
 

 

 

Abstract 

 

In order to reduce traffic congestion and improve the 

efficiency of traffic light signals, intelligent traffic systems 

are being developed by researchers, and vehicle counting 

is one of the key techniques in the system. The traditional 

methods mostly focus on increasing the vehicle counting 

effectiveness without regard to the program execution 

efficiency. The practical value of these systems will be 

reduced if they cannot be operated in real-time on compact 

IoT device. Therefore, in this paper, we mainly focus on 

designing a real-time and robust system for the problem of 

counting specific-movement vehicles. The system is able to 

detect and track objects in the area of interest, then count 

those tracked trajectories using the movements. To improve 

performance of tracking multiple objects, a high recall 

detection method and an efficient feature matching strategy 

were proposed. Moreover, to minimize the wrong direction 

of movement prediction and improve the results of vehicle 

counting, a cosine similarity-based vehicle counting 

scheme is applied. Experiments are conducted on AI City 

2021 Track-1 dataset. Our method is evaluated on both 

sides of efficiency and effectiveness. 

1. Introduction 

To reduce traffic congestion, control the flow of traffic 

and improve the efficiency of traffic lights, designing 

multiple movement vehicle counting systems are attracting 

the attention of researchers. The goal of these systems is to 

find out the number of vehicles that follow pre-defined 

movements in a period of time, and the time stamp when 

these vehicles move out of the region of interest (ROI). 

These information allow the system to predict how many 

vehicles will arrive at the next intersections over a period of 

time, the traffic demand and freight ratio on individual 

corridors. So that the system can design appropriate 

intersection signal timing plans and traffic congestion 

mitigation strategies. However, accurate vehicle counting is 

still challenging at crowded intersections, due to the 

difficulties such as the occlusions between different 

vehicles, various lighting and weather conditions (including 

dawn, rain, and snow …), not to mention environmental 

conditions that affect the visibility of the camera as shown 

in Fig. 1. Traditional vehicle counting problems are solves 

by using some method like frame-wise vehicle counting [6] 

[1] [19][22], for the purpose of counting vehicles in one 

frame. Others use the density detection strategy [3][2] for 

regressing the number of vehicles. Or many other studies 

turn to discovery-based strategies [5][6][1][18][19], that is, 

detecting the vehicle then counting. However, the 

aforementioned methods cannot handle the mutual 

occlusions between vehicles and the occlusions caused by 

roadside trees shown in Figure 1, detection and density-

based approaches often miss congested vehicles. Moreover, 

the computational efficiency is also an issue that needs to 

be addressed. 

Therefore, in this paper, we propose to use ScaledYolov4 

[23] and Deep SORT [21] as the baseline methods for 

vehicle detection and multiple object tracking. In detector, 

ScaledYolov4 is carefully fine-tuned to not only minimize 

miss detection but also improve the computational 

efficiency. Then, to handle the problem of tracking objects 

that are missing in some frames due to occlusions, Deep 

SORT with the designed efficient features is used. 

Furthermore, to deal with vehicle counting by movement of 

interest (MOT) problem, we firstly propose to use cosine 

similarity to quickly eliminate the directions that are not 

interested, then, use the orbit-based nearest neighbor 

analysis to determine the correct MOT. 

The main contributions of our paper are summarized as 

follows: (1) we re-designed a detection-tracking-counting 

(DTC) for movement-specific vehicle counting problem 

regard to both effectiveness and efficiency. (2) We 

modified Deep SORT with the efficient features to improve 

 
Figure 1. Some images of roadside tree and weather conditions 
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the multiple objects tracking performance. (3) We proposed 

the cosine similarity-based and orbit-based nearest 

neighbor analysis to improve the vehicle counting 

performance. 

2. Related Works  

Object Detection: Early object recognition 

implementation involved the use of classical algorithms, 

like those supported in Open CV. Feature extraction is one 

of the primary tasks in object detection and most object 

detection algorithms [10] [20] are designed based on 

manual features (HOG [4], SIFT [13]), then the traditional 

classifiers such as Naive Bayes, SVM are used to obtain the 

results of the detection. However, these methods cannot 

achieve sufficient performance when working under 

different conditions. To solve these problems, the state-of-

the-art methods from two perspectives, effectiveness and 

efficiency, such as YOLOv4-CSP [23] EfficientDet-D1 

[24] and RetinaNet [25] were proposed. The comparison 

about the effectiveness and efficiency using AP [27] and 

FPS of the three algorithms is given in Table 1. Based on 

the Table, Yolov4-CSP with input resolution of 512 is both 

effective and efficient. Therefore, our detector will be 

designed based on Yolov4-CSP structure. 

 

Algorithms AP FPS Image Size 

EfficientDet-D1 40.5 74 640 

YOLOv4-CSP 47.5 73/70 640 

RetinaNet 41.5 53 640 

YOLOv4-CSP 46.2 97/93 512 

Table 1. Comparison of effectiveness and efficiency 

on different detection algorithms on COCO2017 test 

set [14] 

Multi-Object Tracking: Multi-Object tracking (MOT) 

is another very important task in computer vision. In recent 

years, with the improvement of object detection, many 

existing MOT studies adopts the tracking-by-detection 

strategy [7] [32] [33] [35], which performs object detection 

first and then associate the detections afterwards. In [21], to 

determine the bounding box's orbital motion then predict 

the next bounding box, the deterministic Hungarian 

algorithm [34] was used. Besides, to increase tracking 

accuracy, some movement and visual information were 

used to replace the traditional association metric. This 

framework got the good performance in terms of tracking 

precision and accuracy. However, because of using the deep 

features, which take a lot of time to extract, the processing 

speed of the above method is not very impressive. 

Therefore, to improve the execution speed, we will slightly 

modify it using the more efficient features. 

Vehicle Counting: As a fundamental technique for 

intelligent transportation, vehicle counting is also under 

investment in recent research. The existing methods of 

vehicle counting can be mainly divided into two categories: 

density-aware approach [6] and detection-aware approach 

[38] [39] [40]. In the detection-aware approach, the object 

can be firstly detected by some deep learning detectors or 

background subtraction models then the simple feature-

based tracking is used to generate object position during 

video [36]. By setting the entrance and exist the vehicle 

counting can be then performed. However, these methods 

may not yield high results for counting movement-specific 

vehicle, where vehicle counting should be performed 

separately for different pre-defined movements such as left-

turning, right-turning or through traffic at a given 

intersection. Therefore, to improve the performance for this 

particular task, we first find and disassemble the typical 

trajectories for each movement using statistical method. 

Then, we assign one movement for each vehicle by 

measuring the distances between the discrete vehicle's 

trajectory and the discrete typical trajectories. Finally, 

vehicle counting is performed by determining when the 

certain vehicle is fully exiting the ROI. 

3. Methodology 

The overview of our framework is given in Fig. 2 

including three main parts: object detection, online multi-

object tracking, and vehicle counting, which will be 

specified below. 

 
Figure 2. Our framework. 

 



 

 

3.1 Object Detection 

Considering both effectiveness and efficiency, we 

choose Yolov4-CSP as the base-line model for vehicle 

detection with the input resolution of 512x512. According 

to the structure of the CSP [29] the features are divided into 

two branches as shown in Fig. 3, one will pass through 

some more layers to be further enhanced and another will 

skip these layers. Normally, input features will be split in 

half (with γ = 0.5). But in this paper, to speed up the model, 

we reduce γ  to 0.25, this will reduce the number of 

parameters and thereby increase FPS, but as a result it will 

decrease mAP. To compensate for the reduction in terms of 

mAP, synchronized batch normalization [27][28] is used to 

pre-train our model. 

3.2 Online Multi-Object Tracking 

After detecting objects, Deep SORT [21] is used as the 

baseline method for online MOT. We slightly modified 

Deep SORT algorithm to improve the execution speed. 

3.2.1 Preliminary 

Similar to [21], we also adopts a single hypothesis 

tracking methodology with recursive Kalman filtering [31] 

and frame-by-frame data association. State space in Kalman 

filtering is defined in the eights dimensional state spaces, 

including the bounding box center position (u, v), aspect 

ratio γ, height h, and their respective velocities in image 

coordinates. Object motion follows a standard Kalman 

filter with constant velocity model. However, different 

from [21], we combine motion feature, time feature, 

movement feature and shape feature to obtain similarity 

matrix between detection and predicted Kalman states of 

tracks. For each track k we count the number of frames 

since the last successful measurement association. Tracks 

that exceed a predefined maximum age Amax are considered 

to have left the scene and are deleted from the track set. 

New track is initiated each detection that cannot be 

associated to the existing tracks. In order to be lighter to 

implement in real-time, we propose some methods to 

improve speed without reduce performance. 

3.2.2 Efficient features matching 

One of typical challenges in AIC is the limited camera 

vision, which is usually caused by common obstacles 

(bushes, road signs, utility poles, bad weathers…). This 

challenge makes object detection model become less 

reliable, leading to the frequent occurrence of inconsistent 

bounding boxes. Therefore, using the similarities in 

object’s features is much more effective than using IOU for 

track-matching. However, deep feature extractor requires a 

lot of computing power, so a combined feature is suggested, 

this combined feature contain some simple features, which 

are information of shape, direction and age of track. 

Direction feature: Track’s direction is predicted based 

on its velocity vector using the Kalman filter. Whenever a 

bounding box appear in detection task, its direction will be 

defined by how close its current location to different initial 

trajectories. 

Appearance time feature: The frame when an object 

suddenly disappears within ROI will be saved as shown in 

Fig. 4. The bounding boxes that appeared suddenly after 

this frame will be considered more by using the cost matrix 

function described in Figure 4. In this cost matrix, some 

new parameters are used including: N, Dist and Age. N 

means appearance time feature. The smaller N means the 

object appeared closer to the disappearance time. Dist is the 

distance from the object to our prediction vector, the closer 

it is, the higher the possibility of merging. Age is the age of 

the object being tracked; we prioritize match for those with 

high value of Age. 

3.3 Vehicle Counting 

In this section, we predict the trajectory of each track and 

determine frame id on which the track disappeared from the 

ROI. Firstly, we find direction proposals of each track by 

cosine similarity. Next, we predict the correct movement by 

 
Figure 3. CSP Bottle Neck structure. 

 

Figure 4. Calculate the cost matrix from efficient features 



 

 

measuring the similarity between trajectory of track and the 

pre-defined trajectories of the movements. Finally, we 

record the result when any track exiting the ROI. Figure 5 

describes the process of determining the direction of 

movement of a vehicle. 

 

3.3.1 Pre-defined Trajectories 

For each camera, we first visualize all centers of the 

labeled bounding boxes in training data. Then, we manually 

draw a set of points as the pre-defined trajectory based on 

that as shown in Figure 6. 

3.3.2 Direction Proposal Assignment 

Trajectory of Object (Ob) and pre-defined trajectories 

of movement of interesting (MOI) are both divided into 

sevaral segments as shown in Figure 7. MOI proposal Mi of 

kth object Obk is defined as Eq. 1. Usually, when 

determining the direction of a track, we are only interested 

in the starting and ending points in the track’s trajectory. 

This will not be correct when applied to curved orbits. We 

proposed dividing the orbits into several segments, then 

calculating the cosine similarities between each pair 

segments and then adding them up as shown in Eq. 2. The 

more segments, the more accurate. 

 ���_������	
_��� 
 ��: cos���� , ��� � ��, (1) 

where, cos���� , ���  is defined as in Eq. 2, �  is a pre-

defined threshold. In this paper, we set � equal to 2.2. 

 cos���� , ��� 
 ∑ cos ����� , �����
�� . (2) 

In equation 2, cos(Obkj, Mij) is cosine of the angle 

between Obkj vector and Mij vector, the illustration of these 

vectors is shown in Fig. 7. Obkj is vector j-th vector in the 

trajectory segmentation of Obk. Mij is vector j-th vector in 

the trajectory segmentation of Mk. s is the number of 

segments, in our case, s is set to 3. 

 

3.3.3 Determine Correct Movement of Interesting 

Sometimes we have cases where the two pre-defined 

directions (M1, M2) and the actual directions are very close 

to each other, causing confusion as shown in Fig. 8. So, we 

deal with it by using Algorithm 1, named as Orbit-based 

nearest neighbor analysis, to calculate the distance and 

determine the “number of nearest points” for each pre-

defined direction. Based on this, we are able to accurately 

determine the direction of movement limiting the 

aforementioned confusions. Algorithm 1 shows our 

proposed Nearest Neighbor Analysis based on movement 

prediction method. In Algorithm 1, all trajectories are 

fragmented into point sets. For each point in the trajectory 

of the track, we find the closest point that is in the pre-

defined trajectories. Variable counter_error is used to count 

the number of points track’s trajectory that are too far from 

the pre-defined MOI. If counter_error is too large, this track 

will be removed. The exact movement is the movement 

whose index appears most frequently in array C. 

 

 

 
Figure 6. The pre-defined trajectories 

 

Figure 5. The process of determining the direction of movement 

Figure 7. Trajectories is segmented 

 

Figure 8. Orbit-based nearest neighbor analysis 

 



 

 

Algorithm 1: Orbit-based nearest neighbor analysis 

Input: Given one track: 

1: Trajectory of track with n point: 

0 1{p ,p ,...p }nOrbit = ; 

2: Pre-defined Trajectories of each MOI:

1 2{M ,M ,...M }iMOIs = ; 

3: Proposed MOIs indices: D; 

4: Distance threshold: H; 

Output: Correct movement: res; 

5: int [M : i D]
i

MultiPo = ∈ ; 

6: _ 0counter error = ; 

7: Initialize list []C = ; 

8:  for p in Orbit do 

9:    find point in intMultiPo nearest to p: 

   Ne = nearest_points(p, intMultiPo ); 

10:    if ,p Nedis H≥  

   then 

     _counter error + + ; 

     continue; 

   end if 

11:    for d in D do 

12:      if 
dNe M∈  

     then 

        Append d to list C: d C>> ; 

        break; 

     end if 

13:    end for 

14: end for 

15: if _ / 2counter error n>  

then 

   return 0; 

end if 

16: return max(C,key . )res C count= = ; 

4. Experiments 

4.1. Implementation Environment. 

Hard ware: All of our experiments are tested on Tesla T4 

with 16G and Intel(R) Xeon(R) Silver 4216 CPU @ 

2.1GHz. 

Software: Python 3.7, Torch 1.7, CUDA 10.2. 

4.2. Datasets 

AI City 2021 Track-1 Dataset [30]: The data for this 

challenge comes from multiple traffic cameras from a city 

in the United States as well as from state highways in Lowa 

which contains 31 video clips (about 9 hours in total) 

captured from 20 unique camera views (some cameras 

provide multiple video clips to cover different lighting and 

weather conditions.). Each camera view comes with a 

detailed instruction document describing the region of 

interest (ROI) and movements of interest (MOI). The 9 

hours of video in track 1 are split into two datasets A and 

B. Dataset A (about 5 hours in total) are made available to 

participating teams, dataset B (about 4 hours in total) will 

be used for later testing and not available to participates. So 

all our test results are done on dataset A. Detection model 

is fine-tuned on the AI City 2021 Track-1 dataset A with 

pre-trained model on COCO. Totally 2860 frames from the 

video in AICity2021 dataset A were annotated, where only 

cars and trucks are considered. 

4.3. Evaluation Metrics  

We adopt the official evaluation metrics in AI City 2021 

Challenge [30]. The final score S1 is a weighted 

combination between efficiency score S1efficiency and 

effectiveness score S1effectiveness. It is defined as Eq. 3. 

 ! 
 0.3 × ! &''�(�&)(* + 0.7 × ! &''&(-�.&)&�� . (3) 

In (3), the S1efficiency score is based on the total execution 

time provided by the contestant, adjusted by the efficiency 

base factor, and normalized within the range [0, 1.1x video 

play-back time]. S1effectiveness
 

is computed as a weighted 

average of normalized weighted root mean square error 

scores nwRMSE across all videos, movements, and vehicle 

classes in the test set, with proportional weights based on 

the number of vehicles of the given class in the movement. 

To reduce jitters due to labeling discrepancies, each video 

is split into segments and we consider the cumulative 

vehicle counts from the start of the video to the end of each 

segment. 

4.4. Object detection result 

On this experiment of object detection, we will test 

models in the test dataset which is 10% of AI City 2021 

Track-1 dataset. Evaluation results are based on mAP 

scores with priority for recall [26], and FPS as shown in 

Table 2. During this mission, we expect to identify as many 

vehicles as possible, so that the result will have lower miss 

rates, leading to higher effectiveness scores. Also, FPS is 

directly affected to efficiency. Therefore, the model must 

care about both mAP and FPS. 

We compare Yolov4-CSP, Yolov4-CSP-0.25 and 

Yolov5x as shown in Table 2. Based on the Table, Yolov4-

CSP with gamma=0.25 have higher FPS than Yolov5x and 

Yolov4-CSP. Its mAP is approximate with Yolov4-CSP, 

and higher than Yolov5x. Therefore, Yolov4-CSP-0.25 is 

chosen to ensure both sides: effectiveness and efficiency. 

After that we pre-trained model Yolov4-CSP-0.25 with 

synchronized batch normalization to improve mAP with 

batch-size=8, denoted as Yolov4-CSP-0.25-sync. 



 

 

Model mAP50(%)Precision(%)Recall(%)FPS

Yolov4-CSP 87.6 65.5 93.6 133 

Yolov4-CSP-0.25 86.8 62.1 92.3 164 

Yolov5x 88.1 84.0 85.5 59 

Yolov4-Csp-0.25-

sync 
87.7 65.7 92.7 169 

Table 2. The comparison of mAP and FPS with different methods

4.5. Tracking 

To improve tracking task, several versions based on 

Yolov4-CSP are implemented. The results are represented 

in Table 3. Besides, to show the effectiveness of “efficient 

features matching”, we also show some tracking results 

comparing between with and without the proposed 

“efficient features matching” as shown in Fig. 9. With 

“efficient features matching”, we are able to track the 

objects smoothly without being affected by sudden 

disappearances due to the effects of weather or visibility. 

 

Model Effectiveness Efficiency Score 
Yolov4-CSP 

512-s12-fd 
0.9476 0.8673 0.9235 

Yolov4-CSP 

512-s2 
0.93 0.8822 0.9156 

Yolov4-CSP 

512-s1 
0.939 0.87 0.9183 

Table 3. Different versions of Yolov4-CSP 

 

Yolov4-CSP-512-s1: Using 1 frame-skipping to improve 

performance of the model, though it may affect the 

accuracy, the benefit of performance gain is more valuable. 

Yolov4-CSP-521-s2: To see whether we can gain more 

performance without heavily affect model’s accuracy, 2 

frames skipping is implemented. Although model has 

become unreliable, gaining more performance. Therefore, 

2 frame skipping approach is chosen to be the foundation to 

develop other improvements. 

Yolov4-CSP-512s-s12-fd: In this final version, either 1 

or 2 frame-skipping is used depending on video source. By 

doing this, our model has become more flexible so it can 

increase both its accuracy and performance at the same 

time. 

4.6. Overall Score on AI City Challenge 2021 Track 1 

Dataset 

Table 4 show the leader board of AI City Challenge 

2021 Track 1. Our proposed vehicle counting method 

achieved 4th place in the ranking. 

Team ID S1 score 

37 0.9467 

5 0.9459 

8 0.9263 

19 (our) 0.9249 

118 0.9235 

Table 4. Top 5 overall scores of the vehicle counting task 

in AI City 2021 track 1. 

References  

[1] A. Abdagic, O. Tanovic, A. Aksamovic, and S. 

Huseinbegovic. Counting traffic using optical flow algorithm on 

video footage of a complex crossroad. pages 41–45, 2010.  

[2] Shubhra Aich and Ian Stavness. Leaf counting with deep 

convolutional and deconvolutional networks. pages 2080– 2089, 

2017.  

[3] J. Barandiaran, B. Murguia, and F. Boto. Real-time people 

counting using multiple lines. pages 159–162, 2008.  

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for 

human detection. In 2005 IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition (CVPR’05), volume 1, 

pages 886–893 vol. 1, 2005.  

[5] Luca Del Pizzo, Pasquale Foggia, Antonio Greco, Gennaro 

Percannella, and Mario Vento. Counting people by rgb or depth 

overhead cameras. Pattern Recognition Letters, 81:41– 50, 2016.  

[6] KV Embleton, CE Gibson, and SI Heaney. Automated 

counting of phytoplankton by pattern recognition: a comparison 

with a manual counting method. Journal of Plankton Research, 

25(6):669–681, 2003. 

[7] Wongun Choi. Near-online multi-target tracking with 

aggregated local flow descriptor. In Proceedings of the IEEE 

(a) 

 

(b) 

 
Figure 9. Tracking results (a) after applying efficient feature 

matching. (b) before applying efficient feature matching. 



 

 

international conference on computer vision, pages 3029– 3037, 

2015. 

[8] Mark Everingham, SM Ali Eslami, Luc Van Gool, 

Christopher KI Williams, John Winn, and Andrew Zisserman. The 

pascal visual object classes challenge: A retrospective. 

International journal of computer vision, 111(1):98–136, 2015. 

[9] Mark Everingham, Luc Van Gool, Christopher KI 

Williams, John Winn, and Andrew Zisserman. The pascal visual 

object classes (voc) challenge. International journal of computer 

vision, 88(2):303–338, 2010.  

[10] P. Felzenszwalb, D. McAllester, and D. Ramanan. A 

discriminatively trained, multiscale, deformable part model. In 

2008 IEEE Conference on Computer Vision and Pattern 

Recognition, pages 1–8, 2008.  

[11] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE 

international conference on computer vision, pages 1440–1448, 

2015.  

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra 

Malik. Rich feature hierarchies for accurate object detection and 

semantic segmentation. In Proceedings of the IEEE conference on 

computer vision and pattern recognition, pages 580–587, 2014.  

[13] Luo Juan and Luo Gwon. A comparison of sift, pca-sift 

and surf. International Journal of Signal Processing, Image 

Processing and Pattern Recognition, 8(3):169–176, 2007.  

[14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James 

Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, and C 

Lawrence ´ Zitnick. Microsoft coco: Common objects in context. 

In European conference on computer vision, pages 740–755. 

Springer, 2014.  

[15] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian 

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg. 

Ssd: Single shot multibox detector. In European conference on 

computer vision, pages 21–37. Springer, 2016.  

[16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali 

Farhadi. You only look once: Unified, real-time object detection. 

In Proceedings of the IEEE conference on computer vision and 

pattern recognition, pages 779–788, 2016.  

[17] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 

Faster r-cnn: Towards real-time object detection with region 

proposal networks. In Advances in neural information processing 

systems, pages 91–99, 2015. 

[18] Frank Y Shih and Xin Zhong. Automated counting and 

tracking of vehicles. International Journal of Pattern Recognition 

and Artificial Intelligence, 31(12):1750038, 2017.  

[19] L. Unzueta, M. Nieto, A. Cortes, J. Barandiaran, O. 

Otaegui, and P. Sanchez. Adaptive multicue background 

subtraction for robust vehicle counting and classification. IEEE 

Transactions on Intelligent Transportation Systems, 13(2):527–

540, 2012.  

[20] P. Viola and M. Jones. Rapid object detection using a 

boosted cascade of simple features. In Proceedings of the 2001 

IEEE Computer Society Conference on Computer Vision and 

Pattern Recognition. CVPR 2001, volume 1, pages I–I, 2001.  

[21] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple 

online and realtime tracking with a deep association metric. In 

2017 IEEE international conference on image processing (ICIP), 

pages 3645–3649. IEEE, 2017.  

[22] Honghong Yang and Shiru Qu. Real-time vehicle 

detection and counting in complex traffic scenes using 

background subtraction model with low-rank decomposition. IET 

Intelligent Transport Systems, 12(1):75–85, 2017.  

[23] Chien-Yao Wang, Alexey Bochkovskiy, Hong-Yuan 

Mark Liao . 

[24] Mingxing Tan, Ruoming Pang, and Quoc V Le. 

EfficientDet: Scalable and efficient object detection. In 

Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), 2020. 

[25] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, 

and Piotr Dollar. Focal loss for dense object detection. In 

Proceedings of the IEEE International Conference on Computer 

Vision (ICCV), pages 2980–2988, 2017. 

[26]  Paul Henderson, Vittorio Ferrari. End-to-end training of 

object class detectors for mean average precision. Conference: 

Asian Conference on Computer Vision    

[27] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue 

Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. Context 

Encoding for Semantic Segmentation.In IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 2018. 

[28] Ioffe, S., & Szegedy, C. (2015). Batch normalization: 

Accelerating deep network training by reducing internal covariate 

shift, arXiv preprint arXiv:1502.03167.  

[29] Chien-Yao Wang, Hong-Yuan Mark Liao, I-Hau 

Yeh, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh. CSPNet: 

A New Backbone that can Enhance Learning Capability of CNN. 

Published in 2020 IEEE/CVF Conference on Computer Vision 

and Pattern Recognition Workshops (CVPRW). 

[30] Milind Naphade and Shuo Wang and David 

C. Anastasiu and Zheng Tang and Ming-Ching Chang and 

Xiaodong Yang and Liang Zheng and Anuj Sharma and 

Rama Chellappa and Pranamesh Chakraborty. The 4th AI City 

Challenge. The IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR) Workshops. 

[31] Qiang Li, Ranyang Li, Kaifan Ji, Wei Dai. Kalman Filter 

and Its Application. Published in: 2015 8th International 

Conference on Intelligent Networks and Intelligent Systems 

(ICINI). 

[32] Caglayan Dicle, Octavia I Camps, and Mario Sznaier. The 

way they move: Tracking multiple targets with similar 

appearance. In Proceedings of the IEEE international conference 

on computer vision, pages 2304–2311, 2013. 

[33] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we 

ready for autonomous driving? the kitti vision benchmark suite. In 

2012 IEEE Conference on Computer Vision and Pattern 

Recognition, pages 3354–3361. IEEE, 2012. 

[34] Harold W Kuhn. The Hungarian Method for the 

Assignment Problem. Naval research logistics quarterly, 2(1-

2):83–97, 1955 

[35] Aljosa Osep, Wolfgang Mehner, Markus Mathias, and 

Bastian Leibe. Combined image-and world-space tracking in 

traffic scenes. In 2017 IEEE International Conference on Robotics 

and Automation (ICRA), pages 1988–1995. IEEE, 2017 

[36] Milind Naphade and Zheng Tang and Ming-Ching Chang 

and David C. Anastasiu and Anuj Sharma and Rama Chellappa 

and Shuo Wang and Pranamesh Chakraborty and Tingting Huang 

and Jenq-Neng Hwang and Siwei Lyu. The 2019 AI City 

Challenge. The IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR) Workshops. 

[37] Mohammad Shokrolah Shirazi and Brendan Morris. 

Vision based turning movement counting at intersections by 

cooperating zone and trajectory comparison modules. In 17th 



 

 

International IEEE Conference on Intelligent Transportation 

Systems (ITSC), pages 3100–3105. IEEE, 2014 

[38] Z. Dai, H. Song, X. Wang, Y. Fang, X. Yun, Z. Zhang, and 

H. Li. Video-based vehicle counting framework. IEEE Access, 

7:64460–64470, 2019 

[39] Huansheng Song, Xuan Wang, Cui Hua, Weixing Wang, 

Qi Guan, and Zhaoyang Zhang. Vehicle trajectory clustering 

based on 3d information via a coarse-to-fine strategy. Soft 

Computing, 22(5):1433–1444, 2018. 

[40] Maojin Sun, Yan Wang, Teng Li, Jing Lv, and Jun Wu. 

Vehicle counting in crowded scenes with multi-channel and multi-

task convolutional neural networks. Journal of Visual 

Communication and Image Representation, 49:412– 419, 2017. 

[41] Milind Naphade and Ming-Ching Chang and Anuj Sharma 

and David C. Anastasiu and Vamsi Jagarlamudi and Pranamesh 

Chakraborty and Tingting Huang and Shuo Wang and Ming-Yu 

Liu and Rama Chellappa and Jenq-Neng Hwang and Siwei 

LyuMilind Naphade and Ming-Ching Chang and Anuj Sharma 

and David C. Anastasiu and Vamsi Jagarlamudi and Pranamesh 

Chakraborty and Tingting Huang and Shuo Wang and Ming-Yu 

Liu and Rama Chellappa and Jenq-Neng Hwang and Siwei Lyu. 

The 2018 NVIDIA AI City Challenge. Proc. CVPR Workshops. 

[42] Milind Naphade and David C. Anastasiu and Anuj Sharma 

and Vamsi Jagrlamudi and Hyeran Jeon and Kaikai Liu and Ming-

Ching Chang and Siwei Lyu and Zeyu Gao. The NVIDIA AI City 

Challenge. Prof. SmartWorld. 

[43] Zheng Tang and Milind Naphade and Ming-Yu Liu and 

Xiaodong Yang and Stan Birchfield and Shuo Wang and 

Ratnesh Kumar and David Anastasiu and Jenq-Neng Hwang. 

CityFlow: A City-Scale Benchmark for Multi-Target Multi-

Camera Vehicle Tracking and Re-Identification. The IEEE 

Conference on Computer Vision and Pattern Recognition 

(CVPR). 

[44] Yue Yao and Liang Zheng and Xiaodong Yang and Milind 

Naphade and Tom Gedeon. Simulating Content Consistent 

Vehicle Datasets with Attribute Descent. The European 

Conference on Computer Vision (ECCV). 

 


