
An Occlusion-aware Multi-target Multi-camera Tracking System

*Andreas Specker1,2,3 *Daniel Stadler1,2,3 Lucas Florin2,3 Jürgen Beyerer2,1,3

1Karlsruhe Institute of Technology 2Fraunhofer IOSB 3Fraunhofer Center for Machine Learning

{andreas.specker,daniel.stadler,lucas.florin,juergen.beyerer}@iosb.fraunhofer.de

Abstract

Multi-camera tracking of vehicles on a city-scale level

is a crucial task for efficient traffic monitoring. Most of

the errors made by such multi-target multi-camera track-

ing systems arise due to tracking failures or mislead-

ing visual information of detection boxes under occlu-

sion. Therefore, we propose an occlusion-aware approach

that leverages temporal information from tracks to im-

prove the single-camera tracking performance by an oc-

clusion handling strategy and additional modules to filter

false detections. For the multi-camera tracking, we discard

obstacle-occluded detection boxes by a background filter-

ing technique and boxes overlapping with other targets us-

ing the available track information to improve the quality

of extracted visual features. Furthermore, topological and

temporal constraints are incorporated to simplify the re-

identification task in the multi-camera clustering. We give

detailed insights into our method with ablative experiments

and show its competitiveness on the CityFlowV2 dataset,

where we achieve promising results ranking 4th in Track 3

of the 2021 AI City Challenge.

1. Introduction

Multi-target multi-camera tracking (MTMCT) is an im-

portant component in many applications related to trans-

portation or infrastructure, for example, traffic flow anal-

ysis or traffic signal time planning. The MTMCT task de-

mands the localization and identification of multiple targets

throughout a set of videos captured by different cameras.

MTMCT systems consist of at least two components: A

single-camera tracker that localizes all relevant objects in

each frame of a video and assigns a unique ID to every

instance, and a re-identification (re-ID) model which de-

cides whether two tracks from different cameras belong to

the same target. Both sub-tasks are especially challeng-

ing in the traffic context because of a large variance in ob-

ject appearances due to different orientations and distances

w.r.t. the camera as well as variations in the camera char-
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acteristics at distinct locations. To solve these problems,

most of the single-camera tracking (SCT) methods follow

the tracking-by-detection paradigm [2, 3, 4, 35, 37, 40, 41],

where first, a set of detections is generated for each frame

of a video independently and afterwards, the detections are

linked to tracks based on a similarity measure. That sim-

ilarity often considers visual features extracted by a re-ID

model in addition to position information. Whereas this ap-

proach works well in situations where all targets are clearly

visible, the representational ability of the extracted features

degrades under occlusion since the re-ID model can get con-

fused by overlapping nearby targets [34]. This makes track-

ing in occlusion situations very challenging.

For this reason, we aim with our SCT approach at fo-

cusing more on temporal information derivable from tracks

and object relations instead of relying on visual features. In-

spired by [34], we apply an occlusion handling strategy, that

uses the concept of occluded and occluding tracks to allow a

logic-based re-ID when an occlusion is about to end, for in-

stance, at the end of an overtaking maneuver. Furthermore,

the information of track positions is leveraged in order to

remove false detections in regions with dense object distri-

butions, where it is unlikely for new objects to appear [35].

One problem we have frequently observed for non-moving

vehicles waiting in a turning lane is that this situation is

susceptible for identity-switches (IDSWs) with bypassing

vehicles. To prevent those tracking errors, we propose ad-

ditional constraints for the matching of detections to static

tracks, which we declare based on a velocity threshold.

For the multi-camera tracking (MCT) approach, consid-

ering occlusion information is also of high importance, as

visual features extracted from occluded detection boxes are

not expressive. To cope with occlusions from static obsta-

cles, for example, traffic signs, we propose generating a

foreground mask with a background subtraction model to

filter both tracks that appear completely in the background

and discard features of track boxes with severe background

overlaps. As a result, our approach solely relies on features

of frames in which the vehicle is clearly visible. With the

same motivation, we use the overlap information available

from tracks to discard track boxes, that have overlaps with



boxes of other targets, for the feature extraction. To further

support our re-ID model in the multi-camera clustering, we

incorporate a scene model that uses the topology of the traf-

fic network and temporal constraints to inhibit impossible

matches [17].

In summary, the main contributions of our work are as

follows:

• A sophisticated MTMCT system that focuses on an

improved performance under occlusion and leverages

topological and temporal constraints is proposed.

• Besides other SCT extensions to cope with occlusions

and false detections adapted from related work, we in-

troduce a module which prevents tracking errors by

verifying detection assignments to static tracks.

• We propose to use a background subtraction method

and the overlap information from tracks to remove

boxes with misleading visual information from the fea-

ture extraction in order to enhance re-ID performance.

2. Related Work

2.1. Singlecamera Tracking

The predominant number of SCT approaches divide the

task into a detection step followed by an association step, in

which detections of the same targets are linked on the basis

of a similarity measure [2, 3, 4, 35, 37, 40, 41]. While most

methods incorporate at least position and motion informa-

tion [2, 3], some also utilize visual information extracted by

convolutional neural networks (CNNs) designed for the task

of re-ID [4, 35, 37, 40] or other cues like pose information

are used [37, 41]. While this procedure allows a high flex-

ibility and the approaches still achieve state-of-the-art per-

formance, the temporal context available in videos is mostly

ignored. In contrast, some recent methods integrate detec-

tion and tracking more tightly extending the object detector

to a tracker [1, 46], applying 3D CNNs to directly detect

tracklets [27], or using tracking results as prior knowledge

for the detection model [12, 46]. We also follow this trend

leveraging temporal information from tracks in our occlu-

sion handling strategy, an approach to filter false detections,

and the verification of assigned detections to static tracks.

2.2. Vehicle Reidentification

Although there has been research in the field of vehi-

cle re-ID in recent years, there is a more extensive litera-

ture on the related problem of person re-ID. For person re-

ID, there have been many complex approaches that aim to

exploit the particular structure of the domain, such as ag-

gregating local features [36, 45], exploiting attention mech-

anisms [8, 44], or using auxiliary high-level semantic at-

tributes [23, 33]. Similar complex concepts are exploited

for the task of vehicle re-ID as well [9, 11, 18]. How-

ever, several works [24, 43] show that state-of-the-art per-

formance can be achieved simply by learning global fea-

tures using a bag of tricks. Since global feature learning

does not rely on the specific structure of the person re-ID

problem (such as body parts), it can be easily adapted for

vehicle re-ID. This was done in [15], which achieved the

third place in the re-ID Track of the last edition of the AI

City Challenge [25]. Due to the promising results of this

work, we also rely on a global feature learning approach for

our vehicle re-ID component.

2.3. Multicamera Tracking

In general, related literature indicates that clustering ap-

proaches are well suited to tackle the task of MTMCT

[17, 20, 31, 39]. Moreover, recent works [16, 17, 20, 28]

show that the use of external information about the camera

setup is beneficial. For example, both the top two teams

of the last edition of the AI City Challenge exploited the

scene topology to prevent infeasible cross-camera transi-

tions. While in [28], only camera adjacency is used, He et

al. [16] also leverage the movement directions to determine

which camera transitions are plausible. In [17], camera-

specific zones are defined to decide which tracks can appear

in multiple cameras. Based on this, we decide to develop a

clustering approach for the multi-camera component of our

tracking system that utilizes a scene model to improve the

matching of single-camera tracks.

3. Proposed MTMCT System

3.1. Overview

Before we describe the components of our MTMCT sys-

tem in more detail, we give an overview in Fig. 1. At

each time step t, the generated detections Dt are associ-

ated with the propagated tracks T̃t, after applying a motion

model to the tracks from the previous time step Tt−1. In-

stead of directly initializing new tracks from remaining de-

tections Dr

t
, we use our occlusion handling strategy to re-

identify occluded tracks T̃ r

t
when they get visible again.

After that, we incorporate a module that removes false de-

tections in regions with dense object distributions using past

track information. Furthermore, a method to identify and

remove false detections by checking the match of detections

to non-moving vehicles, which we find to be susceptible

for IDSWs when being overtaken by other vehicles, is pro-

posed. The resulting tracks Tt are made up of active tracks

T a

t
, propagated inactive tracks T̃ i

t
, and new tracks T n

t
.

After the generation of tracks in each camera of a multi-

camera setting, the following pipeline is applied. As a pre-

processing step, a scene model is built which includes fore-

ground masks for all cameras of a sequence generated by

a background subtraction technique. After removing short
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Figure 1: Scheme of the proposed MTMCT system. Besides a sophisticated track management, the special features of our

SCT include an occlusion handling strategy and a module to remove false detections. Our MCT also includes occlusion-aware

modules to cope with overlapping tracks or detection boxes that are occluded by static obstacles like traffic signs.

tracks that are mostly clutter tracks, the foreground masks

are used to further remove irrelevant tracks from parking

vehicles or false background detections like traffic signs.

Besides the foreground masks, the scene model contains

manually defined lists of valid transitions between cameras

using topological information of the camera network and,

in addition, both lower and upper bounds for the possible

transition times of vehicles driving from one camera to an-

other one. The valid transitions allow to filter tracks which

can not appear in multiple cameras within a limited period

of time. For the remaining tracks, visual features, that are

the basis for the subsequent cross-camera clustering, are ex-

tracted by a re-ID model. In addition to the constraints com-

ing from the scene model, the overlap information of tracks

with nearby targets is considered in our multi-camera clus-

tering approach, that finally yields the multi-camera tracks.

3.2. Singlecamera Tracking

For our single-camera vehicle tracker, we follow the

tracking-by-detection paradigm. The separate treatment of

detection and subsequent association of detections to tracks

allows the usage of an arbitrary object detection model that

can be chosen dependent on the specific task. Further-

more, regarding detection and association separately pro-

vides a high flexibility in the design of the track manage-

ment which is very important for tracking in scenarios with

severe object-object occlusions as present in videos of traf-

fic cameras. Especially at intersections, where multiple ve-

hicles can overlap with each other because of the oblique

view, we identify and treat two major challenges in SCT –

unreliable visual information in occluded detection boxes

and an increased risk for false detections under occlusion.

Basic algorithm. As occluded detection boxes include

parts of nearby vehicles, an extraction of expressive visual

features is very difficult. Hence, we do not use visual fea-

tures in the assignment of detections to tracks but use only

position, size, and motion information. For that, we utilize

the Intersection over Union (IoU) as similarity measure be-

tween propagated track boxes and detection boxes, whereby

a constant velocity assumption is made to predict the posi-

tion of track boxes. In detail, the velocity vector of a track is

computed by averaging the displacements of bounding box

centers over the last n time steps. The matching problem

is solved with the Hungarian method [19] and a minimum

overlap criterion omin is applied. To allow a motion-based

re-ID after occlusion, we do not terminate tracks immedi-

ately when no detection can be assigned but keep tracks for

a maximum of i time steps as inactive. For an increased

robustness against false detections, our track management

includes a concept of track initialization. A so-called can-

didate track only turns active if a detection can be assigned

to it in m consecutive time steps, otherwise the track is

deleted. Note that active tracks are preferred both over in-

active tracks and candidate tracks in the association step.

Occlusion handling. We develop several approaches that

aim at improving the association accuracy under occlusion,



as most of the tracking errors occur in such situations. Our

first extension is an occlusion handling strategy that is in-

spired by the concept of occluded and occluding tracks in-

troduced in [34]. Whenever an active track turns inactive,

it is checked whether there exists another active track with

high overlap, i.e., larger than the non-maximum suppression

(NMS) threshold oNMS, and if this is the case, the two tracks

are considered as occlusion pair. When later, an unassigned

detection overlaps with both of the (propagated) track boxes

of an occlusion pair, the detection is matched with the oc-

cluded track. Note that the difference of the proposed occlu-

sion handling to the motion-based re-ID of the basic algo-

rithm lies in the omission of the minimum overlap criterion

omin for occlusion track pairs. With this strategy, it is possi-

ble to leverage the interaction information of occluding and

occluded vehicles to successfully re-identify vehicles even

if the similarity constraint is not fulfilled, for instance, be-

cause of an inaccurate motion estimation.

Filtering of false detections. As a second extension in our

SCT pipeline, we adopt a filtering mechanism from [35] to

suppress false detections in regions with dense object dis-

tributions. For unassigned detections, the intersection of

the detection box with the union of all track boxes is calcu-

lated. If this value exceeds the threshold omax, the detection

is deleted, arguing that it is unlikely for new objects to occur

at positions where other objects are already present.

Check of assignments to static tracks. Besides false de-

tections in crowded regions like intersections, we observe

another type of detection error that often occurs when a ve-

hicle bypasses a non-moving vehicle waiting in a turning

lane. Instead of providing two correct detections, the object

detector sometimes generates one detection that covers both

vehicles which in turn can cause IDSWs. To avoid this, we

propose a new module that checks the assignments of de-

tections to static tracks. We term a track static if its nor-

malized velocity w.r.t. the track size falls below a threshold

vstatic for m consecutive time steps. While a track is deemed

static, we add two further constraints for assigning a de-

tection to it. The relation of the aspect ratio of the detection

box w.r.t. the track box must not exceed amax and the ratio of

box sizes must not exceed smax, arguing that the dimensions

of non-moving vehicles can not change on images of static

cameras. With these additional constraints, we are able to

identify and remove false detections that would erroneously

be assigned to static tracks and potentially cause IDSWs.

Tracking backwards. As last extension, we take over the

tracking in both temporal directions from [34]. By running

our tracker on the videos one time in the forward direction,

one time in the backward direction, and applying a post-

processing merging mechanism of the two generated sets of

tracks, the overall performance can be further improved.

3.3. Vehicle Reidentification

For the task of vehicle re-ID, we rely on a global fea-

ture learning model similar to [15]. In detail, we employ

the ResNet-101 architecture [14] with IBN-A bottlenecks

[26] followed by a batch normalization layer, and a fully

connected identity classification layer. Furthermore, we re-

move the last downsampling operation by setting the stride

parameter of the last convolutional layer to 1 [36]. The spa-

tial resolution of the resulting feature map increases and,

thus, the features represent more fine-grained information,

which is especially important if vehicles are small. Analo-

gous to many other works, our networks are trained using a

combination of the triplet and the identity loss function.

To further enhance the accuracy, we use an ensemble of

multiple re-ID networks. The use of an ensemble is only

beneficial if the models provide complementary informa-

tion. To achieve this, we use varying data augmentation

methods or make small adjustments to the network archi-

tecture. In detail, we train one network with random rota-

tion data augmentation (RR) and one with generalized mean

(GeM) pooling [43] in addition to the baseline approach.

RR pre-processes images by rotating them with a probabil-

ity of 30%. The rotation angle is randomly chosen between

0 and 30 degrees, either clockwise or counter-clockwise.

GeM pooling for re-ID tasks was proposed because stan-

dard global pooling methods such as maximum or average

pooling are not well suited to capture discriminative fea-

tures. On the one hand, average pooling is beneficial be-

cause it tends to focus on the whole visual appearance of

a vehicle but on the other hand, fine-grained local informa-

tion is necessary for distinguishing between cars of the same

make and model which look almost the same. GeM pooling

handles this problem by a learnable parameter which bal-

ances the trade-off between both pooling operations. We

therefore replace the global average pooling layer by the

GeM pooling operation in our experiments.

Similar to [15], we adopt a two-stage training strategy.

In the first stage, we pre-train the models using a mix of

real-world and simulated data from the VehicleX dataset

[42]. Subsequently, we fine-tune the models solely based

on real-world data. During the fine-tuning step, we use

images from the test set with pseudo labels in addition to

the training data. We generate these pseudo labels by using

our pre-trained models for feature extraction and conduct-

ing our MCT clustering approach (see Section 3.4) for the

first 250 iterations. Afterwards, we assign a separate la-

bel to each of the clustered multi-camera tracks and use the

detections of every 10th frame as training images. Since

our clustering approach focuses on the most visually sim-

ilar tracklets, the assumption can be made that merges of

single-camera tracklets are correct during early iterations.

As a result, meaningful pseudo labels are obtained.



3.4. Multicamera Clustering

In this section, we describe our MCT pipeline, which in-

corporates the re-ID component described in Section 3.3. In

general, our approach consists of a filtering step, followed

by a hierarchical clustering which is based on the vehicle

re-ID, and constraints derived from a scene model. In the

following, these components are thoroughly introduced.

Scene model. Our scene model is inspired by [17], where

zones are defined for every camera in order to assign each

track a trajectory that is used as prior knowledge, in which

camera the vehicle can appear next. Furthermore, temporal

constraints are applied to inhibit impossible assignments.

For a detailed description of the adopted camera link mod-

els, refer to [17]. In addition, we propose to incorporate

foreground masks, that are used to filter background detec-

tions (see next section), into our scene model. Another dif-

ference to [17] is that we allow assigning tracks which have

only one valid start or end zone so that also track fragments

which lie in a valid start or end zone can be merged.

Filtering. Before clustering, we filter irrelevant tracks, i.e.,

emerged from parking vehicles or false detections, to re-

duce the risk for incorrectly merging tracks across multi-

ple cameras while at the same time lowering the compu-

tational effort required for the clustering step. A total of

three filter methods are applied – background filtering, re-

moval of short tracks, and filtering of tracks that can not

appear in another camera. Background filtering aims at

removing false positive tracks. This is particularly impor-

tant as we follow [32], which has shown that it is bene-

ficial to focus on a high recall in the detection phase to

avoid the risk for missing meaningful detections and sub-

sequently filter the detections. But in contrast to this work,

we propose to filter complete tracks instead of single de-

tections. Examples of such false positives are parked vehi-

cles or traffic signs misclassified as vehicles by the detec-

tion model. Both types of errors have in common that their

position and pixel values do not change much during the

video. Thus, we propose to filter the aforementioned false

positives by leveraging the MOG2 foreground-background

segmentation method [47, 48]. Foreground masks are com-

puted separately for each camera view by feeding all frames

to the background subtraction model, assigning the maxi-

mum foreground value to each pixel, and subsequently per-

forming morphological opening to reduce noise. Finally,

the tracks whose bounding boxes overlap with the fore-

ground by less than 90% are removed. Moreover, we do not

consider single-camera tracks with less than 10 detections.

Such tracks mainly consist of false detections or only rep-

resent a small track fragment emerged, for example, from

an IDSW. At last, we filter tracks that can not appear in an-

other camera due to topological or time constraints with our

scene model because only tracks occurring in multiple cam-

eras are relevant for the MTMCT task. Vehicles that do not

appear in any of the multi-camera zones are not driving in

the direction of another camera and are therefore omitted.

Re-ID distance calculation. To determine the visual simi-

larity between two tracks, we compute the Euclidean dis-

tance between the L2-normalized mean features of the

track. However, this procedure is prone to errors since

overtaking vehicles, low resolution detections in the back-

ground, and boxes that mainly show background clutter add

noise to the features. Therefore, we propose to exclude de-

tections that overlap with the background (using foreground

masks) and detections that overlap with other vehicles (us-

ing track information) by more than 20% from the mean

feature computation. This makes the re-ID features more

expressive so that many wrong merges are avoided.

Hierarchical clustering. As the core component for merg-

ing single-camera tracks into multi-camera tracks, we em-

ploy an iterative hierarchical clustering method since works

from literature [17, 20] show promising results using such

an approach. We enhance these works by introducing addi-

tional constraints, e.g., the best match constraint (see details

below). The visually most similar tracks according to the

distance between the vehicles’ re-ID features are merged it-

eratively until the minimal distance exceeds a threshold treid.

To avoid false multi-camera merges, we formulate the fol-

lowing constraints that must be fulfilled for two tracks to be

combined – the no time overlap constraint, the valid tran-

sition constraint, the transition time constraint, and the best

match constraint. The first constraint leverages that single-

camera tracks which belong to the same vehicle can not oc-

cur in different cameras at the same time. Therefore, solely

tracks that do not overlap in time are candidates for merg-

ing. The valid transition constraint results from the zone

information of the scene model. A vehicle leaving a cam-

era view in a specific direction can only appear in a small

subset of zones in the adjacent camera. As a result, we only

cluster tracks if there is such a valid transition between the

two merge candidates. The transition time constraint lever-

ages that the travel between two cameras takes at least a

minimum and at most a maximum amount of time (based

on our scene model) since speeding and stopping are pro-

hibited. The best match constraint assumes that there must

be at least one good visual similar match between detec-

tions of two tracklets belonging to the same vehicle. We

assure this by computing the minimum distance between

all re-ID embedding pairs of merge candidates and apply-

ing a threshold tbm. In cases where the majority of track

boxes is very small, these skew the average features. This is

solved by looking at the best match distance, which is usu-

ally found between higher resolution detections. The best

match distance is applied as a constraint and is not used to

select cluster candidates because it is vulnerable to tracks

with IDSWs.



4. Experiments

4.1. Datasets

For Track 3 of the AI City Challenge 2021, the usage of

two datasets is allowed – the real-world CityFlowV2 dataset

[38] and the synthetic VehicleX dataset [42].

CityFlowV2. The CityFlowV2 dataset is the new version of

the CityFlow dataset, a benchmark for city-scale MTMCT.

It consists of a large number of high-resolution camera

feeds from different intersections in a U.S. city and covers

a variety of scenarios such as city streets, residential areas,

and highways. In the training and validation scenes, there

are multiple cameras per intersection leading to overlapping

field of views. In the test cameras, however, there is only

one camera per intersection. Therefore, the validation set

is useful to evaluate the re-ID models but it is no reliable

performance predictor for our MTMCT system on the test

scene [25]. In the challenge, the performance is evaluated

using the IDF1 score [30], which measures within-camera

tracking accuracy and cross-camera ID consistency.

VehicleX. The VehicleX dataset is a synthetic dataset for

vehicle re-ID. Each vehicle of the dataset consists of a 3D

model for which rendering parameters such as viewpoint

and lighting can be varied. These models are rendered us-

ing the Unreal Engine and pasted on background images

taken from the CityFlow dataset. Afterwards, the synthetic

images are adapted to the domain of the CityFlow dataset.

4.2. Vehicle Detection and Singlecamera Tracking

Detection model. The performance of the overall MTMCT

system heavily depends on the quality of the detections.

Since no online requirement has to be fulfilled, we build an

ensemble of four state-of-the-art object detection models, in

particular Cascade Mask R-CNN [5], HTC [6], GFL [21],

and DetectoRS [29]. Training a detector on the CityFlowV2

dataset is not straightforward because only multi-camera

vehicles are annotated, i.e., no annotation boxes are avail-

able for vehicles that only appear in a single camera. There-

fore, we use models trained on the large COCO dataset [22]

from the MMDetection toolbox [7] to generate the detec-

tions for our single-camera tracker. The detection boxes

from the four models are combined with an adapted NMS,

where we base the suppression not on the detection score

but keep the boxes with higher y2-value, as these boxes usu-

ally correspond to the visible objects due to the oblique view

of the cameras. The overlap threshold oNMS is empirically

set to 0.5 and only detection boxes with a minimum score

of 0.3 are considered in the SCT.

Single-camera tracking. To evaluate our SCT approach

and the proposed additional modules, we run several ex-

periments with different configurations on the CityFlowV2

dataset. A meaningful quantitative evaluation of both the

detection and the SCT performance can be hardly obtained

Table 1: Parameters of our single-camera tracker.

n omin i m omax vstatic amax smax

10 0.3 20 3 0.5 0.02 2 1.5

because of the missing annotations for vehicles which do

not appear in multiple cameras. Therefore, we first tune our

algorithms qualitatively on the validation set to determine

the best settings, which are listed in Tab. 1. Afterwards, we

apply our tracker both in the basic version and with the pro-

posed extensions on the test set to prove the generalization

ability of our framework.

A qualitative example of our occlusion handling strategy

is depicted in Fig. 2. Two accelerating vehicles are shown,

whereby one overtakes the other and occludes it. When the

occluded vehicle is visible again, the occlusion handling en-

ables the re-ID of the occluded vehicle. Without the occlu-

sion handling strategy, the occluded track can not be contin-

ued because the motion estimation is not accurate enough.

In Fig. 3, a typical scene where multiple vehicles are

waiting at an intersection is shown. In these dense areas,

the risk for false detections is high. With the filtering mod-

ule that utilizes the temporal information available in tracks,

some wrong detections can be identified and removed so

that they do not introduce tracking errors.

The benefits of the proposed module to check the assign-

ments of detections to static tracks can be seen in Fig. 4. If

a vehicle bypasses a non-moving vehicle and the distance

to the camera is high, the detector often can not distinguish

the two overlapping objects. This can lead to an IDSW as

assigning this detection is ambiguous. In the proposed ap-

proach, we take advantage of the fact that the dimensions

of a non-moving vehicle on images of static traffic cameras

can not change and prevent the assignment of false detec-

tions to static tracks which in turn avoids tracking errors.

Figure 2: Successful re-ID of an occluded track with our oc-

clusion handling (bottom) where the basic SCT fails (top).

Figure 3: With the approach to filter false detections (right),

the start of a wrong track with ID 512 (left) is prevented.



Figure 4: Prevention of an IDSW (178/188) by our method

(bottom) in comparison with the basic SCT algorithm (top).

4.3. Vehicle Reidentification

Dataset. For the training of our re-ID models, we use the

re-ID split of the CityFlowV2 dataset in conjunction with

the provided VehicleX engine images. Analogous to [15],

we use all real-world images plus the images of the first 100

vehicle IDs of the synthetic dataset which adds 14,536 im-

ages to our training set. For validation and comparison of

different approaches, we construct a validation set from the

four cameras included in scene 2 of the MTMCT split. It

consists of every 10th track detection and includes a total

of 2,368 images from 145 different vehicle IDs. The first

frames of vehicle tracks in a camera view are selected as

query leading to 450 query and 1,918 gallery images. To

avoid overfitting, images of vehicles occurring in our val-

idation set are excluded from training during our experi-

ments. The final models were trained using all IDs from

training and validation splits. We fine-tune our models with

training and validation data as well as test data annotated

with pseudo labels. In total, we have assigned 158 different

vehicle IDs to 3,589 cropped vehicle bounding boxes.

Training parameters. We initialize our models with

weights pre-trained on ImageNet [10]. First, we train our

models with real-world and simulated data for 70 epochs

with a learning rate of 0.01 and a warmup schedule, which

increases the learning rate linearly during the first 10 epochs

starting at 0.0001. The learning rate is multiplied by a factor

of 0.1 in epoch 40. Fine-tuning is conducted with a reduced

base learning rate of 0.001 for 10 epochs.

Table 2: Re-ID results on our validation set.

Method mAP R-1

Baseline ResNet-50 48.7 54.8

Baseline ResNet-50 IBN-A 48.5 56.2

Baseline ResNet-101 IBN-A 52.8 57.5

Baseline + GeM 52.9 57.3

Baseline + RR 53.5 58.4

Fine-tuned w/ Test 51.9 56.6

Fine-tuned w/ Test + GeM 49.9 54.8

Fine-tuned w/ Test + RR 52.5 58.2

Ensemble 58.0 63.1

Figure 5: Qualitative results of our re-ID component.

Mainly good results are achieved. Typical error cases are

vehicles of the same make that share a similar appearance.

Results. We provide quantitative results for vehicle re-ID

on our custom validation set in Tab. 2. The mean Aver-

age Precision (mAP) and the rank-1 accuracy (R-1) serve

as evaluation metrics. Note that ResNet-101 is applied as

backbone unless otherwise stated. One can observe that

the ResNet models with IBN-A bottlenecks outperform the

vanilla version in terms of R-1, which is the more important

measure in our case. That is because our clustering method

considers the minimum distance between two tracks in each

iteration, which corresponds to the R-1 result. Further-

more, the results show that the use of the deeper ResNet-

101 model is beneficial. In numbers, the ResNet-101 IBN-

A achieves a 4.3 points higher mAP and a 1.3 points in-

crease in R-1 compared to the ResNet-50 IBN-A network.

Replacing the global average pooling layer by GeM pool-

ing scores similar as the baseline. In contrast, using RR

as an additional data augmentation improves vehicle re-ID

performance from 52.8% to 53.5% mAP and from 57.5% to

58.4% in R-1. Fine-tuning the network with test data does

not lead to an improvement on our validation set but greatly

improves the re-ID accuracy on the test set from the chal-

lenge. The reasons for that are different characteristics of

the validation scene 2 and the unlabeled test data provided

for the challenge. Analogous to the pre-training results,

the model trained with RR achieves the highest scores, fol-

lowed by the baseline, and the GeM pooling approach. Our

ensemble further improves both metrics resulting in the best

performance of 58.0% in mAP and 63.1% in R-1.

Besides, we provide qualitative results of our vehicle re-

ID component in Fig. 5. The results indicate that our en-

semble performs well even if query and gallery vehicles are

displayed from different views. Errors such as in the last

row arise from similar visual appearance. Unlike persons,

vehicles of the same make or model share a very similar vi-

sual appearance and can only be distinguished based on a

few cues, such as dirt or small differences in car equipment.

4.4. Multicamera Clustering

In this section, we discuss the results of our cross-camera

clustering approach. Since test set annotations are not pub-

licly available, we evaluate the components on scene 2 of

the dataset’s validation split. Moreover, it is impossible

to evaluate all components and constraints on this valida-



Table 3: Influence of different components of our MCT ap-

proach evaluated on scene 2 of the validation set.

Approach IDF1 IDP IDR

Dataset Baseline 23.24 13.95 69.45

Our SCT 34.41 22.07 78.14

+ BG filtering 43.98 30.60 78.10

+ Exclude BG boxes 45.82 32.67 76.68

+ Exclude overlapping boxes 48.17 34.82 78.12

tion set because it includes, e.g., overlapping camera views.

Therefore, we only apply the best match constraint and use

a single re-ID model in the following. We determine thresh-

olds empirically and set treid to 0.5 and tbm to 0.4.

Tab. 3 highlights the influences of several components

on the resulting MTMCT performance. Note that param-

eters and thus the results might not be optimal since some

components are omitted. Nevertheless, the results clearly

show that our SCT approach outperforms the baseline pro-

vided with the dataset (Mask R-CNN [13] + DeepSORT

[40]) by a large margin. The additional filtering of back-

ground (BG) tracks leads to a further strong increase in

IDF1. With respect to the IDR metric, the performance

stays the same. This indicates that indeed incorrect back-

ground tracks are filtered. Excluding background boxes and

overlapping boxes from vehicle re-ID further improves the

tracking performance. In total, the baseline approach is out-

performed through the proposed optimizations by 25 points

in IDF1.

The final challenge results are given in Tab. 4. Our

MTMCT system achieves the fourth place with an IDF1

score of 69.10%.

Finally, we present two qualitative MCT results on the

test set in Fig. 6. Each row shows evenly sampled detec-

tions from a single-camera track. In both examples, the cars

were tracked correctly across four different camera views.

A look at the second row of Fig. 6a shows that our re-ID

component is able to combine single-camera tracks from

Table 4: Challenge results on the official test set.

Rank Team ID IDF1 Rank Team ID IDF1

1 75 80.95 11 3 29.74

2 29 77.87 12 45 29.08

3 7 76.51 13 110 25.68

4 Ours 69.10 14 60 25.26

5 42 62.38 15 82 22.85

6 27 57.63 16 67 20.38

7 15 56.54 17 11 19.24

8 48 55.34 18 123 13.43

9 79 54.58 19 61 11.57

10 112 54.52 20 129 5.58

(a)

(b)

Figure 6: Final MTMCT results on the official test set of

the AI City Challenge 2021. Each row represents one cam-

era view. Vehicles are correctly tracked although lighting

conditions vary strongly and overlapping situations occur.

different cameras, even if the lighting conditions are very

different. This can be explained by the fine-tuning stage

that allows the model to learn dataset-specific characteris-

tics. Moreover, the second example in Fig. 6b proves the

benefit of excluding overlapping boxes from vehicle re-ID.

The single-camera track in the last row exhibits some heavy

occlusions induced by an overtaking car. Nevertheless, the

track follows the target vehicle and does not switch to the

occluding car. In addition, the single-camera track is as-

signed to the correct multi-camera track since the boxes that

overlap with other vehicles are not used for re-ID, but in-

stead features from images like the first one in the last row.

5. Conclusion

In this paper, we propose an occlusion-aware MTMCT

system that ranks 4th in Track 3 of the 2021 AI City Chal-

lenge. For SCT, we develop several modules utilizing

temporal information derivable from tracks with the focus

on handling occlusions, suppressing false detections, and

verifying assignments to non-moving vehicles. Regarding

MCT, we propose a hierarchical cross-camera clustering

based on vehicle re-ID features, which leverages a scene

model, topological and temporal constraints, and a back-

ground filtering component. To decrease the negative in-

fluence of overlapping vehicles, we improve the re-ID by

excluding boxes in the background or with occlusion.
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