms a recent MTMC tracking method

that ranked first place in AI City Challenge 2020 by 0.0867

in terms of IDF1.
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