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Abstract

Traffic Anomaly detection is an essential computer vi-

sion task and plays a critical role in video structure anal-

ysis and urban traffic analysis. In this paper, we propose

a box-level tracking and refinement algorithm to identify

anomaly detection in road scenes. We first link the detec-

tion results to construct candidate spatio-temporal tubes

via greedy search. Then the box-level refinement scheme

is introduced to employ auxiliary detection cues to promote

the abnormal predictions, which consists of spatial fusion,

still-thing filter, temporal fusion, and feedforward optimiza-

tion. Still-thing filter and feedforward optimization employ

complementary detection concepts to promote the abnormal

predictions, which helps determine an accurate abnormal

period. The experimental results show that our approach

is superior in the Traffic Anomaly Detection Track test set

of the NVIDIA AI CITY 2021 CHALLENGE, which ranked

second in this competition, with a 93.18% F1-score and

3.1623 root mean square error. It reveals that the proposed

approach contributes to fine-grained anomaly detection in

actual traffic accident scenarios and promoting the devel-

opment of intelligent transportation.

1. Introduction

Traffic Anomaly detection is a fundamental computer

vision task and plays a critical role in video structure

analysis and potential downstream applications, e.g., ac-

cident forecasting, urban traffic analysis and evidence in-

vestigation. Traffic anomaly detection has been exten-

sively studied in the computer vision field for a long time

[6, 11, 7, 5, 10, 3, 4, 19, 16, 22, 20, 23]. These researches

have been conducted to leverage a series of statistic patterns

to model abnormal concepts, e.g., Hidden Markov Model

[7, 5], Markov Random Field [6, 11], sparse reconstruction

[10, 3, 21, 9] and autoencoders [4, 19].

Vehicle anomaly detection is a particular fine-grained

traffic anomaly detection, which aims to detect anomalies

such as lane violations, wrong-direction driving, and so

on. NVIDIA AI CITY CHALLENGE 2018[12], 2019[13],

2020 [14] and 2021 held an vehicle anomaly detection chal-

lenge for traffic scenarios. Specifically, each participating

team submits detected anomalies, including wrong turns,

wrong driving direction, lane change errors, and all other

anomalies based on video feeds available from multiple

cameras at intersections and along highways. This chal-

lenge popularized fine-grained anomaly detection in actual

traffic accident scenarios and promoted the development of

intelligent transportation.

In NVIDIA AI CITY CHALLENGE 2021, we follow

the assumption from [8] that if a stopped vehicle stays

longer than the traffic light signal period, it can be regarded

as an abnormal event. In this work, we propose a box-

level tracking and refinement framework to perform the

traffic anomaly detection. The framework contains the ex-

traction of hypothetical differential mask, backward back-

ground modeling to eliminate dynamic traffic disturbance,

the multi-stage detection model to obtain still vehicles, a

box-level tracking mechanism to construct candidate abnor-

mal tubes, and a refinement scheme to promote a more ac-

curate abnormal period. In order to avoid the interference

of roadside parking, we use the video motion information

to extract and segment the pixel-level hypothetical abnor-

mal mask. We perform backward background modeling

based on the Gaussian Mixture Model (GMM) to eliminate

moving vehicles, hence the motionless vehicles are easier

to detect. Then a multi-stage vehicle detection model is ex-

ploited to detect vehicles in the video frames. The box-level

tracking branch links the detected boxes and constructs the

tube to enclose the trajectory of the anomaly. The refine-

ment scheme is crafted to make up for the performance loss

of the detector and alleviate the problem of false detection.

To sum up, the main contributions are summarized as fol-

lows:

• We present a box-level tracking and refinement frame-

work, which employs different dimension detection results

to predict the abnormal period, which helps to take good ad-

vantage of comprehensive information for determining an

accurate abnormal time.

• The novel box-level refinement scheme is designed to

promote the abnormal predictions, which involves spatial
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Figure 1. The illustration of box-level tracking and refinement framework. We employ detection results from original video frame and

from backward background modeling to obtain accurate abnormal predictions.

Figure 2. Examples of differential mask. The obtained mask helps to segment the main road precisely.

fusion, still-thing filter, temporal fusion and feedforward

optimization. This strategy compensates for the false de-

tection and significantly improves the accuracy of the pre-

dictions.

• Based on the above technical points, we evaluated our

method on the Traffic Anomaly Detection Track test set of

the NVIDIA AI CITY 2021 CHALLENGE, We ranked sec-

ond among all participating teams, and we obtain the F1-

score metric at 0.9318 and the RMSE metric at 3.1623.

2. Methodology

Figure 1 illustrates the proposed framework and its mod-

ular components. In the following sections, we first de-

scribe the backward background modeling and the extrac-

tion of the differential abnormal masks in sections 2.1 and

2.2, respectively. Then the multi-stage detection model is il-

lustrated in section 2.3. Section 2.4 introduces the proposed

box-level tracking and refinement approach. Box-level re-

finement scheme consists of spatial fusion, still-thing fil-

ter, temporal fusion and feedforward optimization. Differ-

ent granularity detection results are employed to obtain and

refine the temporal abnormal cues.

2.1. Extraction of Differential Mask

It is possible for the detector to recognize other objects

not on the main road as vehicles, resulting in false detec-

tion. In order to avoid the interference of roadside park-

ing, we use the video motion information to extract and



Figure 3. Examples of backward background modeling. From the figure we can see that the background modeling helps to filter the traffic

flow and retain the motionless vehicles.

segment the pixel-level hypothetical abnormal mask. We

analyze motion differences between two frames to extract

the abnormal mask. Specifically, there are k interval frames

between these two frames, if the differences exceed η in the

pixel-level dimension, we consider that the corresponding

area has moving objects and retain this area. Finally, we

combine these areas to obtain the differential mask. Fig-

ure2 shows some results of the differential mask, we can

observe that the obtained mask helps to segment the main

road precisely.

2.2. Backward Background Modeling

Whether it is abnormal parking or a traffic accident, it

will be accompanied by an abnormal stay of the vehicle.

When the vehicle stays for a long time, it will merge into the

background information when performing the background

modeling, hence we can detect the abnormal vehicle in the

background information directly. This paper uses MOG2

[24, 25] for background modeling. MOG2 is an adaptive

Gaussian mixture model, which is better than other back-

ground extraction algorithms MOG, MOG2, GMG in terms

of foreground continuity and computing time.

In this paper, we adopt the background modeling in the

backward direction, since we find that the forward back-

ground modeling is easy to predict the lagging time in the

temporal dimension. As shown in Figure 3, we can observe

that the backward background modeling helps to filter the

traffic flow and retain the motionless vehicles.

2.3. Vehicle Detection

Object detection is a long-standing topic in the field of

computer vision, aiming to detect objects of predefined cat-

egories. Recent CNN-based detection methods can be di-

vided into anchor-based and anchor-free detectors. Anchor-

based detectors usually fall into one-staged and two-staged

methods, while anchor-free detectors consist of keypoint-

based and center-based methods. Two-stage methods refine

anchors several times more than one-stage methods, hence

it has more accurate results while one-stage methods have

higher computational efficiency. And state-of-the-art results

on common detection benchmarks are still held by anchor-

based detectors. Faster-RCNN [15] is a classical two-stage

detection framework, which consists of a region proposal

network (RPN) and a region-based prediction network(R-

CNN). By extending Faster-RCNN, Cascade R-CNN [1],

a multi-stage object detection framework was proposed to

avoid the problems of overfitting during training and quality

mismatch at inference. In the situation of vehicle anomaly

detection, recall of vehicles plays a essential role. So we

train a Cascade R-CNN detector which adopts ResNeXt

[18] with the depth of 101 and groups of 64 as the back-

bone to extract semantic features. We also employ FPN

with layers of 5 to improve detection performance on small

objects. A three-stage cascade with different IoU thresholds

is adopted to obtain higher quality detection results.

We conduct the experiment on the PyTorch framework.

The model is trained on AICITY2021 track4 training videos

and performs inference on the origin test videos and videos

after backward background modeling, respectively. Detec-

tion results of backward background modeling are used to

find the abnormal stopped vehicles, while detection results

of origin videos are leveraged to filter some still things such

as road signs or parked cars. Some examples of detection

results are shown in Figure 4.

2.4. Boxlevel Tube Tracking and Refinement

In this paper, we design a box-level tube tracking and

refinement algorithm to analyze the candidate abnormal ve-



Figure 4. Examples of detection result after backward background modeling. From the figure we can observe that abnormal stopped car

can be detected successfully.

hicles, which involves a box-level tube tracking process and

a refinement scheme.

2.4.1 Tube Tracking

Box Linking and Tube Construction. We first perform the

box linking and tube construction process. We follow [8]

to generate box-level tracking results. Specifically, we first

adopt the muiti-stage detection approach in section 2.1 to

detect all bounding boxes, {B} in the video frames after the

backward background modeling process, with correspond-

ing confidence scores S(B). We first filter the detection

results. If the intersection-over-union (IoU) between the de-

tection box and the mask area is less than λ or the predicted

confidence S(B) is less than λ, we will discard these boxes.

Subsequently, we link the detections across the single frame

to produce a spatio-temporal tube to outline a particular ve-

hicle. Then, we sort the detections according to S(B) and

pick the one with the max score as the starting point of the

linking process. Then the linking process is extended both

forward and backward via the greedy search algorithm and

the box with the max linking score in the consecutive time

is added to the corresponding tube. Specifically, the linking

score Sl(Bi, Bj) is defined as the intersection-over-union

(IoU) of two detection boxes Bi and Bj . We continue the

linking process until there is no box could obtain the IoU

greater than λ. When a special tube is constructed, we re-

move the linked boxes and collect a new tube repeatedly

until all boxes are grouped.

2.4.2 Tube Refinement.

In complex traffic scenes, the detection results are essential

to the final results. To deal with the issue of false detec-

tion, we designed four mechanisms to compensate for the

detection performance, i.e., spatial fusion, still-thing filter,

temporal fusion and feedforward optimization.

Spatial Fusion. First, we compare the starting boxes of

the candidate tubes. When their IoU exceeds the threshold

λ, we consider that these two tubes are related to the same

vehicle and merge these tubes into the same tube.

Still-thing Filter. [8] proposes a similarity filter to dis-

card some false detections. However, they are complicated

and have more hyper-parameters to adjust. In this paper, we

introduce a still-thing filter module to exclude some back-

ground information. We employ detection results from the

original video frame to guide this process. Specifically,

we use the detection result of the original frame to con-

firm whether the candidate tube is false detection. In other

words, if the original frame always has the similar detection

result (IoU surpasses λ) outside the tube, it means that the

object may be an error in the video that has always existed.

Hence we consider they are actually background informa-

tion and filter them out. We illustrate the motivation of the

still-thing filter in Figure 5. (a) and (b) represents the back-

ward background modeling detection results before and af-

ter the still-thing filter, figure (c) depicts the origin video

detection results. As some still thing such as road sign (red

elliptic region) may be falsely detected, still-thing appears

along whole origin video will be treated as normal instance

and will be filtered via this module.

Temporal Fusion. Then we merge the obtained tubes in

the temporal dimension. When the end time of the current

abnormal tube tTi

e and the start time t
Ti+1

s of the next one

are within β, we think they belong to the same abnormal

event and combine these tubes.

FeedForward Optimization. Considering that the re-

sults of background modeling in the backward direction

may make the appearance of vehicles earlier, we addition-

ally employ the detections of the original frames to refine



Figure 5. Example of still-thing filter. Figure (a) and (b) stand for backward background modeling detection results before and after the

still-thing filter, figure (c) depicts the origin video detection results. As some still thing such as road sign (red elliptic region) may be falsely

detected, still-thing appears along whole origin video will be treated as normal instance and will be filtered.

the abnormal results. Specifically, we use the detections of

the start time of the candidate tube to compare with the de-

tections of the original frames in the corresponding time.

When the number of feedforward frames is less than the

max feedforward frame ζ and the IoU between the detec-

tions is greater than the IoU threshold λ, we update the start-

ing time of this anomaly to the time of the current detection.

The feedforward process is repeated until the threshold con-

dition is not met.

3. Experiments

3.1. Experimental Setup

The track4 dataset in NVIDIA AI CITY CHALLENGE

2021 is divided into the training set and test set. The train-

ing set contains 100 videos with a length of approximately

15 minutes, a frame rate of 30 fps and a resolution of 800

× 410. And the testing set consists of 150 videos. The al-

gorithm should identify all car crashes or stalled vehicles in

all 150 test set videos, and give the start time and the cor-

responding confidence score. We first conduct the experi-

ments in the training set to determine the model parameters

through cross-validation. Then we directly adopt the pa-

rameters of each component obtained by cross-validation to

obtain the final result in the test set.

3.2. Implementation Details

Extraction of Differential Abnormal Mask. For the dif-

ferential mask, the hyper parameter k is set to 5. Namely,

we extract five frames per second to calculate the changing

area. The difference threshold η is 99.

Backward Background Modeling. In the backward back-

ground modeling, we fix T = 4 to update the GMM pa-

rameters. In order words, the update interval is set as 120

frames at 30 fps. As a result, all normal moving vehicles

are removed from the frames and static vehicles remain in

the background.

Detection Model. We leverage Cascade R-CNN with the

backbone of ResNeXt-101 (64x4d) pretrained on ImageNet

as our detection model. FPN with 5 layer are used to build

high-level semantic feature maps at all scales, the down-

sample strides are [4, 8, 16, 32, 64]. We use 3 stage cas-

cade heads with different IoU thresholds 0.5, 0.6 and 0.7.

We adopt Stochastic Gradient Descent (SGD) optimizer

with momentum rate 0.9 and weight decay 1e-4 to train the

model for 20 epochs. We employ 8 Nvidia Tesla V100 to

accomplish the training process and set batch size to 32.

The initial learning rate is 0.02 and it will be reduced by a

factor of 10 at epoch 16 and 19. We follow the setting of

popular detection framework[17, 2], setting the input size

as 1333× 800. We adopt random horizontal flip as the data

augmentation in the train process and the random probabil-

ity is set to 0.5. We fix the score threshold to 0.5 and the

NMS IoU threshold to 0.2 during the inference process.



Table 1. Experimental results on Track4 test-set.

Team ID F1 RMSE Total Score

76 - - 0.9355

158 (Our) 0.9318 3.1623 0.9220

92 - - 0.9197

90 - - 0.8597

153 - - 0.5686

Box-level Tracking and Refinement. The linking IoU

threshold λ is 0.4. The max traceback frame ζ is 240

frames. The temporal fusion threshold β is set to 5000

frames.

3.3. Evaluation Metric

A robust metric is adopted to measure the performance

of anomaly detection, which is computed via F1-score and

normalized root mean square error (NRMSE):

S4 = F1× (1−NRMSE). (1)

The F1-score is the harmonic mean of recall and pre-

cision. Specifically, a true-positive (TP) detection is con-

sidered as the correct anomaly within ten seconds of a real

anomaly. A false-negative (FN) is a real abnormal event that

the proposed approach fails to correctly predict. A false-

postive (FP) respents the predicted anomaly is not a real

anomoly actually. The F1-score is summarized by:

F1 =
2TP

2TP + FN+ FP
. (2)

Normalized root mean square error (NRMSE) denotes

the temporal error of the predicted time and real anomaly

time for all true-positive predictions. NRMSE employs a

max-min normalization with a maximum value of 300 and a

minimum value of 0. In short, NRMSE is defined as follow:

NRMSE =
min(

√

1

TP

∑

TP

i=1
(tpi − t

gt
i )2, 300)

300
, (3)

where t
gt
i denotes the ground truth starting time of the

anomaly and t
p
i is the predicted starting time proposed by

our approach.

3.4. Experimental results

We evaluate our method on the NVIDIA AI CITY

CHALLENGE 2021 Anomaly Detection Track testing data.

As shown in Table 1, we achieve 0.9318 F1-score while the

start time error is only 3.1623 seconds, which demonstrates

the superiority and robustness of our proposed method. We

achieve 0.9220 S4 score and rank the second place among

all the participant teams.

4. Conclusions

In this paper, we design a box-level tracking and refine-

ment approach, which contains the extraction of hypothet-

ical differential mask, backward background modeling to

eliminate dynamic traffic disturbance, the multi-stage de-

tection model to obtain still vehicles, a box-level tracking

mechanism to construct candidate abnormal tubes , and

a refinement scheme to promote a more accurate abnor-

mal period. Results on NVIDIA AI CITY CHALLENGE

2021 show our proposed method shows promising perfor-

mance, which gets a 0.9220 total score, 93.18% F1-score

and 3.1623 RMSE.
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