This CVPR 2021 workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Real-time and Robust System for Counting Movement-Specific Vehicle at
Crowded Intersections

Vu-Hoang Tran, Le-Hoai-Hieu Dang, Chinh-Nghiep Nguyen, Ngoc-Hoang-Lam Le,
Khanh-Phong Bui, Lam-Truong Dam, Quang-Thang Le, Dinh-Hiep Huynh
Ho Chi Minh City University of Technology and Education, Vietnam

hoangtv@hcmute.edu.vn

Abstract

In order to reduce traffic congestion and improve the
efficiency of traffic light signals, intelligent traffic systems
are being developed by researchers, and vehicle counting
is one of the key techniques in the system. The traditional
methods mostly focus on increasing the vehicle counting
effectiveness without regard to the program execution
efficiency. The practical value of these systems will be
reduced if they cannot be operated in real-time on compact
IoT device. Therefore, in this paper, we mainly focus on
designing a real-time and robust system for the problem of
counting specific-movement vehicles. The system is able to
detect and track objects in the area of interest, then count
those tracked trajectories using the movements. To improve
performance of tracking multiple objects, a high recall
detection method and an efficient feature matching strategy
were proposed. Moreover, to minimize the wrong direction
of movement prediction and improve the results of vehicle
counting, a cosine similarity-based vehicle counting
scheme is applied. Experiments are conducted on Al City
2021 Track-1 dataset. Our method is evaluated on both
sides of efficiency and effectiveness.

1. Introduction

To reduce traffic congestion, control the flow of traffic
and improve the efficiency of traffic lights, designing
multiple movement vehicle counting systems are attracting
the attention of researchers. The goal of these systems is to
find out the number of vehicles that follow pre-defined
movements in a period of time, and the time stamp when
these vehicles move out of the region of interest (ROI).
These information allow the system to predict how many
vehicles will arrive at the next intersections over a period of
time, the traffic demand and freight ratio on individual
corridors. So that the system can design appropriate
intersection signal timing plans and traffic congestion
mitigation strategies. However, accurate vehicle counting is
still challenging at crowded intersections, due to the
difficulties such as the occlusions between different
vehicles, various lighting and weather conditions (including
dawn, rain, and snow ...), not to mention environmental

& lam_2_rain

Figure 1. Some images of roadside tree and weather conditions

conditions that affect the visibility of the camera as shown
in Fig. 1. Traditional vehicle counting problems are solves
by using some method like frame-wise vehicle counting [6]
[1] [19][22], for the purpose of counting vehicles in one
frame. Others use the density detection strategy [3][2] for
regressing the number of vehicles. Or many other studies
turn to discovery-based strategies [S][6][1][18][19], that is,
detecting the wvehicle then counting. However, the
aforementioned methods cannot handle the mutual
occlusions between vehicles and the occlusions caused by
roadside trees shown in Figure 1, detection and density-
based approaches often miss congested vehicles. Moreover,
the computational efficiency is also an issue that needs to
be addressed.

Therefore, in this paper, we propose to use ScaledYolov4
[23] and Deep SORT [21] as the baseline methods for
vehicle detection and multiple object tracking. In detector,
ScaledYolov4 is carefully fine-tuned to not only minimize
miss detection but also improve the computational
efficiency. Then, to handle the problem of tracking objects
that are missing in some frames due to occlusions, Deep
SORT with the designed efficient features is used.
Furthermore, to deal with vehicle counting by movement of
interest (MOT) problem, we firstly propose to use cosine
similarity to quickly eliminate the directions that are not
interested, then, use the orbit-based nearest neighbor
analysis to determine the correct MOT.

The main contributions of our paper are summarized as
follows: (1) we re-designed a detection-tracking-counting
(DTC) for movement-specific vehicle counting problem
regard to both effectiveness and efficiency. (2) We
modified Deep SORT with the efficient features to improve

|
|]

|
;_ _________ I| { Feature Extracting I | : Direction Proposal
| : | | - | | Assignment | E=———
| == | Matching it P!
| :4' : I I : I'| correct Movement | : Check out :
: YOLOv4-CSP ‘ ¥ : ‘ Kalman Filter ‘ I-: I Trajectory Updating Hdl Aetanmiiation :#I the ROI |

| | | |
| I'l predict Linear Motion | | I |
| Object Detection : : IL of Tracks } { Update State of Tracks | | | Vehicle Counting | ' _Ri“ird_risﬂlfl
—_—— e e e e e e — b ST —

Figure 2. Our framework.

the multiple objects tracking performance. (3) We proposed
the cosine similarity-based and orbit-based nearest
neighbor analysis to improve the vehicle counting
performance.

2. Related Works

Object Detection: Early object recognition
implementation involved the use of classical algorithms,
like those supported in Open CV. Feature extraction is one
of the primary tasks in object detection and most object
detection algorithms [10] [20] are designed based on
manual features (HOG [4], SIFT [13]), then the traditional
classifiers such as Naive Bayes, SVM are used to obtain the
results of the detection. However, these methods cannot
achieve sufficient performance when working under
different conditions. To solve these problems, the state-of-
the-art methods from two perspectives, effectiveness and
efficiency, such as YOLOv4-CSP [23] EfficientDet-D1
[24] and RetinaNet [25] were proposed. The comparison
about the effectiveness and efficiency using AP [27] and
FPS of the three algorithms is given in Table 1. Based on
the Table, Yolov4-CSP with input resolution of 512 is both
effective and efficient. Therefore, our detector will be
designed based on Yolov4-CSP structure.

Algorithms AP FPS Image Size
EfficientDet-D1 40.5 74 640
YOLOv4-CSP 47.5 73/70 640
RetinaNet 41.5 53 640
YOLOv4-CSP 46.2 97/93 512

Table 1. Comparison of effectiveness and efficiency
on different detection algorithms on COCO2017 test
set [14]

Multi-Object Tracking: Multi-Object tracking (MOT)
is another very important task in computer vision. In recent
years, with the improvement of object detection, many
existing MOT studies adopts the tracking-by-detection
strategy [7] [32] [33] [35], which performs object detection

first and then associate the detections afterwards. In [21], to
determine the bounding box's orbital motion then predict
the next bounding box, the deterministic Hungarian
algorithm [34] was used. Besides, to increase tracking
accuracy, some movement and visual information were
used to replace the traditional association metric. This
framework got the good performance in terms of tracking
precision and accuracy. However, because of using the deep
features, which take a lot of time to extract, the processing
speed of the above method is not very impressive.
Therefore, to improve the execution speed, we will slightly
modify it using the more efficient features.

Vehicle Counting: As a fundamental technique for
intelligent transportation, vehicle counting is also under
investment in recent research. The existing methods of
vehicle counting can be mainly divided into two categories:
density-aware approach [6] and detection-aware approach
[38] [39] [40]. In the detection-aware approach, the object
can be firstly detected by some deep learning detectors or
background subtraction models then the simple feature-
based tracking is used to generate object position during
video [36]. By setting the entrance and exist the vehicle
counting can be then performed. However, these methods
may not yield high results for counting movement-specific
vehicle, where vehicle counting should be performed
separately for different pre-defined movements such as left-
turning, right-turning or through traffic at a given
intersection. Therefore, to improve the performance for this
particular task, we first find and disassemble the typical
trajectories for each movement using statistical method.
Then, we assign one movement for each vehicle by
measuring the distances between the discrete vehicle's
trajectory and the discrete typical trajectories. Finally,
vehicle counting is performed by determining when the
certain vehicle is fully exiting the ROL.

3. Methodology

The overview of our framework is given in Fig. 2
including three main parts: object detection, online multi-
object tracking, and vehicle counting, which will be
specified below.

y<1

Input features, b

bxy bx(1—-vy)
Conv 1x1, Conv 1x1,
bx0.25 bx0.75
Conv
Conv
Concat
!

Output feature, b

Figure 3. CSP Bottle Neck structure.

3.1 Object Detection

Considering both effectiveness and efficiency, we
choose Yolov4-CSP as the base-line model for vehicle
detection with the input resolution of 512x512. According
to the structure of the CSP [29] the features are divided into
two branches as shown in Fig. 3, one will pass through
some more layers to be further enhanced and another will
skip these layers. Normally, input features will be split in
half (with = 0.5). But in this paper, to speed up the model,

we reduce ¥ to 0.25, this will reduce the number of

parameters and thereby increase FPS, but as a result it will
decrease mAP. To compensate for the reduction in terms of
mAP, synchronized batch normalization [27][28] is used to
pre-train our model.

3.2 Online Multi-Object Tracking

After detecting objects, Deep SORT [21] is used as the
baseline method for online MOT. We slightly modified
Deep SORT algorithm to improve the execution speed.
3.2.1 Preliminary

Similar to [21], we also adopts a single hypothesis
tracking methodology with recursive Kalman filtering [31]
and frame-by-frame data association. State space in Kalman
filtering is defined in the eights dimensional state spaces,
including the bounding box center position (u, v), aspect
ratio v, height h, and their respective velocities in image
coordinates. Object motion follows a standard Kalman
filter with constant velocity model. However, different
from [21], we combine motion feature, time feature,
movement feature and shape feature to obtain similarity
matrix between detection and predicted Kalman states of
tracks. For each track & we count the number of frames
since the last successful measurement association. Tracks

Frame_id appear

save | Mean = .y, w, h, X, ¥, W, '] Frame_id + N
Age Box =[x, y, w, h]
O ERY) ML S—
>

I .
k S Cost matrix = W x Dist

1/ (Age+0.1)
W=[0.8 1.0 0.5]

Figure 4. Calculate the cost matrix from efficient features

that exceed a predefined maximum age A.qx are considered
to have left the scene and are deleted from the track set.
New track is initiated each detection that cannot be
associated to the existing tracks. In order to be lighter to
implement in real-time, we propose some methods to
improve speed without reduce performance.

3.2.2 Efficient features matching

One of typical challenges in AIC is the limited camera
vision, which is usually caused by common obstacles
(bushes, road signs, utility poles, bad weathers...). This
challenge makes object detection model become less
reliable, leading to the frequent occurrence of inconsistent
bounding boxes. Therefore, using the similarities in
object’s features is much more effective than using IOU for
track-matching. However, deep feature extractor requires a
lot of computing power, so a combined feature is suggested,
this combined feature contain some simple features, which
are information of shape, direction and age of track.

Direction feature: Track’s direction is predicted based
on its velocity vector using the Kalman filter. Whenever a
bounding box appear in detection task, its direction will be
defined by how close its current location to different initial
trajectories.

Appearance time feature: The frame when an object
suddenly disappears within ROI will be saved as shown in
Fig. 4. The bounding boxes that appeared suddenly after
this frame will be considered more by using the cost matrix
function described in Figure 4. In this cost matrix, some
new parameters are used including: N, Dist and Age. N
means appearance time feature. The smaller N means the
object appeared closer to the disappearance time. Dist is the
distance from the object to our prediction vector, the closer
it is, the higher the possibility of merging. Age is the age of
the object being tracked; we prioritize match for those with
high value of Age.

3.3 Vehicle Counting

In this section, we predict the trajectory of each track and
determine frame id on which the track disappeared from the
ROL. Firstly, we find direction proposals of each track by
cosine similarity. Next, we predict the correct movement by

Orbit tracks

1 Cosine Proposed Orbit Correct
o Similarity |~ MOIs | Similarity movement

MOls

Figure 5. The process of determining the direction of movement

measuring the similarity between trajectory of track and the
pre-defined trajectories of the movements. Finally, we
record the result when any track exiting the ROI. Figure 5
describes the process of determining the direction of
movement of a vehicle.

3.3.1 Pre-defined Trajectories
For each camera, we first visualize all centers of the
labeled bounding boxes in training data. Then, we manually
draw a set of points as the pre-defined trajectory based on
that as shown in Figure 6.
3.3.2 Direction Proposal Assignment
Trajectory of Object (Ob) and pre-defined trajectories
of movement of interesting (MOI) are both divided into
sevaral segments as shown in Figure 7. MOI proposal M; of
k™ object Oby is defined as Eq. 1. Usually, when
determining the direction of a track, we are only interested
in the starting and ending points in the track’s trajectory.
This will not be correct when applied to curved orbits. We
proposed dividing the orbits into several segments, then
calculating the cosine similarities between each pair
segments and then adding them up as shown in Eq. 2. The
more segments, the more accurate.
MOI_proposal_Ob,, = [i:cos(0by, M;) = «], (1)
where, cos(0Oby, M;) is defined as in Eq. 2, @ is a pre-
defined threshold. In this paper, we set a equal to 2.2.

)

igure 6. The pre-defined trajectories

m3
m2
m33

m22 m32

mill m21 m31

ob1l
Figure 7. Trajectories is segmented

cos(Oby, M;) = §=1 cos(0by;j, Mj). ?2)

In equation 2, cos(Obyj, Mj) is cosine of the angle

between Oby; vector and M;; vector, the illustration of these

vectors is shown in Fig. 7. Oby; is vector j-th vector in the

trajectory segmentation of Oby. Mj; is vector j-th vector in

the trajectory segmentation of M. s is the number of
segments, in our case, s is set to 3.

3.3.3 Determine Correct Movement of Interesting

Sometimes we have cases where the two pre-defined
directions (M1, M2) and the actual directions are very close
to each other, causing confusion as shown in Fig. 8. So, we
deal with it by using Algorithm 1, named as Orbit-based
nearest neighbor analysis, to calculate the distance and
determine the “number of nearest points” for each pre-
defined direction. Based on this, we are able to accurately
determine the direction of movement limiting the
aforementioned confusions. Algorithm 1 shows our
proposed Nearest Neighbor Analysis based on movement
prediction method. In Algorithm 1, all trajectories are
fragmented into point sets. For each point in the trajectory
of the track, we find the closest point that is in the pre-
defined trajectories. Variable counter error is used to count
the number of points track’s trajectory that are too far from
the pre-defined MOL. If counter_error is too large, this track
will be removed. The exact movement is the movement
whose index appears most frequently in array C.

L ° »
®
.
o TR B
\ ® /. »
* e e & & / . Num nearest=4
° o L]
°
e - ° =
- ;
o A * & =
Num nearest=38 L] e ® M1
o«
»
* 7
L _® ob
o
M2

Figure 8. Orbit-based nearest neighbor analysis

Algorithm 1: Orbit-based nearest neighbor analysis
Input: Given one track:
1: Trajectory of track with n point:
Orbit ={p,,p;s---D,} >
2: Pre-defined Trajectories of each MOI:
MOIs ={M,M,,..M,};
3: Proposed MOIs indices: D;
4. Distance threshold: H;
Output: Correct movement: res;
5: MultiPoint=[M, :ie D];

6 counter _error =0,

7: Initialize list C=[];

8 for pin Orbit do

9 find point in MultiPo int nearest to p:
Ne = nearest_points(p, MultiPoint);

0= if dis, y, 2 H

then
counter _error++;
continue;
end if
11: for d in D do
12: if Nee M,
then
Append d to list C: d >>C;
break;
end if
13: end for
14: end for
15: if counter error>n/2
then
return 0;
end if
16: return res =max(C,key =C.count);

4. Experiments

4.1. Implementation Environment.

Hard ware: All of our experiments are tested on Tesla T4
with 16G and Intel(R) Xeon(R) Silver 4216 CPU @
2.1GHz.

Software: Python 3.7, Torch 1.7, CUDA 10.2.

4.2. Datasets

Al City 2021 Track-1 Dataset [30]: The data for this
challenge comes from multiple traffic cameras from a city
in the United States as well as from state highways in Lowa
which contains 31 video clips (about 9 hours in total)

captured from 20 unique camera views (some cameras
provide multiple video clips to cover different lighting and
weather conditions.). Each camera view comes with a
detailed instruction document describing the region of
interest (ROI) and movements of interest (MOI). The 9
hours of video in track 1 are split into two datasets A and
B. Dataset A (about 5 hours in total) are made available to
participating teams, dataset B (about 4 hours in total) will
be used for later testing and not available to participates. So
all our test results are done on dataset A. Detection model
is fine-tuned on the Al City 2021 Track-1 dataset A with
pre-trained model on COCO. Totally 2860 frames from the
video in AICity2021 dataset A were annotated, where only
cars and trucks are considered.

4.3. Evaluation Metrics

We adopt the official evaluation metrics in Al City 2021
Challenge [30]. The final score S1 is a weighted
combination between efficiency score Siefficiency and
effectiveness score Siefectiveness. It 1 defined as Eq. 3.

Sl =0.3x Slefficiency + 0.7 X Sleffectiveness' (3)
In (3), the Sieficiency SCOTe is based on the total execution
time provided by the contestant, adjusted by the efficiency
base factor, and normalized within the range [0, 1.1x video
play-back time]. Sieffectiveness 18 computed as a weighted
average of normalized weighted root mean square error
scores nwRMSE across all videos, movements, and vehicle
classes in the test set, with proportional weights based on
the number of vehicles of the given class in the movement.
To reduce jitters due to labeling discrepancies, each video
is split into segments and we consider the cumulative
vehicle counts from the start of the video to the end of each
segment.

4.4. Object detection result

On this experiment of object detection, we will test
models in the test dataset which is 10% of AI City 2021
Track-1 dataset. Evaluation results are based on mAP
scores with priority for recall [26], and FPS as shown in
Table 2. During this mission, we expect to identify as many
vehicles as possible, so that the result will have lower miss
rates, leading to higher effectiveness scores. Also, FPS is
directly affected to efficiency. Therefore, the model must
care about both mAP and FPS.

We compare Yolov4-CSP, Yolov4-CSP-0.25 and
Yolov5x as shown in Table 2. Based on the Table, Yolov4-
CSP with gamma=0.25 have higher FPS than Yolov5x and
Yolov4-CSP. Its mAP is approximate with Yolov4-CSP,
and higher than Yolov5x. Therefore, Yolov4-CSP-0.25 is
chosen to ensure both sides: effectiveness and efficiency.
After that we pre-trained model Yolov4-CSP-0.25 with
synchronized batch normalization to improve mAP with
batch-size=8, denoted as Yolov4-CSP-0.25-sync.

Model mAPs0(%) Precision(%)IRecall(%)IFPS
Yolov4-CSP 87.6 65.5 93.6 133
Yolov4-CSP-0.25 | 86.8 62.1 92.3 (164
Yolov5x 88.1 84.0 855 |59
YOIOV“S'Y(I:;I"OQS | 817 65.7 92.7 |169

Table 2. The comparison of mAP and FPS with different methods

4.5. Tracking

To improve tracking task, several versions based on
Yolov4-CSP are implemented. The results are represented
in Table 3. Besides, to show the effectiveness of “efficient
features matching”, we also show some tracking results
comparing between with and without the proposed
“efficient features matching” as shown in Fig. 9. With
“efficient features matching”, we are able to track the
objects smoothly without being affected by sudden
disappearances due to the effects of weather or visibility.

Model Effectiveness | Efficiency | Score
YolvEIS 1 09476 0.8673 | 0.9235
Yolovi CSP 0.93 0.8822 | 0.9156
Yolovt CSP 0.939 0.87 | 0.9183

Table 3. Different versions of Yolov4-CSP

2SI g

-5

(@)

(b)

Figure 9. Tracking results (a) after applying efficient feature
matching. (b) before applying efficient feature matching.

Yolov4-CSP-512-s1: Using 1 frame-skipping to improve
performance of the model, though it may affect the
accuracy, the benefit of performance gain is more valuable.

Yolov4-CSP-521-s2: To see whether we can gain more
performance without heavily affect model’s accuracy, 2
frames skipping is implemented. Although model has
become unreliable, gaining more performance. Therefore,
2 frame skipping approach is chosen to be the foundation to
develop other improvements.

Yolov4-CSP-512s-s12-fd: In this final version, either 1
or 2 frame-skipping is used depending on video source. By
doing this, our model has become more flexible so it can
increase both its accuracy and performance at the same
time.

4.6. Overall Score on Al City Challenge 2021 Track 1
Dataset

Table 4 show the leader board of AI City Challenge
2021 Track 1. Our proposed vehicle counting method
achieved 4th place in the ranking.

Team ID S1 score
37 0.9467
5 0.9459
8 0.9263
19 (our) 0.9249
118 0.9235

Table 4. Top 5 overall scores of the vehicle counting task
in AI City 2021 track 1.

References

[I]1A. Abdagic, O. Tanovic, A. Aksamovic, and S.
Huseinbegovic. Counting traffic using optical flow algorithm on
video footage of a complex crossroad. pages 41-45, 2010.

[2] Shubhra Aich and Ian Stavness. Leaf counting with deep
convolutional and deconvolutional networks. pages 2080— 2089,
2017.

[3]J. Barandiaran, B. Murguia, and F. Boto. Real-time people
counting using multiple lines. pages 159-162, 2008.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), volume 1,
pages 886—893 vol. 1, 2005.

[5] Luca Del Pizzo, Pasquale Foggia, Antonio Greco, Gennaro
Percannella, and Mario Vento. Counting people by rgb or depth
overhead cameras. Pattern Recognition Letters, 81:41— 50, 2016.

[6] KV Embleton, CE Gibson, and SI Heaney. Automated
counting of phytoplankton by pattern recognition: a comparison
with a manual counting method. Journal of Plankton Research,
25(6):669-681, 2003.

[7] Wongun Choi. Near-online multi-target tracking with
aggregated local flow descriptor. In Proceedings of the IEEE

international conference on computer vision, pages 3029— 3037,
2015.

[8] Mark Everingham, SM Ali Eslami, Luc Van Gool,
Christopher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes challenge: A retrospective.
International journal of computer vision, 111(1):98-136, 2015.

[9] Mark Everingham, Luc Van Gool, Christopher KI
Williams, John Winn, and Andrew Zisserman. The pascal visual
object classes (voc) challenge. International journal of computer
vision, 88(2):303-338, 2010.

[10] P. Felzenszwalb, D. McAllester, and D. Ramanan. A
discriminatively trained, multiscale, deformable part model. In
2008 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1-8, 2008.

[11] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE
international conference on computer vision, pages 1440-1448,
2015.

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 580-587, 2014.

[13] Luo Juan and Luo Gwon. A comparison of sift, pca-sift
and surf. International Journal of Signal Processing, Image
Processing and Pattern Recognition, 8(3):169-176, 2007.

[14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, and C
Lawrence ~ Zitnick. Microsoft coco: Common objects in context.
In European conference on computer vision, pages 740-755.
Springer, 2014.

[15] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.
Ssd: Single shot multibox detector. In European conference on
computer vision, pages 21-37. Springer, 2016.

[16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 779788, 2016.

[17] Shaoging Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information processing
systems, pages 91-99, 2015.

[18] Frank Y Shih and Xin Zhong. Automated counting and
tracking of vehicles. International Journal of Pattern Recognition
and Artificial Intelligence, 31(12):1750038, 2017.

[19] L. Unzueta, M. Nieto, A. Cortes, J. Barandiaran, O.
Otaegui, and P. Sanchez. Adaptive multicue background
subtraction for robust vehicle counting and classification. [EEE
Transactions on Intelligent Transportation Systems, 13(2):527—
540, 2012.

[20] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In Proceedings of the 2001
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. CVPR 2001, volume 1, pages I-1, 2001.

[21] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple
online and realtime tracking with a deep association metric. In
2017 IEEE international conference on image processing (ICIP),
pages 3645-3649. IEEE, 2017.

[22] Honghong Yang and Shiru Qu. Real-time vehicle
detection and counting in complex traffic scenes using
background subtraction model with low-rank decomposition. IET

Intelligent Transport Systems, 12(1):75-85, 2017.

[23] Chien-Yao Wang, Alexey Bochkovskiy, Hong-Yuan
Mark Liao .

[24] Mingxing Tan, Ruoming Pang, and Quoc V Le.
EfficientDet: Scalable and efficient object detection. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

[25] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollar. Focal loss for dense object detection. In
Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pages 2980-2988, 2017.

[26] Paul Henderson, Vittorio Ferrari. End-to-end training of
object class detectors for mean average precision. Conference:
Asian Conference on Computer Vision

[27] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue
Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. Context
Encoding for Semantic Segmentation.In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[28] Ioffe, S., & Szegedy, C. (2015). Batch normalization:
Accelerating deep network training by reducing internal covariate
shift, arXiv preprint arXiv:1502.03167.

[29] Chien-Yao Wang, Hong-Yuan Mark Liao, [-Hau
Yeh, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh. CSPNet:
A New Backbone that can Enhance Learning Capability of CNN.
Published in 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW).

[30] Milind Naphade and Shuo Wang and David
C. Anastasiu and ~ Zheng Tang and ~ Ming-Ching Chang and
Xiaodong Yang and Liang Zheng and Anuj Sharma and
Rama Chellappa and Pranamesh Chakraborty. The 4th Al City
Challenge. The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops.

[31] Qiang Li, Ranyang Li, Kaifan Ji, Wei Dai. Kalman Filter
and Its Application. Published in:2015 8th International
Conference on Intelligent Networks and Intelligent Systems
(ICINI).

[32] Caglayan Dicle, Octavia I Camps, and Mario Sznaier. The
way they move: Tracking multiple targets with similar
appearance. In Proceedings of the IEEE international conference
on computer vision, pages 2304-2311, 2013.

[33] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark suite. In
2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 3354-3361. IEEE, 2012.

[34] Harold W Kuhn. The Hungarian Method for the
Assignment Problem. Naval research logistics quarterly, 2(1-
2):83-97, 1955

[35] Aljosa Osep, Wolfgang Mehner, Markus Mathias, and
Bastian Leibe. Combined image-and world-space tracking in
traffic scenes. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 1988-1995. IEEE, 2017

[36] Milind Naphade and Zheng Tang and Ming-Ching Chang
and David C. Anastasiu and Anuj Sharma and Rama Chellappa
and Shuo Wang and Pranamesh Chakraborty and Tingting Huang
and Jeng-Neng Hwang and Siwei Lyu. The 2019 AI City
Challenge. The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops.

[37] Mohammad Shokrolah Shirazi and Brendan Morris.
Vision based turning movement counting at intersections by
cooperating zone and trajectory comparison modules. In 17th

International IEEE Conference on Intelligent Transportation
Systems (ITSC), pages 3100-3105. IEEE, 2014

[38] Z. Dai, H. Song, X. Wang, Y. Fang, X. Yun, Z. Zhang, and
H. Li. Video-based vehicle counting framework. IEEE Access,
7:64460-64470, 2019

[39] Huansheng Song, Xuan Wang, Cui Hua, Weixing Wang,
Qi Guan, and Zhaoyang Zhang. Vehicle trajectory clustering
based on 3d information via a coarse-to-fine strategy. Soft
Computing, 22(5):1433-1444, 2018.

[40] Maojin Sun, Yan Wang, Teng Li, Jing Lv, and Jun Wu.
Vehicle counting in crowded scenes with multi-channel and multi-
task convolutional neural networks. Journal of Visual
Communication and Image Representation, 49:412— 419, 2017.

[41] Milind Naphade and Ming-Ching Chang and Anuj Sharma
and David C. Anastasiu and Vamsi Jagarlamudi and Pranamesh
Chakraborty and Tingting Huang and Shuo Wang and Ming-Yu
Liu and Rama Chellappa and Jenq-Neng Hwang and Siwei
LyuMilind Naphade and Ming-Ching Chang and Anuj Sharma
and David C. Anastasiu and Vamsi Jagarlamudi and Pranamesh
Chakraborty and Tingting Huang and Shuo Wang and Ming-Yu
Liu and Rama Chellappa and Jenq-Neng Hwang and Siwei Lyu.
The 2018 NVIDIA Al City Challenge. Proc. CVPR Workshops.

[42] Milind Naphade and David C. Anastasiu and Anuj Sharma
and Vamsi Jagrlamudi and Hyeran Jeon and Kaikai Liu and Ming-
Ching Chang and Siwei Lyu and Zeyu Gao. The NVIDIA Al City
Challenge. Prof. SmartWorld.

[43] Zheng Tang and Milind Naphade and Ming-Yu Liu and
Xiaodong Yang and Stan Birchfield and Shuo Wang and
Ratnesh Kumar and David Anastasiu and Jenq-Neng Hwang.
CityFlow: A City-Scale Benchmark for Multi-Target Multi-
Camera Vehicle Tracking and Re-Identification. The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR).

[44] Yue Yao and Liang Zheng and Xiaodong Yang and Milind
Naphade and Tom Gedeon. Simulating Content Consistent
Vehicle Datasets with Attribute Descent. The European
Conference on Computer Vision (ECCV).

