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Abstract

Retrieving vehicles matching natural language descrip-

tions from collections of videos is a novel and uniquely

challenging task, requiring consideration not only of vehi-

cle types and colors, but also of temporal relations, e.g.,

“A white crossover keeping straight behind a silver hatch-

back.” To perform this task, we propose Dual-path Tem-

poral Matching Network (DUN). DUN uses a pre-trained

CNN and GloVe to extract visual and text features, respec-

tively, and GRUs to mine temporal relationships in videos

and sentences. Furthermore, the proposed network can at-

tain superior performance by including techniques such as

re-ranking. With its simple structure, DUN achieved second

place on the AI City Challenge 2021 Track 5. The codes

are available at https://github.com/okzhili/

AICITY2021_Track5_DUN .

1. Introduction

Developing realistic machine learning models of events

that occur on roads, and thus the capability to retrieve spe-

cific vehicles from video data, has a wide range of appli-

cations in urban planning, traffic engineering, and law en-

forcement. In these application scenarios, querying using

natural language is undoubtedly one of the most efficient

and convenient methods possible. Therefore it is necessary

to develop methods based on natural language queries en-

abling the tracking and retrieval of vehicles from surveil-

lance videos taken at different locations and times.

Conventional retrieval methods are labor-intensive, and

with the proliferation of large numbers of road surveillance

cameras, the urgency of using computers to solve this task

*Equal contribution.
†Corresponding authors.

A white sedan runs up the road. White SUV go to the straight followed 

by another red vehicle.

Figure 1. An example illustration of the Vehicle Retrieval (VR)

by Natural Language (NL) Description task. A query sentence

describes static features, such as the color and type of vehicle, as

well as dynamic features such as action and state.

is becoming even more pronounced. Although this appli-

cation may seem implausible on first acquaintance, the idea

is gradually becoming feasible with the continuous devel-

opment of computer hardware and software, especially the

advanced progress of artificial intelligence in computer vi-

sion and natural language processing.

Formally, this task is known as Vehicle Retrieval (VR)

by Natural Language (NL) Description. As shown in Fig.1,

given a sentence in natural language, VR by NL aims to find

clips that best match this description from a collection of

road surveillance videos. This work is important for build-

ing smart cities, with applications in diverse fields such as

road planning, traffic engineering, and law enforcement. In

fact, the task of vehicle retrieval has been studied for some

time. In contrast to the objectives of previous tasks, the task

targeted in this study emphasizes the use of natural language

for queries, which is considerably more challenging.

The primary problem is to develop models of video and

sentence information, that is, to perform feature extraction.

For visual feature extraction, commonly used pre-trained

feature extractors, such as CNN networks pre-trained on
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ImageNet [8], are as yet not capable of expressing infor-

mation on vehicles well, which can lead to a loss of de-

tail to some extent. Moreover, modeling temporal informa-

tion in videos also remains a major challenge. Although

3-dimensional convolutional networks (C3D) [33] and I3D

[4] networks, which are popular in the field of action recog-

nition, can exploit temporal information, their robustness

is limited owing to the lack of sufficiently large amounts

of available training data. A suitable feature extractor also

needs to be carefully selected to extract textual features of

query statements. Some large networks such as BERT [9]

and GPT-3 [2] need to be considered with caution because

of the limitations of data volume and computational cost.

Once the individual obstacles in feature extraction are re-

moved, the task of VR by NL can be transformed into a

very mature cross-modal retrieval problem.

Based on the above considerations, we designed a sim-

ple network, Dual-path Temporal Matching Network, from

scratch. Our proposed method first adopts ResNet-IBN

[25], which is widely used in vehicle re-identification, to

extract vehicle features from a video database. For query

sentence feature extraction, DUN uses GloVe [27]. Sub-

sequently, in order to mine temporal relationships between

video frames and between words, bidirectional gated re-

current units (GRUs) [7] are applied. Finally, the features

of these two modalities are mapped to a common sub-

space through fully connected layers. In summary, DUN

has a very simple structure. Combining circle-loss and

some post-processing measures, the metrics of our model

nonetheless exceed the officially provided baseline by a

large margin.

2. Related Works

Essentially, VR by NL is a cross-modal retrieval prob-

lem, specifically that of retrieving videos using text. There-

fore, it is largely similar to general NL-based video retrieval

tasks. However, VR by NL tasks can also draw on research

on vehicle re-identification. In this subsection, NL-based

video retrieval and vehicle re-identification will be briefly

introduced.

2.1. NL­based Video Retrieval

NL-based video retrieval finds corresponding videos us-

ing a query sentence. This can take many forms. The most

intuitive approach is to find the most relevant video from a

collection of videos based on the query sentence, i.e., video-

text retrieval; an alternative approach is to locate start and

end times of a moment in a single video, i.e., natural lan-

guage moment localization. Many video clips in the dataset

used in this study are from the same surveillance camera

and the bounding boxes of the vehicles are given; therefore,

there are significant similarities with both task objectives.

Video-Text Retrieval. The study of cross-modal re-

trieval has an early origin [12, 18, 19], and its essence is to

map the features of two different modalities to a common

subspace. In this space, the similarities of different modal

features reflect the proximity of their original semantics.

The initial research on cross-modal retrieval focused on

image-text retrieval, and video-text retrieval [10, 24, 26, 36]

was studied subsequently. The models developed in the lit-

erature on video-text retrieval have relatively simple net-

work structures, which are generally combinations of ex-

isting models and often elaborate on the loss function to

improve accuracy.

Natural Language Moment Localization. Natural lan-

guage moment localization has become one of the most

popular research topics in machine learning in recent years

[21]. Compared with the video-text retrieval task, it requires

localization in a single video without traversing the video

collection, which greatly reduces the number of operations

and thus makes cross-modal interaction possible. Naturally,

many models with very different structures, training meth-

ods, and modular structures have emerged from this task,

which has greatly enriched research on machine learning

methods to analyze video data.

In recent years, [1] and [13] designed the MCN and

CTRL models, respectively, to accomplish moment local-

ization. However, these models were based on a proposal

window and are considered somewhat inelegant. Later,

[5, 22, 38, 20] put locators after the feature interaction to

reduce the number of operations. [15, 35, 3] used reinforce-

ment learning to find the location of events by a series of

steps. The boundary-aware based approach in [14, 34, 29]

used a skillful method to avoid the candidate window. To

reduce the cost of manual labeling, weakly supervised stud-

ies are increasingly being conducted.

2.2. Vehicle Re­identification

Vehicle re-identification (re-ID) aims to retrieve spe-

cific vehicles from different cameras with non-overlapping

views. This can be regarded as a retrieval problem; given a

query vehicle image, vehicle re-ID tasks aim to find all im-

ages containing a given vehicle. The trained vehicle re-ID

model can be regarded as a feature extractor, which can ex-

tract vehicle features more effectively than some pre-trained

models such as CNN networks pre-trained on ImageNet [8].

He et al. [16] proposed a multi-domain learning method

to make more effective use of synthetic data. Zhu et al. [40]

used orientation and camera similarity as penalties to obtain

a final similarity to reduce the influence of background and

shape. Meng et al. [23] proposed a parsing-based view-

aware embedding network to achieve view-aware feature

alignment and enhancement for vehicle re-ID tasks. Chen et

al.[6] proposed a dedicated semantics-guided part attention

network (SPAN) to robustly predict part attention masks for
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Figure 2. The workflow of Dual-path Temporal Matching Network (DUN). The video frames are fed into a pre-trained ResNet to extract

features, followed by a GRU [7] network used to mine temporal relationships, and finally, a fully connected layer to obtain a feature

representation of the video. The text features are represented similarly, but GloVe [27] is used to encode the word embedding in the initial

stage.

different views of vehicles, given only image-level semantic

labels during training.

3. Dual-path Temporal Matching Network

As shown in Fig.2, the use of Dual-path Temporal

Matching Network (DUN) for VR by NL tasks can be di-

vided into three steps, including feature extraction, model

training, and post-processing. In this section, we elaborate

on each in detail.

3.1. Feature Extraction

As mentioned above, to address the challenging VR by

NL task, methods to best select the appropriate pre-trained

features are worth considering. It is almost infeasible to

train directly from scratch; not only is the computational

cost very considerable, but also the performance of this ap-

proach in terms of convergence and robustness are generally

insufficient. After weighing the computational cost and fea-

ture representation capability of various models, we chose

a ResNet101-ibn-a network pre-trained on data of the AI

City Challenge 2021 Track 2 dataset as the visual feature

extractor and used GloVe [27] as the text feature extractor.

3.1.1 Visual Feature Extraction

A vehicle re-ID model was trained as a visual feature ex-

tractor to obtain a robust feature representation of the ve-

hicle tracks. Because the data of other tracks are allowed

to be used in this competition, we used the CityFlowV2-

ReID dataset and synthetic data of Track 2 to train our re-ID

model.

Specifically, we first combine the real dataset and a syn-

thetic dataset based on Track 2, as well as a weakly super-

vised detection data augmentation method proposed by Zhu

et al. [40] to further eliminate the background part of the

real data and generate cropped data. Finally, these three

parts of the data form the training set to train the vehicle

re-ID model. Some common data augmentation methods,

such as random erasing, random horizontal flipping, and

random cropping, were utilized. For the model, we used

ResNet101-ibn-a [25] pre-trained on ImageNet [8] as the

backbone network of the proposed model, and generalized

mean pooling (GeM) [28] as a method of feature aggrega-

tion, the performance of which was shown to be better than

the commonly used global max and average pooling. In

the part of the loss function, following the basic paradigm

of re-ID, metric learning and classification learning are in-
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tegrated, and the loss function is a combination of triplet

[30, 17] and CircleSoftmax loss [31].

After training, the trained model is used to extract visual

features. Specifically, the proposed method uses the pro-

vided detection box information to extract features from a

cropped vehicle image instead of the original image. Fi-

nally, for each track, a set of visual features is obtained,

which can be expressed as V = {ct}
Tv

t=1 ∈ R
Tv×2048. Sub-

sequently, a bidirectional GRU network is used to mine the

temporal information of the feature sequences to obtain an

overall representation of the video feature.

h
t
v = BiGRU1([ct,h

t−1
v ]). (1)

Finally, a fully connected layer maps the feature to the com-

mon subspace.

fv = Wαh
Tv
v + bα, (2)

which is the final video feature used for similarity calcula-

tion.

3.1.2 Text Feature Extraction

Given a query sentence containing Ts words, GloVe [27] is

used to extract word-level features, which can be denoted

as S = {wt}
Ts

t=1 ∈ R
Ts×300. Then, as in the case of pro-

cessing video, a bidirectional GRU [7] network is applied

to integrate information between words to obtain an over-

all feature representation of the sentence, which can be ex-

pressed as

h
t
s = BiGRU2([wt,h

t−1
s ]). (3)

The output of the bidirectional GRU hidden layer at the last

time step is used as the feature representation of the sen-

tence, i.e., hTs
s . Finally, another fully connected layer maps

the features to the common subspace.

fs = Wγh
Ts
s + bγ . (4)

where fs represents the final sentence feature, which is used

for similarity calculation.

3.2. Training

After obtaining the feature representation of the two
modes of information, we perform a batch normalization
operation and then use circle loss [31] for training. The
original circle loss is mainly used for unimodal retrieval.
For a single sample with K within-class similarity scores,

i.e.
{

sip
}

(i = 1, 2, · · · ,K), and L between-class similarity

scores, i.e.,
{

sjn
}

(j = 1, 2, · · · , L), the circle loss can be
expressed as

Lcircle = log
[

1+

L
∑

j=1

exp(γα
j
n(s

j
n −∆n))

K
∑

i=1

exp(−γα
i
p(s

i
p −∆p))

]

,

(5)

where ∆n and ∆p are between-class and within-class mar-

gins, respectively, and γ is a scale factor. s denotes the

similarity between features, and cosine similarity is used in

this study. αj
n and αi

p are non-negative weighting factors,

which can be obtained by

{

αi
p =

[

Op − sip
]

+
αj
n =

[

sjn −On

]

+

, (6)

In circle loss [31] , these hyperparameters are set as















Op = 1 +m

On = −m

∆p = 1−m

∆n = m

, (7)

where m represents the margin. In this step, the circle loss

requires only two hyperparameters, γ and m.

Although circle loss was originally designed for uni-

modal retrieval tasks, it can be adapted to the VR by NL

task relatively simply. Specifically, because the query sen-

tence and the video clip correspond one-to-one, within-class

samples cannot be found within a single modality. Thus, we

ignore the modal variability, and for any modal feature, the

corresponding feature of another modality is regarded as a

within-class sample, and all other features are regarded as

between-class samples. This approach widens the distance

between semantically distinct features. Thus, K = 1 and

L = 2N − 2 in Equation 5 denote the number of positive

and negative samples in a batch of size N , respectively.

3.3. Post­processing

In a unimodal retrieval task, post-processing is an ef-

fective means to improve accuracy; some post-processing

methods can also be introduced to improve accuracy in

multi-modal tasks. K-reciprocal encoding [39] is a common

re-ranking method in unimodal tasks, which considers sam-

ples that are mutually close neighbors to be more likely to

be correct samples. Similarly, in this task, when natural lan-

guage and vehicle tracks are near neighbors to one another,

they are considered more likely to be correct samples, and

their rankings are improved accordingly.

Specifically, after training, the model is used to extract

text features and track-level visual features; to calculate the

initial distance matrix we calculate three distance matrices

for each of the three natural language descriptions provided,

and average the three distance matrices after k-reciprocal

encoding re-ranking to obtain the final retrieval results.

4. Experiments

4.1. Dataset

Three datasets were used in this task, including

CityFlowV2-ReID [32], and synthetic data were used to
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Table 1. Ablation Study Results of DUN on CityFlow-NL test set.

Method MRR Recall@5 Recall@10

Baseline 0.0269 0.0264 0.0491

DUN 0.1292 0.1887 0.3283

DUN+Ensemble 0.1494 0.2377 0.3736

DUN+Ensemble+RK 0.1613 0.2585 0.3925

train the re-identification model, while CityFlow-NL [11]

was used to train the proposed DUN.

CityFlowV2-ReID. CityFlowV2-ReID was captured by

46 cameras in a real-world traffic surveillance environment.

It includes 85058 images of 880 vehicles in total; we used

440 vehicles with a total of 31238 images to train the pro-

posed network, and the remaining 440 vehicles were used

for testing.

Synthetic Data. The synthetic dataset contained 1362

vehicles with a total of 192150 images, which were gener-

ated by VehicleX [37], a publicly available 3D engine. All

samples contained attribute information such as orientation,

color, type, and camera.

CityFlow-NL. CityFlow-NL contains 3028 vehicle

tracks collected from 40 cameras, of which 2498 vehicle

tracks were used for training, and each track was anno-

tated with three natural language descriptions, the remain-

ing samples were used to evaluate the proposed method.

4.2. Evaluation Metrics

The vehicle retrieval by NL description task convention-

ally uses the mean reciprocal rank (MRR) as the main eval-

uation metric, which can be denoted as:

MRR =
1

|Q|

|Q|
∑

i=1

1

ranki
, (8)

where |Q| is the number of query sentences and ranki in-

dicates the ranking of the correct answer for the i-th query

sentence. Recall @ 5 and Recall @ 10 results are also re-

ported.

4.3. Implement Details

For the vehicle re-ID model, all the images were re-

sized to 320 × 320 pixels, and we trained the model over

12 epochs with a mini-batch of four identities and 16 im-

ages per identity. Adam was applied as the optimizer, and

the initial learning rate was decayed from 3.5e-4 to 7.7e-7

using a cosine annealing scheduler. For the DUN, we set

the batch size to 16 (16 tracks and 16 natural language de-

scriptions), using cosine distance as the similarity metric,

and γ and m of circle loss were set to 80 and 0.2, respec-

tively. We trained the three models using different config-

Table 2. Public Leaderboard of AI City 2021 Track5

Rank Team ID Team Name MRR

1 132 Alibaba-UTS 0.1869

2 17 TimeLab 0.1613

3 36 SBUK 0.1594

4 20 SNLP 0.1571

5 147 HUST 0.1564

6 13 HCMUS 0.1560

7 53 VCA 0.1548

8 71 aiem2021 0.1364

9 87 Enablers 0.1314

10 6 Modulabs 0.1195

urations for the final model ensemble. The first configura-

tion uniformly samples video over 300 frames (the default

DUN configuration). The second configuration samples all

videos uniformly to 300. The last configuration removes

the batch normalization in expectation of achieving domain

adaptation on the test set. In the post-processing stage, we

set k1 = 100, k2 = 30, and λ = 0.8 for the k-reciprocal

encoding re-ranking, where k1 and k2 are number of neigh-

bors, λ is the proportion of the original distance. Finally, the

three models trained with different hyperparameters were

combined in an ensemble, and the final result was obtained

by averaging their distance matrices.

4.4. Performance on CityFlow­NL

As shown in Table 1, DUN achieved an MRR of 0.1292

on the CityFlow-NL test set, which significantly exceeds the

given baseline, and MRR improved to 0.1613 after using the

ensemble model and re-ranking (RK) strategies.

As shown in Table 2, among the performances of the

top-10 team in the abovementioned competition, our team

(Team ID 17) achieved an MRR score of 0.1613, taking

second highest among 15 total submissions on the AI City

Challenge 2021 Track 5.

5. Conclusion

In this paper, we have proposed a Dual-path Temporal

Matching Network (DUN) to retrieve specific vehicle tracks

from video databases using natural language. We used a

pre-trained ResNet and GloVe to extract video and text fea-

tures, respectively, and GRU networks to model temporal

relationships. DUN has a very simple structure, but it can

achieve superior performance.
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tuning cnn image retrieval with no human annotation. IEEE

transactions on pattern analysis and machine intelligence,

41(7):1655–1668, 2018. 3

[29] Cristian Rodriguez, Edison Marrese-Taylor, Fatemeh Sadat

Saleh, Hongdong Li, and Stephen Gould. Proposal-free

temporal moment localization of a natural-language query

in video using guided attention. In Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer

Vision, pages 2464–2473, 2020. 2

[30] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

Facenet: A unified embedding for face recognition and clus-

tering. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 815–823, 2015. 4

[31] Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang,

Liang Zheng, Zhongdao Wang, and Yichen Wei. Circle loss:

A unified perspective of pair similarity optimization. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 6398–6407, 2020. 4

[32] Zheng Tang, Milind Naphade, Ming-Yu Liu, Xiaodong

Yang, Stan Birchfield, Shuo Wang, Ratnesh Kumar, David

Anastasiu, and Jenq-Neng Hwang. Cityflow: A city-scale

benchmark for multi-target multi-camera vehicle tracking

and re-identification. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), page 8797–8806,

June 2019. 4

[33] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with

3d convolutional networks. In Proceedings of the IEEE inter-

national conference on computer vision, pages 4489–4497,

2015. 2

[34] Jingwen Wang, Lin Ma, and Wenhao Jiang. Tempo-

rally grounding language queries in videos by contextual

boundary-aware prediction. In Proceedings of the AAAI Con-

ference on Artificial Intelligence, volume 34, pages 12168–

12175, 2020. 2

[35] Weining Wang, Yan Huang, and Liang Wang. Language-

driven temporal activity localization: A semantic match-

ing reinforcement learning model. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 334–343, 2019. 2

[36] Ran Xu, Caiming Xiong, Wei Chen, and Jason Corso. Jointly

modeling deep video and compositional text to bridge vision

and language in a unified framework. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 29, 2015.

2

[37] Yue Yao, Liang Zheng, Xiaodong Yang, Milind Naphade,

and Tom Gedeon. Simulating content consistent vehicle

datasets with attribute descent. In The European Conference

on Computer Vision (ECCV), page 775–791, August 2020. 5

[38] Runhao Zeng, Haoming Xu, Wenbing Huang, Peihao Chen,

Mingkui Tan, and Chuang Gan. Dense regression network

for video grounding. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

10287–10296, 2020. 2

[39] Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi Li. Re-

ranking person re-identification with k-reciprocal encoding.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1318–1327, 2017. 4

[40] Xiangyu Zhu, Zhenbo Luo, Pei Fu, and Xiang Ji. Voc-

reid: Vehicle re-identification based on vehicle-orientation-

camera. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops, pages

602–603, 2020. 2, 3

7


