

Abstract

In order to reduce traffic congestion and improve the

efficiency of traffic light signals, intelligent traffic systems

are being developed by researchers, and vehicle counting

is one of the key techniques in the system. The traditional

methods mostly focus on increasing the vehicle counting

effectiveness without regard to the program execution

efficiency. The practical value of these systems will be

reduced if they cannot be operated in real-time on compact

IoT device. Therefore, in this paper, we mainly focus on

designing a real-time and robust system for the problem of

counting specific-movement vehicles. The system is able to

detect and track objects in the area of interest, then count

those tracked trajectories using the movements. To improve

performance of tracking multiple objects, a high recall

detection method and an efficient feature matching strategy

were proposed. Moreover, to minimize the wrong direction

of movement prediction and improve the results of vehicle

counting, a cosine similarity-based vehicle counting

scheme is applied. Experiments are conducted on AI City

2021 Track-1 dataset. Our method is evaluated on both

sides of efficiency and effectiveness.

1. Introduction

To reduce traffic congestion, control the flow of traffic

and improve the efficiency of traffic lights, designing

multiple movement vehicle counting systems are attracting

the attention of researchers. The goal of these systems is to

find out the number of vehicles that follow pre-defined

movements in a period of time, and the time stamp when

these vehicles move out of the region of interest (ROI).

These information allow the system to predict how many

vehicles will arrive at the next intersections over a period of

time, the traffic demand and freight ratio on individual

corridors. So that the system can design appropriate

intersection signal timing plans and traffic congestion

mitigation strategies. However, accurate vehicle counting is

still challenging at crowded intersections, due to the

difficulties such as the occlusions between different

vehicles, various lighting and weather conditions (including

dawn, rain, and snow …), not to mention environmental

conditions that affect the visibility of the camera as shown

in Fig. 1. Traditional vehicle counting problems are solves

by using some method like frame-wise vehicle counting [6]

[1] [19][22], for the purpose of counting vehicles in one

frame. Others use the density detection strategy [3][2] for

regressing the number of vehicles. Or many other studies

turn to discovery-based strategies [5][6][1][18][19], that is,

detecting the vehicle then counting. However, the

aforementioned methods cannot handle the mutual

occlusions between vehicles and the occlusions caused by

roadside trees shown in Figure 1, detection and density-

based approaches often miss congested vehicles. Moreover,

the computational efficiency is also an issue that needs to

be addressed.

Therefore, in this paper, we propose to use ScaledYolov4

[23] and Deep SORT [21] as the baseline methods for

vehicle detection and multiple object tracking. In detector,

ScaledYolov4 is carefully fine-tuned to not only minimize

miss detection but also improve the computational

efficiency. Then, to handle the problem of tracking objects

that are missing in some frames due to occlusions, Deep

SORT with the designed efficient features is used.

Furthermore, to deal with vehicle counting by movement of

interest (MOT) problem, we firstly propose to use cosine

similarity to quickly eliminate the directions that are not

interested, then, use the orbit-based nearest neighbor

analysis to determine the correct MOT.

The main contributions of our paper are summarized as

follows: (1) we re-designed a detection-tracking-counting

(DTC) for movement-specific vehicle counting problem

regard to both effectiveness and efficiency. (2) We

modified Deep SORT with the efficient features to improve

Figure 1. Some images of roadside tree and weather conditions

Real-time and Robust System for Counting Movement-Specific Vehicle at

Crowded Intersections

Vu-Hoang Tran, Le-Hoai-Hieu Dang, Chinh-Nghiep Nguyen, Ngoc-Hoang-Lam Le,

Khanh-Phong Bui, Lam-Truong Dam, Quang-Thang Le, Dinh-Hiep Huynh

Ho Chi Minh City University of Technology and Education, Vietnam
hoangtv@hcmute.edu.vn

the multiple objects tracking performance. (3) We proposed

the cosine similarity-based and orbit-based nearest

neighbor analysis to improve the vehicle counting

performance.

2. Related Works

Object Detection: Early object recognition

implementation involved the use of classical algorithms,

like those supported in Open CV. Feature extraction is one

of the primary tasks in object detection and most object

detection algorithms [10] [20] are designed based on

manual features (HOG [4], SIFT [13]), then the traditional

classifiers such as Naive Bayes, SVM are used to obtain the

results of the detection. However, these methods cannot

achieve sufficient performance when working under

different conditions. To solve these problems, the state-of-

the-art methods from two perspectives, effectiveness and

efficiency, such as YOLOv4-CSP [23] EfficientDet-D1

[24] and RetinaNet [25] were proposed. The comparison

about the effectiveness and efficiency using AP [27] and

FPS of the three algorithms is given in Table 1. Based on

the Table, Yolov4-CSP with input resolution of 512 is both

effective and efficient. Therefore, our detector will be

designed based on Yolov4-CSP structure.

Algorithms AP FPS Image Size

EfficientDet-D1 40.5 74 640

YOLOv4-CSP 47.5 73/70 640

RetinaNet 41.5 53 640

YOLOv4-CSP 46.2 97/93 512

Table 1. Comparison of effectiveness and efficiency

on different detection algorithms on COCO2017 test

set [14]

Multi-Object Tracking: Multi-Object tracking (MOT)

is another very important task in computer vision. In recent

years, with the improvement of object detection, many

existing MOT studies adopts the tracking-by-detection

strategy [7] [32] [33] [35], which performs object detection

first and then associate the detections afterwards. In [21], to

determine the bounding box's orbital motion then predict

the next bounding box, the deterministic Hungarian

algorithm [34] was used. Besides, to increase tracking

accuracy, some movement and visual information were

used to replace the traditional association metric. This

framework got the good performance in terms of tracking

precision and accuracy. However, because of using the deep

features, which take a lot of time to extract, the processing

speed of the above method is not very impressive.

Therefore, to improve the execution speed, we will slightly

modify it using the more efficient features.

Vehicle Counting: As a fundamental technique for

intelligent transportation, vehicle counting is also under

investment in recent research. The existing methods of

vehicle counting can be mainly divided into two categories:

density-aware approach [6] and detection-aware approach

[38] [39] [40]. In the detection-aware approach, the object

can be firstly detected by some deep learning detectors or

background subtraction models then the simple feature-

based tracking is used to generate object position during

video [36]. By setting the entrance and exist the vehicle

counting can be then performed. However, these methods

may not yield high results for counting movement-specific

vehicle, where vehicle counting should be performed

separately for different pre-defined movements such as left-

turning, right-turning or through traffic at a given

intersection. Therefore, to improve the performance for this

particular task, we first find and disassemble the typical

trajectories for each movement using statistical method.

Then, we assign one movement for each vehicle by

measuring the distances between the discrete vehicle's

trajectory and the discrete typical trajectories. Finally,

vehicle counting is performed by determining when the

certain vehicle is fully exiting the ROI.

3. Methodology

The overview of our framework is given in Fig. 2

including three main parts: object detection, online multi-

object tracking, and vehicle counting, which will be

specified below.

Figure 2. Our framework.

3.1 Object Detection

Considering both effectiveness and efficiency, we

choose Yolov4-CSP as the base-line model for vehicle

detection with the input resolution of 512x512. According

to the structure of the CSP [29] the features are divided into

two branches as shown in Fig. 3, one will pass through

some more layers to be further enhanced and another will

skip these layers. Normally, input features will be split in

half (with γ = 0.5). But in this paper, to speed up the model,

we reduce γ to 0.25, this will reduce the number of

parameters and thereby increase FPS, but as a result it will

decrease mAP. To compensate for the reduction in terms of

mAP, synchronized batch normalization [27][28] is used to

pre-train our model.

3.2 Online Multi-Object Tracking

After detecting objects, Deep SORT [21] is used as the

baseline method for online MOT. We slightly modified

Deep SORT algorithm to improve the execution speed.

3.2.1 Preliminary

Similar to [21], we also adopts a single hypothesis

tracking methodology with recursive Kalman filtering [31]

and frame-by-frame data association. State space in Kalman

filtering is defined in the eights dimensional state spaces,

including the bounding box center position (u, v), aspect

ratio γ, height h, and their respective velocities in image

coordinates. Object motion follows a standard Kalman

filter with constant velocity model. However, different

from [21], we combine motion feature, time feature,

movement feature and shape feature to obtain similarity

matrix between detection and predicted Kalman states of

tracks. For each track k we count the number of frames

since the last successful measurement association. Tracks

that exceed a predefined maximum age Amax are considered

to have left the scene and are deleted from the track set.

New track is initiated each detection that cannot be

associated to the existing tracks. In order to be lighter to

implement in real-time, we propose some methods to

improve speed without reduce performance.

3.2.2 Efficient features matching

One of typical challenges in AIC is the limited camera

vision, which is usually caused by common obstacles

(bushes, road signs, utility poles, bad weathers…). This

challenge makes object detection model become less

reliable, leading to the frequent occurrence of inconsistent

bounding boxes. Therefore, using the similarities in

object’s features is much more effective than using IOU for

track-matching. However, deep feature extractor requires a

lot of computing power, so a combined feature is suggested,

this combined feature contain some simple features, which

are information of shape, direction and age of track.

Direction feature: Track’s direction is predicted based

on its velocity vector using the Kalman filter. Whenever a

bounding box appear in detection task, its direction will be

defined by how close its current location to different initial

trajectories.

Appearance time feature: The frame when an object

suddenly disappears within ROI will be saved as shown in

Fig. 4. The bounding boxes that appeared suddenly after

this frame will be considered more by using the cost matrix

function described in Figure 4. In this cost matrix, some

new parameters are used including: N, Dist and Age. N

means appearance time feature. The smaller N means the

object appeared closer to the disappearance time. Dist is the

distance from the object to our prediction vector, the closer

it is, the higher the possibility of merging. Age is the age of

the object being tracked; we prioritize match for those with

high value of Age.

3.3 Vehicle Counting

In this section, we predict the trajectory of each track and

determine frame id on which the track disappeared from the

ROI. Firstly, we find direction proposals of each track by

cosine similarity. Next, we predict the correct movement by

Figure 3. CSP Bottle Neck structure.

Figure 4. Calculate the cost matrix from efficient features

measuring the similarity between trajectory of track and the

pre-defined trajectories of the movements. Finally, we

record the result when any track exiting the ROI. Figure 5

describes the process of determining the direction of

movement of a vehicle.

3.3.1 Pre-defined Trajectories

For each camera, we first visualize all centers of the

labeled bounding boxes in training data. Then, we manually

draw a set of points as the pre-defined trajectory based on

that as shown in Figure 6.

3.3.2 Direction Proposal Assignment

Trajectory of Object (Ob) and pre-defined trajectories

of movement of interesting (MOI) are both divided into

sevaral segments as shown in Figure 7. MOI proposal Mi of

kth object Obk is defined as Eq. 1. Usually, when

determining the direction of a track, we are only interested

in the starting and ending points in the track’s trajectory.

This will not be correct when applied to curved orbits. We

proposed dividing the orbits into several segments, then

calculating the cosine similarities between each pair

segments and then adding them up as shown in Eq. 2. The

more segments, the more accurate.

 ���_������	
_���
 ��: cos���� , ��� � ��, (1)

where, cos���� , ��� is defined as in Eq. 2, � is a pre-

defined threshold. In this paper, we set � equal to 2.2.

 cos���� , ���
 ∑ cos ����� , �����
�� . (2)

In equation 2, cos(Obkj, Mij) is cosine of the angle

between Obkj vector and Mij vector, the illustration of these

vectors is shown in Fig. 7. Obkj is vector j-th vector in the

trajectory segmentation of Obk. Mij is vector j-th vector in

the trajectory segmentation of Mk. s is the number of

segments, in our case, s is set to 3.

3.3.3 Determine Correct Movement of Interesting

Sometimes we have cases where the two pre-defined

directions (M1, M2) and the actual directions are very close

to each other, causing confusion as shown in Fig. 8. So, we

deal with it by using Algorithm 1, named as Orbit-based

nearest neighbor analysis, to calculate the distance and

determine the “number of nearest points” for each pre-

defined direction. Based on this, we are able to accurately

determine the direction of movement limiting the

aforementioned confusions. Algorithm 1 shows our

proposed Nearest Neighbor Analysis based on movement

prediction method. In Algorithm 1, all trajectories are

fragmented into point sets. For each point in the trajectory

of the track, we find the closest point that is in the pre-

defined trajectories. Variable counter_error is used to count

the number of points track’s trajectory that are too far from

the pre-defined MOI. If counter_error is too large, this track

will be removed. The exact movement is the movement

whose index appears most frequently in array C.

Figure 6. The pre-defined trajectories

Figure 5. The process of determining the direction of movement

Figure 7. Trajectories is segmented

Figure 8. Orbit-based nearest neighbor analysis

Algorithm 1: Orbit-based nearest neighbor analysis

Input: Given one track:

1: Trajectory of track with n point:

0 1{p ,p ,...p }nOrbit = ;

2: Pre-defined Trajectories of each MOI:

1 2{M ,M ,...M }iMOIs = ;

3: Proposed MOIs indices: D;

4: Distance threshold: H;

Output: Correct movement: res;

5: int [M : i D]
i

MultiPo = ∈ ;

6: _ 0counter error = ;

7: Initialize list []C = ;

8: for p in Orbit do

9: find point in intMultiPo nearest to p:

 Ne = nearest_points(p, intMultiPo);

10: if ,p Nedis H≥

 then

 _counter error + + ;

 continue;

 end if

11: for d in D do

12: if
dNe M∈

 then

 Append d to list C: d C>> ;

 break;

 end if

13: end for

14: end for

15: if _ / 2counter error n>

then

 return 0;

end if

16: return max(C,key .)res C count= = ;

4. Experiments

4.1. Implementation Environment.

Hard ware: All of our experiments are tested on Tesla T4

with 16G and Intel(R) Xeon(R) Silver 4216 CPU @

2.1GHz.

Software: Python 3.7, Torch 1.7, CUDA 10.2.

4.2. Datasets

AI City 2021 Track-1 Dataset [30]: The data for this

challenge comes from multiple traffic cameras from a city

in the United States as well as from state highways in Lowa

which contains 31 video clips (about 9 hours in total)

captured from 20 unique camera views (some cameras

provide multiple video clips to cover different lighting and

weather conditions.). Each camera view comes with a

detailed instruction document describing the region of

interest (ROI) and movements of interest (MOI). The 9

hours of video in track 1 are split into two datasets A and

B. Dataset A (about 5 hours in total) are made available to

participating teams, dataset B (about 4 hours in total) will

be used for later testing and not available to participates. So

all our test results are done on dataset A. Detection model

is fine-tuned on the AI City 2021 Track-1 dataset A with

pre-trained model on COCO. Totally 2860 frames from the

video in AICity2021 dataset A were annotated, where only

cars and trucks are considered.

4.3. Evaluation Metrics

We adopt the official evaluation metrics in AI City 2021

Challenge [30]. The final score S1 is a weighted

combination between efficiency score S1efficiency and

effectiveness score S1effectiveness. It is defined as Eq. 3.

 !
 0.3 × ! &''�(�&)(* + 0.7 × ! &''&(-�.&)&�� . (3)

In (3), the S1efficiency score is based on the total execution

time provided by the contestant, adjusted by the efficiency

base factor, and normalized within the range [0, 1.1x video

play-back time]. S1effectiveness

is computed as a weighted

average of normalized weighted root mean square error

scores nwRMSE across all videos, movements, and vehicle

classes in the test set, with proportional weights based on

the number of vehicles of the given class in the movement.

To reduce jitters due to labeling discrepancies, each video

is split into segments and we consider the cumulative

vehicle counts from the start of the video to the end of each

segment.

4.4. Object detection result

On this experiment of object detection, we will test

models in the test dataset which is 10% of AI City 2021

Track-1 dataset. Evaluation results are based on mAP

scores with priority for recall [26], and FPS as shown in

Table 2. During this mission, we expect to identify as many

vehicles as possible, so that the result will have lower miss

rates, leading to higher effectiveness scores. Also, FPS is

directly affected to efficiency. Therefore, the model must

care about both mAP and FPS.

We compare Yolov4-CSP, Yolov4-CSP-0.25 and

Yolov5x as shown in Table 2. Based on the Table, Yolov4-

CSP with gamma=0.25 have higher FPS than Yolov5x and

Yolov4-CSP. Its mAP is approximate with Yolov4-CSP,

and higher than Yolov5x. Therefore, Yolov4-CSP-0.25 is

chosen to ensure both sides: effectiveness and efficiency.

After that we pre-trained model Yolov4-CSP-0.25 with

synchronized batch normalization to improve mAP with

batch-size=8, denoted as Yolov4-CSP-0.25-sync.

Model mAP50(%)Precision(%)Recall(%)FPS

Yolov4-CSP 87.6 65.5 93.6 133

Yolov4-CSP-0.25 86.8 62.1 92.3 164

Yolov5x 88.1 84.0 85.5 59

Yolov4-Csp-0.25-

sync
87.7 65.7 92.7 169

Table 2. The comparison of mAP and FPS with different methods

4.5. Tracking

To improve tracking task, several versions based on

Yolov4-CSP are implemented. The results are represented

in Table 3. Besides, to show the effectiveness of “efficient

features matching”, we also show some tracking results

comparing between with and without the proposed

“efficient features matching” as shown in Fig. 9. With

“efficient features matching”, we are able to track the

objects smoothly without being affected by sudden

disappearances due to the effects of weather or visibility.

Model Effectiveness Efficiency Score
Yolov4-CSP

512-s12-fd
0.9476 0.8673 0.9235

Yolov4-CSP

512-s2
0.93 0.8822 0.9156

Yolov4-CSP

512-s1
0.939 0.87 0.9183

Table 3. Different versions of Yolov4-CSP

Yolov4-CSP-512-s1: Using 1 frame-skipping to improve

performance of the model, though it may affect the

accuracy, the benefit of performance gain is more valuable.

Yolov4-CSP-521-s2: To see whether we can gain more

performance without heavily affect model’s accuracy, 2

frames skipping is implemented. Although model has

become unreliable, gaining more performance. Therefore,

2 frame skipping approach is chosen to be the foundation to

develop other improvements.

Yolov4-CSP-512s-s12-fd: In this final version, either 1

or 2 frame-skipping is used depending on video source. By

doing this, our model has become more flexible so it can

increase both its accuracy and performance at the same

time.

4.6. Overall Score on AI City Challenge 2021 Track 1

Dataset

Table 4 show the leader board of AI City Challenge

2021 Track 1. Our proposed vehicle counting method

achieved 4th place in the ranking.

Team ID S1 score

37 0.9467

5 0.9459

8 0.9263

19 (our) 0.9249

118 0.9235

Table 4. Top 5 overall scores of the vehicle counting task

in AI City 2021 track 1.

References

[1] A. Abdagic, O. Tanovic, A. Aksamovic, and S.

Huseinbegovic. Counting traffic using optical flow algorithm on

video footage of a complex crossroad. pages 41–45, 2010.

[2] Shubhra Aich and Ian Stavness. Leaf counting with deep

convolutional and deconvolutional networks. pages 2080– 2089,

2017.

[3] J. Barandiaran, B. Murguia, and F. Boto. Real-time people

counting using multiple lines. pages 159–162, 2008.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In 2005 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’05), volume 1,

pages 886–893 vol. 1, 2005.

[5] Luca Del Pizzo, Pasquale Foggia, Antonio Greco, Gennaro

Percannella, and Mario Vento. Counting people by rgb or depth

overhead cameras. Pattern Recognition Letters, 81:41– 50, 2016.

[6] KV Embleton, CE Gibson, and SI Heaney. Automated

counting of phytoplankton by pattern recognition: a comparison

with a manual counting method. Journal of Plankton Research,

25(6):669–681, 2003.

[7] Wongun Choi. Near-online multi-target tracking with

aggregated local flow descriptor. In Proceedings of the IEEE

(a)

(b)

Figure 9. Tracking results (a) after applying efficient feature

matching. (b) before applying efficient feature matching.

international conference on computer vision, pages 3029– 3037,

2015.

[8] Mark Everingham, SM Ali Eslami, Luc Van Gool,

Christopher KI Williams, John Winn, and Andrew Zisserman. The

pascal visual object classes challenge: A retrospective.

International journal of computer vision, 111(1):98–136, 2015.

[9] Mark Everingham, Luc Van Gool, Christopher KI

Williams, John Winn, and Andrew Zisserman. The pascal visual

object classes (voc) challenge. International journal of computer

vision, 88(2):303–338, 2010.

[10] P. Felzenszwalb, D. McAllester, and D. Ramanan. A

discriminatively trained, multiscale, deformable part model. In

2008 IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–8, 2008.

[11] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE

international conference on computer vision, pages 1440–1448,

2015.

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection and

semantic segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 580–587, 2014.

[13] Luo Juan and Luo Gwon. A comparison of sift, pca-sift

and surf. International Journal of Signal Processing, Image

Processing and Pattern Recognition, 8(3):169–176, 2007.

[14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James

Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, and C

Lawrence ´ Zitnick. Microsoft coco: Common objects in context.

In European conference on computer vision, pages 740–755.

Springer, 2014.

[15] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.

Ssd: Single shot multibox detector. In European conference on

computer vision, pages 21–37. Springer, 2016.

[16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object detection.

In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 779–788, 2016.

[17] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information processing

systems, pages 91–99, 2015.

[18] Frank Y Shih and Xin Zhong. Automated counting and

tracking of vehicles. International Journal of Pattern Recognition

and Artificial Intelligence, 31(12):1750038, 2017.

[19] L. Unzueta, M. Nieto, A. Cortes, J. Barandiaran, O.

Otaegui, and P. Sanchez. Adaptive multicue background

subtraction for robust vehicle counting and classification. IEEE

Transactions on Intelligent Transportation Systems, 13(2):527–

540, 2012.

[20] P. Viola and M. Jones. Rapid object detection using a

boosted cascade of simple features. In Proceedings of the 2001

IEEE Computer Society Conference on Computer Vision and

Pattern Recognition. CVPR 2001, volume 1, pages I–I, 2001.

[21] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple

online and realtime tracking with a deep association metric. In

2017 IEEE international conference on image processing (ICIP),

pages 3645–3649. IEEE, 2017.

[22] Honghong Yang and Shiru Qu. Real-time vehicle

detection and counting in complex traffic scenes using

background subtraction model with low-rank decomposition. IET

Intelligent Transport Systems, 12(1):75–85, 2017.

[23] Chien-Yao Wang, Alexey Bochkovskiy, Hong-Yuan

Mark Liao .

[24] Mingxing Tan, Ruoming Pang, and Quoc V Le.

EfficientDet: Scalable and efficient object detection. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2020.

[25] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,

and Piotr Dollar. Focal loss for dense object detection. In

Proceedings of the IEEE International Conference on Computer

Vision (ICCV), pages 2980–2988, 2017.

[26] Paul Henderson, Vittorio Ferrari. End-to-end training of

object class detectors for mean average precision. Conference:

Asian Conference on Computer Vision

[27] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue

Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. Context

Encoding for Semantic Segmentation.In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018.

[28] Ioffe, S., & Szegedy, C. (2015). Batch normalization:

Accelerating deep network training by reducing internal covariate

shift, arXiv preprint arXiv:1502.03167.

[29] Chien-Yao Wang, Hong-Yuan Mark Liao, I-Hau

Yeh, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh. CSPNet:

A New Backbone that can Enhance Learning Capability of CNN.

Published in 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition Workshops (CVPRW).

[30] Milind Naphade and Shuo Wang and David

C. Anastasiu and Zheng Tang and Ming-Ching Chang and

Xiaodong Yang and Liang Zheng and Anuj Sharma and

Rama Chellappa and Pranamesh Chakraborty. The 4th AI City

Challenge. The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops.

[31] Qiang Li, Ranyang Li, Kaifan Ji, Wei Dai. Kalman Filter

and Its Application. Published in: 2015 8th International

Conference on Intelligent Networks and Intelligent Systems

(ICINI).

[32] Caglayan Dicle, Octavia I Camps, and Mario Sznaier. The

way they move: Tracking multiple targets with similar

appearance. In Proceedings of the IEEE international conference

on computer vision, pages 2304–2311, 2013.

[33] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark suite. In

2012 IEEE Conference on Computer Vision and Pattern

Recognition, pages 3354–3361. IEEE, 2012.

[34] Harold W Kuhn. The Hungarian Method for the

Assignment Problem. Naval research logistics quarterly, 2(1-

2):83–97, 1955

[35] Aljosa Osep, Wolfgang Mehner, Markus Mathias, and

Bastian Leibe. Combined image-and world-space tracking in

traffic scenes. In 2017 IEEE International Conference on Robotics

and Automation (ICRA), pages 1988–1995. IEEE, 2017

[36] Milind Naphade and Zheng Tang and Ming-Ching Chang

and David C. Anastasiu and Anuj Sharma and Rama Chellappa

and Shuo Wang and Pranamesh Chakraborty and Tingting Huang

and Jenq-Neng Hwang and Siwei Lyu. The 2019 AI City

Challenge. The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops.

[37] Mohammad Shokrolah Shirazi and Brendan Morris.

Vision based turning movement counting at intersections by

cooperating zone and trajectory comparison modules. In 17th

International IEEE Conference on Intelligent Transportation

Systems (ITSC), pages 3100–3105. IEEE, 2014

[38] Z. Dai, H. Song, X. Wang, Y. Fang, X. Yun, Z. Zhang, and

H. Li. Video-based vehicle counting framework. IEEE Access,

7:64460–64470, 2019

[39] Huansheng Song, Xuan Wang, Cui Hua, Weixing Wang,

Qi Guan, and Zhaoyang Zhang. Vehicle trajectory clustering

based on 3d information via a coarse-to-fine strategy. Soft

Computing, 22(5):1433–1444, 2018.

[40] Maojin Sun, Yan Wang, Teng Li, Jing Lv, and Jun Wu.

Vehicle counting in crowded scenes with multi-channel and multi-

task convolutional neural networks. Journal of Visual

Communication and Image Representation, 49:412– 419, 2017.

[41] Milind Naphade and Ming-Ching Chang and Anuj Sharma

and David C. Anastasiu and Vamsi Jagarlamudi and Pranamesh

Chakraborty and Tingting Huang and Shuo Wang and Ming-Yu

Liu and Rama Chellappa and Jenq-Neng Hwang and Siwei

LyuMilind Naphade and Ming-Ching Chang and Anuj Sharma

and David C. Anastasiu and Vamsi Jagarlamudi and Pranamesh

Chakraborty and Tingting Huang and Shuo Wang and Ming-Yu

Liu and Rama Chellappa and Jenq-Neng Hwang and Siwei Lyu.

The 2018 NVIDIA AI City Challenge. Proc. CVPR Workshops.

[42] Milind Naphade and David C. Anastasiu and Anuj Sharma

and Vamsi Jagrlamudi and Hyeran Jeon and Kaikai Liu and Ming-

Ching Chang and Siwei Lyu and Zeyu Gao. The NVIDIA AI City

Challenge. Prof. SmartWorld.

[43] Zheng Tang and Milind Naphade and Ming-Yu Liu and

Xiaodong Yang and Stan Birchfield and Shuo Wang and

Ratnesh Kumar and David Anastasiu and Jenq-Neng Hwang.

CityFlow: A City-Scale Benchmark for Multi-Target Multi-

Camera Vehicle Tracking and Re-Identification. The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR).

[44] Yue Yao and Liang Zheng and Xiaodong Yang and Milind

Naphade and Tom Gedeon. Simulating Content Consistent

Vehicle Datasets with Attribute Descent. The European

Conference on Computer Vision (ECCV).

