
A Region-and-Trajectory Movement Matching for Multiple Turn-counts

at Road Intersection on Edge Device

Duong Nguyen-Ngoc Tran, Long Hoang Pham, Huy-Hung Nguyen,

Tai Huu-Phuong Tran, Hyung-Joon Jeon, Jae Wook Jeon∗

Department of Electrical and Computer Engineering,

Sungkyunkwan University, Suwon, South Korea

{duongtran, phlong, huyhung91, taithp, joonjeon, jwjeon}@skku.edu

Abstract

In intelligent traffic systems, vehicle detection and count-

ing have become an important task. The counting informa-

tion is essential for reducing traffic congestion and improv-

ing traffic signal capability. Traditional methods have been

focusing on counting vehicles in a single frame or consec-

utive frames. However, they have not yet considered the

movement of interest (MOI) of the vehicles moving in differ-

ent lanes and directions. This paper proposes a region-and-

trajectory movement matching method that aims to detect

and count vehicles for each movement on the road. First,

the YOLOv5 detection model is used to detect candidate

vehicles in the region of interest (ROI). Second, the SORT

tracking method associates vehicles of the same instance in

consecutive images to create tracked trajectories. Then, the

counting method using the combination of MOI regions and

predefined movement tracks. Each tracked trajectory is as-

signed to the corresponding movement id and is outputted

to the result file. The efficiency and effectiveness of the pro-

posed method have been evaluated and ranked 3rd on AI

City Challenge 2021 Track 1 leaderboard. Further experi-

ments showed that the method could achieve around 120 fps

on an NVIDIA Quadro RTX 8000 and 20 fps on an NVIDIA

Jetson Xavier AGX.

1. Introduction

In recent years, vehicle detection and counting tasks have

become essential in intelligent traffic systems [22]. The

counting results can estimate traffic flow in an area, re-

duce traffic congestion, improve traffic planning and op-

eration. The vehicle counting in traffic cameras presents

several challenging issues. First, accurate vehicle detection

and tracking in crowded scenes are hard to achieve. Sec-

ond, identifying vehicles’ movements in intersections is dif-

ficult because of the combined, crossing, and turning lanes.

Third, bad weather conditions and a variety of camera view

angles further increase the complexity of the vehicle count-

ing problem.

In order to solve these problems, several studies have

been proposed which follow nearly the same pipeline.

Firstly, vehicle detection is performed by either deep learn-

ing or traditional methods. Secondly, tracking is performed

based on the results of the detection module, which can

fail when the detection results (bounding boxes) are not ac-

curate. Thirdly, each vehicle trajectory is matched with a

predefined movement track on the road. This task is quite

challenging, especially at intersections, where many move-

ments are overlapped with each other. Finally, counting is

performed for each movement when the vehicle exits the re-

gion of interest (ROI). Overall, stability and scalability are

a vital concern given the real-world applications on several

computational systems.

This paper proposes a region-and-trajectory movement

matching method for improving the precision when asso-

ciating between the tracked vehicles and the predefined

movements, which in turn, increasing the accuracy of the

vehicle counting task. In this method, motion of inter-

est (MOI) regions and reference trajectories are defined for

each movement. For each vehicle, the best optimal move-

ment is identified by matching the reference trajectory and

overcoming the corresponding region of each movement di-

rection.Based on the studies [13, 18], we reduce the num-

ber of the anchor points in a reference trajectory and use

a polygon shape for the MOI region instead of the rectan-

gle zone. Using both techniques, the processing speed can

be reduced using fewer anchor points while short tracklets’

movements can be identified using the MOI regions. More

detail of the proposed method is found in Figure 5. The

proposed method has been evaluated on AI City Challenge

2021 Track 1 Dataset A, and ranked 3rd in the leaderboard.

1



Figure 1. Framework of a region-and-trajectory movement matching method.

Also, the requirements for real-world processing are

in high demand, especially on embedded computa-

tional devices. Manufacturing companies provide vari-

ous application-specific integrated circuits such as field-

programmable gate arrays (FPGAs) or digital signal pro-

cessors (DSPs), or processing unit graphics (GPU). In this

study, the proposed method has been implemented and

tested on an NVIDIA GPU-based computer and NVIDIA

embedded computing platforms such as Jetson NX Xavier

[4], and Jetson AGX Xavier [5]. The experiments have

shown promising performance with around 120 fps on

an NVIDIA Quadro RTX 8000 and around 20 fps on an

NVIDIA Jetson Xavier AGX.

The rest of this paper is organized as follows. In Section

2, the related works are discussed. The detail of the pro-

posed method is described and discussed in Section 3. In

Section 4, the experiments show qualitative and benchmark

results of the proposed method. Conclusions are drawn in

Section 5.

2. Related Work

2.1. Object Detection

Moving object detection and identification is one of the

most fundamental and complex problems in computer vi-

sion. In the beginning, moving objects in the image are

detected using the background subtraction method. Then,

additional features of the objects are provided by applying

either SIFT [19] or HOG [7] descriptor. This approach is

prone to a high error rate because of the variety in objects’

appearances and scale, and also noise and illumination in

the image. Another approach is to used traditional classifi-

cation model such as Support Vector Machines [12] or Ran-

dom Forest [3]. These models require manually engineered

information more information, which is hard to tweak to

obtain good results.

The progress of convolution neural networks and deep

neural network architectures have made more reliable solu-

tions. It avoids manual feature extraction and uses a data-

driven approach that allows machines to learn feature ex-

pressions automatically. There are two common categories

of object detection, two-stage detection and one-stage de-

tection. Two-stage frameworks divide the detection process

into the region proposal and the classification stage, and the

well-known models are RCNN[11], Fast RCNN [10], Faster

RCNN[24]. On the other hand, one-stage detectors contain

a single feed-forward fully convolutional network that di-

rectly provides the bounding boxes and the object classifi-

cation. The widely used models are YOLO [23], SSD [17].

One of the biggest challenges that many object detection

methods face is the dilemma between speed performance

and accuracy. It finds hard to improve both of them simulta-

neously. Deploying these heavy object detectors on an edge

device is of a major concern, which can balance both the as-

pects of speed and accuracy, even though there is some high

power device from NVIDIA [4, 5] are made. To support and

improve the accuracy of these models, many research in-

stitutions release popular datasets and benchmarks, includ-

ing the datasets of PASCAL VOC Challenges[9, 8], MS-

COCO Detection Challenge [16], ImageNet Large Scale Vi-

sual Recognition Challenge [25].

2.2. Multi­Object Tracking

Multiple Object Tracking (MOT) plays an essential role

in video-based application systems [20]. Many existing

MOTs are built as the post-processing task of detection

models. The tracking could be run offline in traffic anal-

ysis or online running real-time processing simultaneously

with the camera or video input frame. When running of-

fline, the tracking uses the detection results over the entire

frame sequence for the offline methods and then performs

global optimizations. The standard offline methods have

structure as the graph model, which can be enhanced by us-

ing minimum cost flow [27], and subgraph decomposition

[26].

On the other hand, the online method follows the

tracking-by-detection paradigm. This approach uses the

current frame and the previous frames to link detection re-

sults while maintaining spatial and temporal consistency.

To perform feature association between tracking objects and

2



new detection objects, Kalman Filter-based [2], and Neural

Network [30, 29] have been proposed. These methods re-

quire no training and allowing for fast-speed tracking.

2.3. Vehicle Counting

The vehicle counting methods are mainly divided into

two categories: density-aware approach[1] and detection-

aware approach [6]. The density-aware approach learns the

feature of an object to approximate the counting results.

However, the drawback of this method is that they only es-

timate the probable number of objects instead of the exact

amount. The detection-aware approach uses the detection

and tracking result for counting. It can provide more precise

counting results; however, requiring more complex count-

ing logic. For instance, the counter takes attention to the

trajectories’ properties (for example, traveled length, direc-

tion, etc.) to keep the ones that follow the predefined tra-

jectories and reject small tracklets. Therefore, the occluded

and not detected can be solved by keeping the trajectory in

a consecutive frame.

3. Methodology

3.1. Moving Object Stage

When a moving vehicle travels through the camera field

of view, several stages can be defined. Stage management

is considered the core of the system, which controls the ve-

hicle’s existence in the whole program. Figure 1 shows

Algorithm 1: State switching algorithm

Input: List of tracks

Output: Updated state of each tracks

for each tracking object do

if moving state is candidate then
if Rm ≥ 0 ∧meet track requirement

then
moving state← confirm

else if moving state is confirm then

if Rm ≤ 0 then
moving state← counting

else if moving state is counting then
if Rm < 0 ∨ object age ≥ max of age

then
moving state← to be counted

else if moving state is to be counted then
Do the Weighted Vehicle Trajectory

Counting (Section 3.3)

moving state← counted
else if moving state is counted then

if Rm ≤ 0 or object age ≥ max of age

then
moving state← exiting

end

the stage as the last task of framework. Each tracking

object has the related position with the region of interest:

Rm =







−n out ROI

0 tourch ROI

n in ROI

where n is the distance from

center of vehicle to ROI. There are six states of vehicle in

system:

1. Candidate: The new moving object is created and

waits to meet the SORT tracking requirement to be-

come the new track.

2. Confirm: The moving object is considered as the mov-

ing vehicle with its own track

3. Counting: The moving vehicle touches the end of the

ROI, which consider for counting.

4. To be counted: The moving vehicle wait for matching

with the appropriate movement id.

5. Counted: The moving vehicle has been counted and

outputted. It will not be counted even if being detected

in later frame.

6. Exit: The moving vehicle has just exited the frame and

is marked to be deleted.

Algorithm 1 shows the detail of the switching between

each states. Each condition in algorithm contains processes

the Section 3.2 and Section 3.3

3.2. Vehicle Detection and Tracking

3.2.1 Vehicle Detection

Model Architecture. YOLOv5 [15] has several models,

from the largest one is YOLOv5x to the smallest one is

YOLOv5s. The AI City Challenge 2021 requires real-time

processing on an edge device. Therefore, the YOLOv5s6 is

chosen for the vehicle detection task. Furthermore, a pre-

trained model on COCO is used and is fine-tuned on the

manually annotated data in AI City 2021 Track 1 Dataset

A.In addition, cameras with the same viewpoints and ve-

hicle scales are grouped and trained together. Training and

implementation of the YOLOv5s can extract good detection

results on Dataset A. Also, in inference step, the model is

inputted with a batch size of 16 images is used. Then, the

detection results are put in to a buffer queue for the tracking

task.

Object Classes of Interest. According to the challenge

rules, the vehicles are detected and classified into two

classes:

1. Car: sedan car, sport unify vehicle (SUV), van, bus,

small trucks such as pickup truck, UPS mail trucks,

etc.

3



2. Truck: medium trucks such as moving trucks, garbage

trucks, large trucks such as a tractor-trailer, 18-

wheeler, etc.

3.2.2 Online Multi-Vehicle Tracking

After a detected vehicle enters the region of interest (ROI),

a unique id is assigned. The tracking module associates

the currently tracking vehicles with newly detected vehicles

and maintains the unique id of a vehicle when it is moving

through the camera. Besides, the tracked locations of the

vehicle in consecutive frames are used to define its trajec-

tory. The trajectory is later used to associate the movement

of the vehicle.

After obtaining the batch’s detection results, the SORT

[2] method is used as the online multi-vehicle tracking

tracker. Even though other trackers, such as DeepSORT

[30], are better. However, they require higher memory space

while processing which can reduce the overall processing

speed. Therefore, additional processing time can be saved

for other tasks.

The SORT algorithm is a fast online multi-object track-

ing, and it can achieve real-time processing. The method

associates already detected objects across different frames

based on the coordinates of the detected bounding boxes.

The vehicle’s trajectory is relatively simple in the traffic

camera, such as a simple straight line or curve, since the

camera’s position is high above the road. The SORT method

uses efficiency algorithms such as Kalman Filter and Hun-

garian algorithm for the tracking components to achieve

real-time processing.

The Kalman Filter is used for motion prediction. The

algorithm uses the unmatched detection results to initialize

the tracking state as a new target and the matched detec-

tion results for updating the existing target’s tracking state.

State-space in each target is defined in the dimensional state

space (u, v, s, r, u̇, v̇, ṡ), where u and v stand for the hori-

zontal and vertical pixel 2D location of the center of the

target, and the scale s and r represent the scale (area) and

the aspect ratio of the object’s bounding box respectively.

Standard Kalman Filter with constant velocity motion and

linear observation model assign target object the tracklet k,

which is used for following counting task. When assign-

ing new detection results to exist targets, the shape of each

target’s bounding box is estimated by predicting its new po-

sition in the current frame. The allocation cost matrix is

then calculated as the IOU (intersection) distance between

each detection and all predicted bounding boxes of the ex-

isting target. The assignment is solved optimally using the

Hungarian algorithm.

(a) camera 1 (b) camera 2

(c) camera 13 (d) camera 16

Figure 2. Visualization of reference trajectories and observation

zone of camera 1, camera 2, camera 13, and camera 16. The color

trajectory represent for each reference trajectories, and the white

trajectory stand for the uncounted movement.

3.3. Region­and­Trajectory Movement Matching

After obtaining the series of tracklets result from the

detection and tracking process, the tracklets have to be

matched with a predefined reference movement. This sec-

tion describes a region-and-trajectory movement matching

method to count vehicle in each movement direction. This

method has been inherited from [13, 18] and has been fur-

ther extended to improve the robustness. The proposed

method consists of 2 separate vehicle movement identifi-

cation method, namely: reference trajectory and movement

of interest region.

3.3.1 Reference Trajectory

Reference Trajectory. The rule of the challenge defines

several movement directions for each camera. Based on

this given information, reference trajectories are defined for

each movement directions. Follows the examples in [28],

the reference trajectories are modeled by accumulating and

averaging several moving vehicles’ trajectories in the cam-

era. Then, the number of anchor points in the reference

trajectories are subsequently reduced until the tracking ro-

bustness can no longer be maintained. The results are the

set of reference trajectories with fewer points that can in-

crease the processing time while still maintaining the track-

ing robustness as shown in Figure 2. A completed reference

trajectories set TrajG = [Trajg1 , T rajg2 , . . . , T rajgk ],
where trajectory Trajgi stands for the ith defined move-

ments. Each reference trajectory has the set of points

Traji =
[

p1m, p2m, ..., pnm
]

, which would be used to match

of vehicle’s tracklet.

In additions, further tweaks were performed for some

distinct cases to further reducing the processing time. In

most cases, the reference trajectories are kept from the en-

trance and the exit for each movement as shown in Figure

4



Algorithm 2: Find best match reference trajectory

Input: Tracklet Trajm
Reference trajectories TrajG
Distance threshold Dthr

Output: The identity of the best match reference

trajectory or none of them

for each Trajg of TrajG do

for each subm of Trajm do
Compute distance dsubm,g (Equation 1)

if dsubm,g > Dthr then
break

else if moving state is candidate then
minsub ← gid

end

if minsub < minm then
minm ← minsub

end

if Trajm overcome Zoneg then
return Trajminm

return None

2a. Meanwhile, in some case, the movement directions do

not intersect with each other, therefore, only the portion at

the end of each reference trajectory is kept as shown in

Figure 2b. The fewer anchor points, the faster processing

speed. Moreover, in some cameras, ”None” reference tra-

jectories (as shown in Figure 2c, d) are defined to remove

unwanted vehicle’s movements as defined by the rules. Fig-

ure 5 shows all references trajectories in all cameras.

Matching with Reference Trajectory. Given the track-

lets of the vehicles, each of them has Trajm =
[pt1m, pt2m, ..., ptnm ], where ptim = (xti

m, ytim) is the coordinate

point of the vehicle, t1 is the time when the vehicle in candi-

date state, and tn is the time when the vehicle in the counted

state. The Hausddorff distance [14] is used to find the best

match between the tracklet Trajm with the reference tra-

jectory TrajG, and use Euclidean distance for each point

in both set. Let dH (m, gi) denote the Hausdorff distance

between of tracklet of vehicle m and reference trajectory

gi. However, the Hausdorff distance considers two set of

points as the disordered sets; Therefore, Trajm are divided

into subset from the tn to t1 to choose the best match even if

any lost track while tracking. The distance between subset

of tracklet m and the reference trajectory Trajg is:

dsubm,g = min
subm∈Traj

m

dH (subm, g) (1)

3.3.2 Movement Of Interest Region

Addition to the reference trajectories, several movement of

interest (MOI) regions on the road, one for each movement

direction. The MOI region’s primary purpose is to cap-

Figure 3. Visualization of region-and-trajectory movement match-

ing for find the best match reference trajectory for the vehicle’s

tracklet. The red dot line represent for vehicle tracklet, the green

circle with gradient color from center to outside is weight shape-

based matching, other color dot lines stand for reference trajecto-

ries.

ture tracklets that are too short (i.e., trajectory length) to

match with any reference trajectories. The main reason for

the short tracklets can be from miss-detection, fast-moving

vehicles, or new vehicles breaks out from occlusion, etc.

When a vehicle has been moving through the MOI region,

it is assigned with a corresponding movement id.

Overall, both techniques are used in vehicle movement

identification. The Algorithm 2 show the detail of the over-

all matching method. Each vehicle’s movement id is being

calculated until the vehicle reaches the end of the ROI or out

of the image frame. After finding the best match for track-

let, tn is the used. Finally, the vehicle movement id and the

exiting time is recorded and outputted to the result file.

4. Experiments

4.1. System Implementation

A vehicle detection and counting system has been im-

plemented for as shown in Figure 8. The pipeline uti-

lizes buffer queue and multi-thread processing to parallel

the bottle-neck between the detection and tracking stage. In

particularly, the detector is performed on a separated thread

and the detected bounding boxes are buffered in a queue.

The detected bounding boxes are grouped together by the

frame id in order to maintain the temporal consistency. The

tracker, running on another thread, gets the detection re-

sults and performs it own task as soon as the buffer queue

is available. The detector runs on GPU while both tracker

and counter run on CPU. The whole system has been im-

plemented and tested on a NVIDIA Quadro RTX 8000 with

48GB memory and two-thread Intel i9-9900X 3.50GHz.

4.2. Datasets

The AI City 2021 Track-1 dataset data set contains 31

video clips captured from 20 single camera views; some

cameras were captured in different weather (including rain,

snow) and light conditions (including dawn, clear sky).

5



Figure 4. System Pipeline.

Each camera view comes with detailed documentation de-

scribing the region of interest and movement of interest.

The next section provides experimental results for data set

A and our final score of the leaderboard on Dataset A. The

detection model is materialized on the AI City 2021 Track

1 Dataset A using a pre-learned model for COCO. A total

of 15500 frames is fully annotated from all the videos in the

dataset, and only cars and trucks are labeled. The detail of

the label can be found in Section 3.2.1

4.3. Evaluation Metrics

According the rules of challenge, there is no addi-

tional data for train or self-testing, we only provide the

result of final leaderboard. The following section shows

the evaluation metrics for this challenge using efficiency

score and effectiveness score with along parameter: S1 =
αSefficiency + βSeffectiveness, where α = 0.3, β = 0.7.

Sefficiency corresponds to the processing time in whole

videos. Seffectiveness reply on a weighted average of nor-

malized weighted root mean square error scores nwRMSE

across all generate time, videos, movements, and vehicle

classes in the test set, with proportional weights based on

the number of vehicles of the given class in the movement.

wRMSE =

√

√

√

√

k
∑

i=1

i
∑k

j=1 j
(x̂i − xi)

2
(2)

The efficiency score bases on the total execution time T

as

S1,efficiency = max

(

0, 1−
T × base factor

1.1× video time

)

(3)

As can be seen on Equation 3 from previous year chal-

lenge [21] and this year challenge, the factor of denominator

Rank Team ID Score

1 37 0.9467

2 5 0.9459

3 8(Ours) 0.9263

4 19 0.9249

5 118 0.9235

Table 1. Top 5 overall score in the AI City 2021 Track 1 learder-

board.

mwRMSE S1 Effectiveness S1 Efficiency S1

3.6259 0.9287 0.9209 0.9263

Table 2. The detailed evaluation of the proposed method.

Device Batch size Queue FPS

COMPUTER 32 10 120

Jetson Xavier AGX 16 5 20

Jetson Xavier NX 8 5 12

Table 3. Speed performance.

replace by ”1.1” instead of ”5” and the result must include

the generate time, which means this year, they focus more

on the time processing. Moreover, one of the requirements

is that the framework can run on an edge device, the time

consuming and memory management are put higher rank.

4.4. Quantitative Result

The Table 1 shows the comparisons of overall scores.

After checking, we still have failures caused by certain rea-

sons: The number of missing detection of a truck is still

high because the ratio appears vehicle is much different.

The hard weather condition, such as rain, makes blur in

camera capture image, which cause the detector hardly get

the good result. The overlap with vehicle results in the miss

track in tracker session.

4.5. Speed Performance

The main goal of the AI City Challenge 2021 Track 1 is

to achieve real-time processing on edge devices. Therefore,

the whole system has been tested on two NVIDIA devel-

opment boards: the NVIDIA Jetson Xavier NX [4] and the

NVIDIA Jetson AGX Xavier [5]. Because the processing

unit and memory of each device is different from the com-

puter, the models’ hyperparameters have to be adjusted to

optimize for each device. The Table 3 shows detail of pa-

rameters and the speed result.

5. Conclusions

In this paper, a region-and-trajectory movement match-

ing method have been proposed. The method has been

shown to successfully define the corrected movement di-

6



camera 1 camera 1 dawn camera 1 rain camera 2 camera 2 rain camera 3 camera 3 rain

camera 4 camera 4 dawn camera 4 rain camera 5 camera 5 dawn camera 5 rain camera 6

camera 6 snow camera 7 camera 7 dawn camera 7 rain camera 8 camera 9 camera 10

camera 11 camera 12 camera 13 camera 14 camera 15 camera 16 camera 17

camera 18 camera 19 camera 20

Figure 5. Visualization of results on sample frames from different scenes and different conditions, the color trajectories and number

represent for the movement of interest defined at the beginning.

rection in a vehicle counting task. The proposed method’s

performance shows its effectiveness and efficiency in deter-

mining a vehicle’s route in different camera views. The sys-

tem achieved third place on AI City Challenge 2021 Track 1

Dataset A (Track 1: Number of vehicles by the class at mul-

tiple intersections). For future work, we will improve each

of the components even further, both in speed and robust-

ness. For example, we will address typical detection errors,

e.g., false positives due to dynamic or reflective background

and lack of detection is too large or small vehicles. More-

over, we learn how to build better models for the route that

can adapt to the new scenes and weather conditions.

6. Acknowledgments

This work was supported by Institute of Information &

communications Technology Planning & Evaluation(IITP)

grant funded by the Korea government(MIST) (2021-0-

01364, An intelligent system for 24/7 real-time traffic

surveillance on edge devices)

References

[1] Javier Barandiaran, Berta Murguia, and Fernando Boto.

Real-time people counting using multiple lines. In 2008

Ninth International Workshop on Image Analysis for Mul-

timedia Interactive Services, pages 159–162. IEEE. 3

[2] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and

Ben Upcroft. Simple online and realtime tracking. In 2016

IEEE International Conference on Image Processing (ICIP),

pages 3464–3468, 2016. 3, 4

[3] Leo Breiman. Random forests. 45(1):5–32. 2

[4] Nvidia Coorporation. Jetson xavier nx developer kit, 2020.

[Online; accessed 01-01-2021]. 2, 6

[5] Nvidia Coorporation. Jetson agx xavier developer

kit. https://developer.nvidia.com/embedded/jetson-agx-

xavier-developer-kit, 2021. [Online; accessed 01-01-2021].

2, 6

[6] Zhe Dai, Huansheng Song, Xuan Wang, Yong Fang, Xu Yun,

Zhaoyang Zhang, and Huaiyu Li. Video-based vehicle count-

ing framework. 7:64460–64470. 3

[7] N. Dalal and B. Triggs. Histograms of oriented gradi-

ents for human detection. In 2005 IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition

(CVPR’05), volume 1, pages 886–893. IEEE. 2

[8] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.

Williams, J. Winn, and A. Zisserman. The pascal visual ob-

ject classes challenge: A retrospective. International Journal

of Computer Vision, 111(1):98–136, Jan. 2015. 2

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

7



lenge. International Journal of Computer Vision, 88(2):303–

338, June 2010. 2

[10] Ross Girshick. Fast r-CNN. In 2015 IEEE International

Conference on Computer Vision (ICCV), pages 1440–1448.

IEEE. 2

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In 2014 IEEE Conference on

Computer Vision and Pattern Recognition, pages 580–587.

IEEE. 2

[12] M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, and B.

Scholkopf. Support vector machines. 13(4):18–28. 2

[13] Hung-Min Hsu, Tsung-Wei Huang, Gaoang Wang, Jiarui

Cai, Zhichao Lei, and Jenq-Neng Hwang. Multi-Camera

Tracking of Vehicles based on Deep Features Re-ID and

Trajectory-Based Camera Link Models. In 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), pages 416–424, Long Beach, CA,

USA, June 2019. 1, 4

[14] D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge.

Comparing images using the Hausdorff distance. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

15(9):850–863, Sept. 1993. 5

[15] Glenn Jocher, Alex Stoken, Jirka Borovec, NanoCode,

ChristopherSTAN, Liu Changyu, Laughing, Tkianai,

YxNONG, Adam Hogan, Lorenzomammana, AlexWang,

Ayush Chaurasia, Laurentiu Diaconu, Marc, Wanghaoyang,

Ml5ah, Doug, Durgesh, Francisco Ingham, Frederik,

Guilhen, Adrien Colmagro, Hu Ye, Jacobsolawetz, Jake

Poznanski, Jiacong Fang, Junghoon Kim, Khiem Doan, and

Lijun Yu. ultralytics/yolov5: v4.0 - nn.SiLU() activations,

Weights Biases logging, PyTorch Hub integration, Jan.

2021. 3

[16] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuyte-

laars, editors, Computer Vision – ECCV 2014, volume 8693,

pages 740–755. Springer International Publishing. Series Ti-

tle: Lecture Notes in Computer Science. 2

[17] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.

Berg. SSD: Single shot MultiBox detector. In Bastian Leibe,

Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer

Vision – ECCV 2016, volume 9905, pages 21–37. Springer

International Publishing. Series Title: Lecture Notes in Com-

puter Science. 2

[18] Zhongji Liu, Wei Zhang, Xu Gao, Hao Meng, Xiao Tan, Xi-

aoxing Zhu, Zhan Xue, Xiaoqing Ye, Hongwu Zhang, Shilei

Wen, and Errui Ding. Robust Movement-Specific Vehicle

Counting at Crowded Intersections. In 2020 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Work-

shops (CVPRW), pages 2617–2625, Seattle, WA, USA, June

2020. IEEE. 1, 4

[19] David G. Lowe. Distinctive image features from scale-

invariant keypoints. 60(2):91–110. 2

[20] Brendan Tran Morris, Cuong Tran, George Scora, Mo-

han Manubhai Trivedi, and Matthew J. Barth. Real-time

video-based traffic measurement and visualization system

for energy/emissions. 13(4):1667–1678. 2

[21] Milind Naphade, Shuo Wang, David C. Anastasiu, Zheng

Tang, Ming-Ching Chang, Xiaodong Yang, Liang Zheng,

Anuj Sharma, Rama Chellappa, and Pranamesh Chakraborty.

The 4th ai city challenge. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR) Workshops,

page 2665–2674, June 2020. 6

[22] Long Hoang Pham, Hung Ngoc Phan, Nhat Minh Chung,

Tuan-Anh Vu, and Synh Viet-Uyen Ha. A robust multi-

class vehicle detection and classification algorithm for traffic

surveillance system. In 2020 RIVF International Conference

on Computing and Communication Technologies (RIVF),

pages 1–6. IEEE. 1

[23] Joseph Redmon and Ali Farhadi. YOLO9000: Better, faster,

stronger. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 6517–6525. IEEE. 2

[24] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Proceedings of the 28th International

Conference on Neural Information Processing Systems - Vol-

ume 1, NIPS’15, page 91–99, Cambridge, MA, USA, 2015.

MIT Press. 2

[25] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. International Journal of Computer Vision (IJCV),

115(3):211–252, 2015. 2

[26] Siyu Tang, Bjoern Andres, Mykhaylo Andriluka, and Bernt

Schiele. Subgraph decomposition for multi-target tracking.

In 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 5033–5041. IEEE. 2

[27] Xinchao Wang, Engin Turetken, Francois Fleuret, and Pascal

Fua. Tracking interacting objects using intertwined flows.

38(11):2312–2326. 2

[28] Zhihui Wang, Bing Bai, Yujun Xie, Tengfei Xing, Bineng

Zhong, Qinqin Zhou, Yiping Meng, Bin Xu, Zhichao Song,

Pengfei Xu, Runbo Hu, and Hua Chai. Robust and Fast

Vehicle Turn-counts at Intersections via an Integrated Solu-

tion from Detection, Tracking and Trajectory Modeling. In

2020 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition Workshops (CVPRW), pages 2598–2606,

Seattle, WA, USA, June 2020. IEEE. 4

[29] Zhongdao Wang, Liang Zheng, Yixuan Liu, Yali Li, and

Shengjin Wang. Towards real-time multi-object tracking.

In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-

Michael Frahm, editors, Computer Vision – ECCV 2020, vol-

ume 12356, pages 107–122. Springer International Publish-

ing. Series Title: Lecture Notes in Computer Science. 3

[30] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple

online and realtime tracking with a deep association metric.

In 2017 IEEE International Conference on Image Processing

(ICIP), pages 3645–3649. IEEE, 2017. 3, 4

8


