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Abstract

In order to reduce traffic congestion and improve the
efficiency of traffic light signals, intelligent traffic systems
are being developed by researchers, and vehicle counting
is one of the key techniques in the system. The traditional
methods mostly focus on increasing the vehicle counting
effectiveness without regard to the program execution
efficiency. The practical value of these systems will be
reduced if they cannot be operated in real-time on compact
IoT device. Therefore, in this paper, we mainly focus on
designing a real-time and robust system for the problem of
counting specific-movement vehicles. The system is able to
detect and track objects in the area of interest, then count
those tracked trajectories using the movements. To improve
performance of tracking multiple objects, a high recall
detection method and an efficient feature matching strategy
were proposed. Moreover, to minimize the wrong direction
of movement prediction and improve the results of vehicle
counting, a cosine similarity-based vehicle counting
scheme is applied. Experiments are conducted on Al City
2021 Track-1 dataset. Our method is evaluated on both
sides of efficiency and effectiveness.

1. Introduction

To reduce traffic congestion, control the flow of traffic
and improve the efficiency of traffic lights, designing
multiple movement vehicle counting systems are attracting
the attention of researchers. The goal of these systems is to
find out the number of vehicles that follow pre-defined
movements in a period of time, and the time stamp when
these vehicles move out of the region of interest (ROI).
These information allow the system to predict how many
vehicles will arrive at the next intersections over a period of
time, the traffic demand and freight ratio on individual
corridors. So that the system can design appropriate
intersection signal timing plans and traffic congestion
mitigation strategies. However, accurate vehicle counting is
still challenging at crowded intersections, due to the
difficulties such as the occlusions between different
vehicles, various lighting and weather conditions (including
dawn, rain, and snow ...), not to mention environmental
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Figure 1. Some images of roadside tree and weather conditions

conditions that affect the visibility of the camera as shown
in Fig. 1. Traditional vehicle counting problems are solves
by using some method like frame-wise vehicle counting [6]
[1] [19][22], for the purpose of counting vehicles in one
frame. Others use the density detection strategy [3][2] for
regressing the number of vehicles. Or many other studies
turn to discovery-based strategies [S][6][1][18][19], that is,
detecting the wvehicle then counting. However, the
aforementioned methods cannot handle the mutual
occlusions between vehicles and the occlusions caused by
roadside trees shown in Figure 1, detection and density-
based approaches often miss congested vehicles. Moreover,
the computational efficiency is also an issue that needs to
be addressed.

Therefore, in this paper, we propose to use ScaledYolov4
[23] and Deep SORT [21] as the baseline methods for
vehicle detection and multiple object tracking. In detector,
ScaledYolov4 is carefully fine-tuned to not only minimize
miss detection but also improve the computational
efficiency. Then, to handle the problem of tracking objects
that are missing in some frames due to occlusions, Deep
SORT with the designed efficient features is used.
Furthermore, to deal with vehicle counting by movement of
interest (MOT) problem, we firstly propose to use cosine
similarity to quickly eliminate the directions that are not
interested, then, use the orbit-based nearest neighbor
analysis to determine the correct MOT.

The main contributions of our paper are summarized as
follows: (1) we re-designed a detection-tracking-counting
(DTC) for movement-specific vehicle counting problem
regard to both effectiveness and efficiency. (2) We
modified Deep SORT with the efficient features to improve



|
| ]

|
;_ _________ I| { Feature Extracting I | : Direction Proposal
| : | | - | | Assignment | E=———
| == | Matching it P!
| :4' : I I : I'| correct Movement | : Check out :
: YOLOv4-CSP ‘ ¥ : ‘ Kalman Filter ‘ I-: I Trajectory Updating Hdl Aetanmiiation :#I the ROI |

| | | |
| I'l predict Linear Motion | | I |
| Object Detection : : IL of Tracks } { Update State of Tracks | | |  Vehicle Counting | ' _Ri“ird_risﬂlfl
—_—— e e e e e e — b ST —

Figure 2. Our framework.

the multiple objects tracking performance. (3) We proposed
the cosine similarity-based and orbit-based nearest
neighbor analysis to improve the vehicle counting
performance.

2. Related Works

Object  Detection:  Early object recognition
implementation involved the use of classical algorithms,
like those supported in Open CV. Feature extraction is one
of the primary tasks in object detection and most object
detection algorithms [10] [20] are designed based on
manual features (HOG [4], SIFT [13]), then the traditional
classifiers such as Naive Bayes, SVM are used to obtain the
results of the detection. However, these methods cannot
achieve sufficient performance when working under
different conditions. To solve these problems, the state-of-
the-art methods from two perspectives, effectiveness and
efficiency, such as YOLOv4-CSP [23] EfficientDet-D1
[24] and RetinaNet [25] were proposed. The comparison
about the effectiveness and efficiency using AP [27] and
FPS of the three algorithms is given in Table 1. Based on
the Table, Yolov4-CSP with input resolution of 512 is both
effective and efficient. Therefore, our detector will be
designed based on Yolov4-CSP structure.

Algorithms AP FPS Image Size
EfficientDet-D1 40.5 74 640
YOLOv4-CSP 47.5 73/70 640
RetinaNet 41.5 53 640
YOLOv4-CSP 46.2 97/93 512

Table 1. Comparison of effectiveness and efficiency
on different detection algorithms on COCO2017 test
set [14]

Multi-Object Tracking: Multi-Object tracking (MOT)
is another very important task in computer vision. In recent
years, with the improvement of object detection, many
existing MOT studies adopts the tracking-by-detection
strategy [7] [32] [33] [35], which performs object detection

first and then associate the detections afterwards. In [21], to
determine the bounding box's orbital motion then predict
the next bounding box, the deterministic Hungarian
algorithm [34] was used. Besides, to increase tracking
accuracy, some movement and visual information were
used to replace the traditional association metric. This
framework got the good performance in terms of tracking
precision and accuracy. However, because of using the deep
features, which take a lot of time to extract, the processing
speed of the above method is not very impressive.
Therefore, to improve the execution speed, we will slightly
modify it using the more efficient features.

Vehicle Counting: As a fundamental technique for
intelligent transportation, vehicle counting is also under
investment in recent research. The existing methods of
vehicle counting can be mainly divided into two categories:
density-aware approach [6] and detection-aware approach
[38] [39] [40]. In the detection-aware approach, the object
can be firstly detected by some deep learning detectors or
background subtraction models then the simple feature-
based tracking is used to generate object position during
video [36]. By setting the entrance and exist the vehicle
counting can be then performed. However, these methods
may not yield high results for counting movement-specific
vehicle, where vehicle counting should be performed
separately for different pre-defined movements such as left-
turning, right-turning or through traffic at a given
intersection. Therefore, to improve the performance for this
particular task, we first find and disassemble the typical
trajectories for each movement using statistical method.
Then, we assign one movement for each vehicle by
measuring the distances between the discrete vehicle's
trajectory and the discrete typical trajectories. Finally,
vehicle counting is performed by determining when the
certain vehicle is fully exiting the ROL.

3. Methodology

The overview of our framework is given in Fig. 2
including three main parts: object detection, online multi-
object tracking, and vehicle counting, which will be
specified below.
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Figure 3. CSP Bottle Neck structure.

3.1 Object Detection

Considering both effectiveness and efficiency, we
choose Yolov4-CSP as the base-line model for vehicle
detection with the input resolution of 512x512. According
to the structure of the CSP [29] the features are divided into
two branches as shown in Fig. 3, one will pass through
some more layers to be further enhanced and another will
skip these layers. Normally, input features will be split in
half (with = 0.5). But in this paper, to speed up the model,

we reduce ¥ to 0.25, this will reduce the number of

parameters and thereby increase FPS, but as a result it will
decrease mAP. To compensate for the reduction in terms of
mAP, synchronized batch normalization [27][28] is used to
pre-train our model.

3.2 Online Multi-Object Tracking

After detecting objects, Deep SORT [21] is used as the
baseline method for online MOT. We slightly modified
Deep SORT algorithm to improve the execution speed.
3.2.1 Preliminary

Similar to [21], we also adopts a single hypothesis
tracking methodology with recursive Kalman filtering [31]
and frame-by-frame data association. State space in Kalman
filtering is defined in the eights dimensional state spaces,
including the bounding box center position (u, v), aspect
ratio v, height h, and their respective velocities in image
coordinates. Object motion follows a standard Kalman
filter with constant velocity model. However, different
from [21], we combine motion feature, time feature,
movement feature and shape feature to obtain similarity
matrix between detection and predicted Kalman states of
tracks. For each track & we count the number of frames
since the last successful measurement association. Tracks
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Figure 4. Calculate the cost matrix from efficient features

that exceed a predefined maximum age A.qx are considered
to have left the scene and are deleted from the track set.
New track is initiated each detection that cannot be
associated to the existing tracks. In order to be lighter to
implement in real-time, we propose some methods to
improve speed without reduce performance.

3.2.2 Efficient features matching

One of typical challenges in AIC is the limited camera
vision, which is usually caused by common obstacles
(bushes, road signs, utility poles, bad weathers...). This
challenge makes object detection model become less
reliable, leading to the frequent occurrence of inconsistent
bounding boxes. Therefore, using the similarities in
object’s features is much more effective than using IOU for
track-matching. However, deep feature extractor requires a
lot of computing power, so a combined feature is suggested,
this combined feature contain some simple features, which
are information of shape, direction and age of track.

Direction feature: Track’s direction is predicted based
on its velocity vector using the Kalman filter. Whenever a
bounding box appear in detection task, its direction will be
defined by how close its current location to different initial
trajectories.

Appearance time feature: The frame when an object
suddenly disappears within ROI will be saved as shown in
Fig. 4. The bounding boxes that appeared suddenly after
this frame will be considered more by using the cost matrix
function described in Figure 4. In this cost matrix, some
new parameters are used including: N, Dist and Age. N
means appearance time feature. The smaller N means the
object appeared closer to the disappearance time. Dist is the
distance from the object to our prediction vector, the closer
it is, the higher the possibility of merging. Age is the age of
the object being tracked; we prioritize match for those with
high value of Age.

3.3 Vehicle Counting

In this section, we predict the trajectory of each track and
determine frame id on which the track disappeared from the
ROL. Firstly, we find direction proposals of each track by
cosine similarity. Next, we predict the correct movement by
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Figure 5. The process of determining the direction of movement

measuring the similarity between trajectory of track and the
pre-defined trajectories of the movements. Finally, we
record the result when any track exiting the ROI. Figure 5
describes the process of determining the direction of
movement of a vehicle.

3.3.1 Pre-defined Trajectories
For each camera, we first visualize all centers of the
labeled bounding boxes in training data. Then, we manually
draw a set of points as the pre-defined trajectory based on
that as shown in Figure 6.
3.3.2 Direction Proposal Assignment
Trajectory of Object (Ob) and pre-defined trajectories
of movement of interesting (MOI) are both divided into
sevaral segments as shown in Figure 7. MOI proposal M; of
k™ object Oby is defined as Eq. 1. Usually, when
determining the direction of a track, we are only interested
in the starting and ending points in the track’s trajectory.
This will not be correct when applied to curved orbits. We
proposed dividing the orbits into several segments, then
calculating the cosine similarities between each pair
segments and then adding them up as shown in Eq. 2. The
more segments, the more accurate.
MOI_proposal_Ob,, = [i:cos(0by, M;) = «], (1)
where, cos(0Oby, M;) is defined as in Eq. 2, @ is a pre-
defined threshold. In this paper, we set a equal to 2.2.
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cos(Oby, M;) = §=1 cos(0by;j, Mj). ?2)

In equation 2, cos(Obyj, Mj) is cosine of the angle

between Oby; vector and M;; vector, the illustration of these

vectors is shown in Fig. 7. Oby; is vector j-th vector in the

trajectory segmentation of Oby. Mj; is vector j-th vector in

the trajectory segmentation of M. s is the number of
segments, in our case, s is set to 3.

3.3.3 Determine Correct Movement of Interesting

Sometimes we have cases where the two pre-defined
directions (M1, M2) and the actual directions are very close
to each other, causing confusion as shown in Fig. 8. So, we
deal with it by using Algorithm 1, named as Orbit-based
nearest neighbor analysis, to calculate the distance and
determine the “number of nearest points” for each pre-
defined direction. Based on this, we are able to accurately
determine the direction of movement limiting the
aforementioned confusions. Algorithm 1 shows our
proposed Nearest Neighbor Analysis based on movement
prediction method. In Algorithm 1, all trajectories are
fragmented into point sets. For each point in the trajectory
of the track, we find the closest point that is in the pre-
defined trajectories. Variable counter error is used to count
the number of points track’s trajectory that are too far from
the pre-defined MOL. If counter_error is too large, this track
will be removed. The exact movement is the movement
whose index appears most frequently in array C.
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Figure 8. Orbit-based nearest neighbor analysis



Algorithm 1: Orbit-based nearest neighbor analysis
Input: Given one track:
1:  Trajectory of track with n point:
Orbit ={p,,p;s---D,} >
2:  Pre-defined Trajectories of each MOI:
MOIs ={M,M,,..M,};
3:  Proposed MOIs indices: D;
4.  Distance threshold: H;
Output: Correct movement: res;
5: MultiPoint=[M, :ie D];

6 counter _error =0,

7:  Initialize list C=[];

8 for pin Orbit do

9 find point in MultiPo int nearest to p:
Ne = nearest_points(p, MultiPoint );

0= if dis, y, 2 H

then
counter _error++;
continue;
end if
11: for d in D do
12: if Nee M,
then
Append d to list C: d >>C;
break;
end if
13: end for
14: end for
15: if counter error>n/2
then
return 0;
end if
16: return res =max(C,key =C.count);

4. Experiments

4.1. Implementation Environment.

Hard ware: All of our experiments are tested on Tesla T4
with 16G and Intel(R) Xeon(R) Silver 4216 CPU @
2.1GHz.

Software: Python 3.7, Torch 1.7, CUDA 10.2.

4.2. Datasets

Al City 2021 Track-1 Dataset [30]: The data for this
challenge comes from multiple traffic cameras from a city
in the United States as well as from state highways in Lowa
which contains 31 video clips (about 9 hours in total)

captured from 20 unique camera views (some cameras
provide multiple video clips to cover different lighting and
weather conditions.). Each camera view comes with a
detailed instruction document describing the region of
interest (ROI) and movements of interest (MOI). The 9
hours of video in track 1 are split into two datasets A and
B. Dataset A (about 5 hours in total) are made available to
participating teams, dataset B (about 4 hours in total) will
be used for later testing and not available to participates. So
all our test results are done on dataset A. Detection model
is fine-tuned on the Al City 2021 Track-1 dataset A with
pre-trained model on COCO. Totally 2860 frames from the
video in AICity2021 dataset A were annotated, where only
cars and trucks are considered.

4.3. Evaluation Metrics

We adopt the official evaluation metrics in Al City 2021
Challenge [30]. The final score S1 is a weighted
combination between efficiency score Siefficiency and
effectiveness score Siefectiveness. It 1 defined as Eq. 3.

Sl =0.3x Slefficiency + 0.7 X Sleffectiveness' (3)
In (3), the Sieficiency SCOTe is based on the total execution
time provided by the contestant, adjusted by the efficiency
base factor, and normalized within the range [0, 1.1x video
play-back time]. Sieffectiveness 18 computed as a weighted
average of normalized weighted root mean square error
scores nwRMSE across all videos, movements, and vehicle
classes in the test set, with proportional weights based on
the number of vehicles of the given class in the movement.
To reduce jitters due to labeling discrepancies, each video
is split into segments and we consider the cumulative
vehicle counts from the start of the video to the end of each
segment.

4.4. Object detection result

On this experiment of object detection, we will test
models in the test dataset which is 10% of AI City 2021
Track-1 dataset. Evaluation results are based on mAP
scores with priority for recall [26], and FPS as shown in
Table 2. During this mission, we expect to identify as many
vehicles as possible, so that the result will have lower miss
rates, leading to higher effectiveness scores. Also, FPS is
directly affected to efficiency. Therefore, the model must
care about both mAP and FPS.

We compare Yolov4-CSP, Yolov4-CSP-0.25 and
Yolov5x as shown in Table 2. Based on the Table, Yolov4-
CSP with gamma=0.25 have higher FPS than Yolov5x and
Yolov4-CSP. Its mAP is approximate with Yolov4-CSP,
and higher than Yolov5x. Therefore, Yolov4-CSP-0.25 is
chosen to ensure both sides: effectiveness and efficiency.
After that we pre-trained model Yolov4-CSP-0.25 with
synchronized batch normalization to improve mAP with
batch-size=8, denoted as Yolov4-CSP-0.25-sync.



Model mAPs0(%) Precision(%)IRecall(%)IFPS
Yolov4-CSP 87.6 65.5 93.6 133
Yolov4-CSP-0.25 | 86.8 62.1 92.3 (164
Yolov5x 88.1 84.0 855 |59
YOIOV“S'Y(I:;I"OQS | 817 65.7 92.7 |169

Table 2. The comparison of mAP and FPS with different methods

4.5. Tracking

To improve tracking task, several versions based on
Yolov4-CSP are implemented. The results are represented
in Table 3. Besides, to show the effectiveness of “efficient
features matching”, we also show some tracking results
comparing between with and without the proposed
“efficient features matching” as shown in Fig. 9. With
“efficient features matching”, we are able to track the
objects smoothly without being affected by sudden
disappearances due to the effects of weather or visibility.

Model Effectiveness | Efficiency | Score
YolvEIS 1 09476 0.8673 | 0.9235
Yolovi CSP 0.93 0.8822 | 0.9156
Yolovt CSP 0.939 0.87 | 0.9183

Table 3. Different versions of Yolov4-CSP
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Figure 9. Tracking results (a) after applying efficient feature
matching. (b) before applying efficient feature matching.

Yolov4-CSP-512-s1: Using 1 frame-skipping to improve
performance of the model, though it may affect the
accuracy, the benefit of performance gain is more valuable.

Yolov4-CSP-521-s2: To see whether we can gain more
performance without heavily affect model’s accuracy, 2
frames skipping is implemented. Although model has
become unreliable, gaining more performance. Therefore,
2 frame skipping approach is chosen to be the foundation to
develop other improvements.

Yolov4-CSP-512s-s12-fd: In this final version, either 1
or 2 frame-skipping is used depending on video source. By
doing this, our model has become more flexible so it can
increase both its accuracy and performance at the same
time.

4.6. Overall Score on Al City Challenge 2021 Track 1
Dataset

Table 4 show the leader board of AI City Challenge
2021 Track 1. Our proposed vehicle counting method
achieved 4th place in the ranking.

Team ID S1 score
37 0.9467
5 0.9459
8 0.9263
19 (our) 0.9249
118 0.9235

Table 4. Top 5 overall scores of the vehicle counting task
in AI City 2021 track 1.
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