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Abstract

Multi-Target Multi-Camera tracking (MTMC) is an es-

sential task in the intelligent city and traffic analysis. It is

a great challenging task due to several problems such as

heavy occlusions and appearance variance caused by vari-

ous camera perspectives and congested vehicles. In this pa-

per, we propose a practical framework for dealing with the

MTMC problem. The proposed framework contains three

stage. Firstly, in the vehicles detection and Re-ID stage, the

proposed system leverages Cascade R-CNN to detect all ve-

hicles and extract appearance features with a Re-ID mod-

ule for all cameras. Secondly, in the Multi-Target Single-

Camera tracking (MTSC) stage, on the basis of the detected

boxes and appearance features, it tracks multiple vehicles to

generate candidate trajectories within each single camera

with Tracklet-Plane Matching (TPM) tracking algorithm.

Finally, in the Inter-Camera Association (ICA) stage, it as-

sociates all candidate trajectories between two successive

cameras using the established distance matrix, and com-

bines all successively matching results for final submission.

The established distance matrix is simply computed by the

Re-ID features and refined by the constraints of traveling

time, road structures, and traffic rules to accelerate match-

ing time as well as reduce search space. Extensive experi-

ments on the public track3 test set of NVIDIA AI CITY 2021

CHALLENGE demonstrate the effectiveness of our method,

which achieves IDF1 of 77.87%.

1. Introduction

In recent years, with the rapid development of intelligent

transportation system, the demand of Multi-Target Multi-

Camera tracking (MTMC) is rapidly increased. The pur-

pose of MTMC task is to tracks multiple vehicle targets

across multiple cameras as shown in Figure 1, which can

help with traffic flow analysis and vehicle routes planning.

*Equally-contributed authors.

Figure 1. Illustration of Multi-Target Multi-Camera tracking task.

Given a variety of vehicles in different cameras, our goal is to

match all identical vehicles across all cameras.

Typically, MTMC consists of vehicle detection, Re-

Identification (Re-ID), Multi-Target Single-Camera track-

ing (MTSC) and Inter-Camera Association (ICA) stage. In

last few years, there have emerged some successful research

achievements for MTMC [1, 13, 15, 16, 17, 25, 30, 34, 36,

37]. A classical pipeline of MTMC in the intelligent trans-

portation scene, based on vehicle detection results and Re-

ID features, is to first track vehicles to generate candidate

trajectories in single cameras with MTSC module, and then
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associate these candidate trajectories along through cameras

to find vehicles with the same identity with ICA module.

For MTSC module, Many tracking-by-detection methods

have been proposed recently because the precision of vehi-

cle detection results has a direct impact on the tracking pro-

cess. Andreas et al. [10] and Zhang et al. [44] adopt vehicle

features and vehicle locations with detected bounding boxes

to identify same objects, which achieve remarkable track-

ing results. Peng et al. [24] propose a novel Tracklet-Plane

Matching (TPM) algorithm, which not only combines mul-

tiple short trajectories into a single long trajectory but also

attaches missing detection boxes for tracked trajectories.

For ICA module, Hsu et al. [16] firstly propose many intri-

cate traveling strategies to distinguish trajectories with sev-

eral pre-defined zones for every camera, and then apply the

greedy algorithm to generate final matching result. Qian et

al. [25] propose a rule-based algorithm, which adopts the

geometry information to repeatedly update MTSC tracking

result until the matching result is merged.

However, there are still several challenges to overcome.

For MTSC tracking, it has a higher risk of vehicles loss

because Re-ID features may easily affected by severe oc-

clusion, complex light conditions, and serious deformation

of a specific vehicle in different areas in a camera. Mean-

while, for the intrinsic property of this task, it is difficult

to deal with ID switch problem in MTSC tracking mainly

because of serious occlusion of congested vehicles, which

is frequently happened while a large number of vehicles are

waiting for the traffic lights. For ICA, a vehicle may not ap-

pear in the next camera when it drives out the last camera,

and vice versa. For example, let us consider those vehicles

from camera 41 to 42 as shown in Figure 5, vehicles can

leave camera 41 but may not enter camera 42, or they can

drive into camera 42 but not exit camera 41. These vehicles

may be tracked in MTSC but cannot be found those pairs

in MTMC ground-truth. As most matching algorithms (e.g.

Hungarian matching algorithm [23]) attempt to find much

more pairs as possible, falling to remove those impossible

camera-cross-traveling trajectories will have a harmful im-

pact on the final matching result. All these problems de-

scribed above make MTMC tracking a more challenging

task.

In this paper, we propose an effective and accurate sys-

tem for multi-target multi-camera tracking. The flowchart

of our proposed MTMC system is shown in Figure 2. Given

a set of videos under different camera views, the system first

leverages Cascade R-CNN to detect all vehicles and extract

appearance features with Re-ID module for all cameras. On

the basis of the detected boxes and appearance features, it

tracks multiple vehicles to generate candidate trajectories

within each single camera with TPM algorithm. Finally,

in the ICA procedure, it associates all candidate trajecto-

ries between two successive cameras using the established

distance matrix, and combines all matching results for final

submission. Particularly, The established distance matrix

is simply computed by the Re-ID features and refined by

the constraints of traveling time, road structures, and traffic

rules to reduce the searching space as well as accelerate the

matching time.

The rest of the paper is organized as follows: An

overview of related work is described in Section 2. In sec-

tion 3, our proposed framework is introduced in detail. In

Section 4, we demonstrate sufficient experiments of our

method on the track3 of CVPR AI City Challenge 2021.

Finally, conclusion is concluded in Section 5.

2. Related Work

2.1. Vehicle Detection

Object Detection is one of the most popular tasks in com-

puter vision and image processing, and it locates the exis-

tence of objects in an image using bounding boxes and cat-

egorizing the objects found. In general, there are two differ-

ent branches for this task: one stage methods [26, 20] and

two stage methods [27, 11, 5]. SSD [20] and YOLO [26]

are representative one stage methods. SSD uses a set of

pre-defined boxes of different aspect ratios and scales in or-

der to predict the presence of an object in a certain image,

and YOLO attempts at building a fast real-time object de-

tector treating the detection task as a regression problem.

For two stage methods, the Faster R-CNN [27] firstly gen-

erate a set of Region of Interests (RoIs) by Region Proposal

Network (RPN), then a binary classifier processes the RoIs

to having objects or backgrounds, finally, RoIs with ob-

jects are refined to obtain regressed boxes and fine grained

classes. Based on Faster R-CNN, He et al. [11] propose a

new layer named RoIAlign, which can correct the misalign-

ments between the RoIs and the extracted features. How-

ever, detection performance by [11] tends to degrade with

increasing the IoU thresholds. Cai et al. [5] propose a Cas-

cade R-CNN to address above problems by training a se-

quence of detectors with increasing IoU thresholds. Com-

pared to one-stage methods, two stage methods are usually

more accurate and flexible. In this paper, we use Cascade

R-CNN to detect vehicles.

2.2. Vehicle Reidentification

Vehicle Re-Identification (Re-ID) is a fundamental task

in multi-camera traffic flow for smart cities applications,

with the goal of retrieval vehicles that appear in different

cameras. Convolution Neural Network based (CNN) vi-

sual deep features representation has recently gained a lot of

attraction. Several loss functions, sampling strategies and

samples generation methods have been proposed to learn

discriminative representations. Representative loss func-

tions include cross entropy loss [46], triplet loss [14], circle
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Figure 2. The pipeline of our MTMC system. We first detect all vehicles using Cascade R-CNN and extract their appearance features with

Re-ID module. Then, all extracted boxes with their features are fed into MTSC Module, which generates all trajectory candidates for every

single camera. Finally, our proposed ICA module matches all trajectory candidates across all cameras as the final result.

loss [32], and other effective loss [8].

For sampling strategies, Chen et al. [7] and Rikiya et

al. [33] mine informative samples in vehicle Re-ID train-

ing phase. Tang et al. [35] focus on part of vehicle or key-

point of vehicle learning strategy, which embeds key-points,

heatmaps and segmentation task into vehicle Re-ID train-

ing stage, which guides the convolution network to learn

the part-related, point-related or pixel-related information.

Shen et al. [29] apply the spatial-temporal constraints to re-

duce the sample search space, which eliminates the hard-

negative samples. However, due to the large visual appear-

ance changes caused by different cameras, vehicle orienta-

tion, illuminations and occlusions, Re-ID is still a challeng-

ing task.

In order to learn the robust vehicle representation, many

recent works have explored samples generation methods.

For instance, Generative Adversarial Network (GAN) [22]

and game engine have demonstrated the effectiveness of the

synthetic data in training Re-ID networks [40, 47]. GAN

transfers the style from a source domain to a target do-

main, and generates samples conditioned with the specific

attributes, such as color, orientation and occlusions. Zhou et

al. [51] synthesize a multi-view feature by transforming a

single-view feature to against the orientation variation.

2.3. Single Camera Tracking

Tracking-by-detection. Most traditional tracking algo-

rithms follow the tracking-by-detection paradigm, which

obtains multiple detection boxes in each frame firstly with

an effective detector and then associate the detection boxes.

Bewley et al. [4] introduce a SORT algorithm, which tracks

bounding boxes by using a Kalman filter and Hungarian

algorithm correctly. Nicolai et al. [41] propose a Deep-

Sort algorithm on the base of [4], which uses appearance

features from a deep network to enhance the association

cost . Yu et al. [43] propose a POI algorithm, which de-

signs an efficient detector based on Faster R-CNN and then

gets better appearance feature more efficiently. Based on

all the above, Peng et al. [24] propose a novel TPM al-

gorithm, which not only considers how to combine mul-

tiple short sub-trajectories into a long trajectory properly,

but also complements the supplement of missing detection

boxes based on trajectory context.

Joint detection and tracking. Currently, a more pop-
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Figure 3. Examples of detected vehicles. The left two images show

the box shift of vehicle-shadow and detection loss of tiny vehicle

issues. The right two images demonstrate our detection model can

solve those problems to same extent.

ular method in the field of multi-target tracking is in-

tegrating the detector into the tracker and training both

tasks in the same framework. Bergmann et al. [2] intro-

duce a novel algorithm named Tracktor, which removes

the box association strategy and propagates identities of re-

gion proposals directly by bounding box regression strat-

egy. Zhang et al. [45] propose FairMOT considering the

difference between detection task and Re-ID trask in-depth,

which promotes the development of multi-object tracking

task. Zhou et al. [49] propose CenterTrack on the base of

CenterNet [50], which associates different objects between

different frames by using the offsets of center points and is

simpler, faster and more accurate. Recently, some tracking

algorithms based on the TransFormer [38] have attracted the

attention of many researchers. Meinhardt et al. [21] firstly

introduce TransFormer to the multi-object tracking task and

proposed the TrackFomer algorithm, which exploits self-

attention and encoder-decoder attention mechanisms and

reliefs issues caused by occluded, missing or noisy detec-

tion. Subsequently Sun et al. [31] propose TransTrack,

which combines track query and learned object query with

DETR [6] and further improves the track performance.

3. Method

This section presents the details of our framework for

Multi-Target Multi-Camera tracking (MTMC). Figure 2

shows a brief overview of our system. We describe each

key module (vehicle Detection, Re-ID, MTSC, and ICA) in

detail in the following sections.

3.1. Vehicle Detection

Vehicle detection is the first and essential step in MTMC

tracking. To effectively detect vehicles as much as possi-

ble for all images, we adopt the state-of-the-art network

Cascade R-CNN [5] as our vehicle detection model for

each frame. We use a powerful convolutional neural work

ResNet-101 [12], which is equipped with the Feature Pyra-

mid Network (FPN) [19], as its backbone for feature ex-

traction. Then abundant candidate bounding boxes are pro-

duced by Region Proposal Network (RPN) and Region of

Interest Alignment (RoIAlign). The detected box with its

object class and confident score are generated by multiple

output heads.

In this traffic scene, we only need to focus on the vehicle

object, and the difficulty of the scene is to detect tiny vehi-

cles and box shift of vehicle with shadows, as shown in the

top-left of Figure 3. To reliably address these problems, we

sample more images that contains vehicle-shadow samples

from validation videos to detect more accurate boxes for

box shift of vehicle-shadow problem. For tiny vehicles, we

not only use FPN but also increase the loss weight for tiny

targets to recall more correctly tiny boxes. Furthermore, in

order to obtain a more robust and accurate detection model,

we train our detection model using all possible data in the

AI City Challenge 2021 within the rules, including all val-

idation videos in track3, and all train/val data from track1

and track4 .

3.2. Vehicle Reidentification

Following existing Re-ID works [48, 35], we simply use

HRNet [39] and Res2Net [9] as backbone for feature ex-

traction, and we just concatenate all output features of these

models as our appearance features. The loss function we

used is Cross-Entropy loss and Triplet loss. Given the input

image x, the cross-entropy loss is formulated as follow:

Lce = −
C∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (1)

where C is the number of vehicle identities in the dataset,

ŷi is the i th predicted probability, and yi is the i th ground

truth label of the input x. Note that yi = 1 if x equals to the

ground truth label yi, else yi = 0.

Triplet loss focuses on optimizing the distance between

the training samples, which makes the positive vehicles

closer to each other and push the negative samples away

from each other, the triplet loss with N samples can be for-

mulated as:

Ltri =
N∑

i=1

[m+Dis(fa
i , f

p
i )−Dis(fa

i , f
n
i )] (2)

where m is the margin, Dis(g1, g2) = ‖g1 − g2‖ denotes

the L2-norm, fa, fp, fn is the triplet pair in the feature
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Figure 4. Examples of MTSC tracking in different scenarios.

space, fa is the anchor sample in the feature space, fp is

the same identities with fa, while fn and fa is different

identities.

3.3. MultiTarget SingleCamera Tracking

DeepSort [41] and Tracklet-Plane Matching (TPM) [24]

are two popular tracking-by-detection algorithms for MTSC

tracking. To link all detected vehicles to several trajec-

tory candidates, we compare the two algorithms and TPM

outperforms DeepSort in our experiments. Considering

the performance and effectiveness, we choose TPM as our

MTSC tracking method. The comparison of two tracking

algorithms can be found in Table 2.

The insight of TPM [24] is using sub-trajectories as the

basic association units and fusing those sub-trajectories that

belong to same planes into long trajectories. Due to a small

amount of missing or incorrect detection results, the tra-

ditional tracking methods may be disconnected or miscon-

nected temporally. However, TPM first generates numerous

sub-trajectories through the traditional tracking algorithms

with higher threshold. Then it adopts the sub-trajectory

plane module to organize those sub-trajectories that poten-

tially belong to the same long trajectory into same sub-

trajectory-plane. Those sub-trajectories that are allocated

to the same sub-trajectory-planes are merged into long tra-

jectories in the last step. Some examples of MTSC tracking

in different scenarios are shown in Figure 4.

3.4. InterCamera Association

As shown in Figure 5, there are only a small number of

determined vehicles can through two different cameras with

the constraint of traveling time, road structures, and traffic

rules. Due to those natural properties, we propose an effi-

ciently fast MTMC strategy that can reduce the matching

space and accelerate the matching time to get a more reli-

Figure 5. The camera locations and their surrounding roads.

(a) zones in c042 camera (b) zones in c043 camera

Figure 6. Examples of predefined zones to describe trajectories.

According to the traffic rules, each trajectory must be valid. For

the two cameras, valid trajectory is [(1, 4), (1, 5), (1, 6), (3, 2), (3,

5), (3, 6), (5, 4), (5, 2), (5, 6), (6, 2), (6, 4)]. For those vehicles

from c042 to c043, they must drive out of zone 4 in c042 and

must drive in zone 1 in c043. Only a small number of trajectories

will be retained with this strict constraint. For c042 to c043, Only

trajectories through [(1, 4), (5, 4), (6, 4)] in c042 and [(1, 5), (1, 4),

(1, 6)] in c043 will be filtered out as possibly matching candidates.

able matching result. In this part, we describe the whole

proposed procedure in detail.

Identifying enter/exit area for trajectories. Since ve-

hicles must obey the traffic rules and can only pass along

special routes due to road structures, how to efficiently fil-

ter certain vehicles that are impossible to arrive other cam-

eras is crucial for final matching. To tackle this problem,

Hsu et al. [16] pre-define numerous zones in each cam-

era and make several intricate rules to distinguish trajec-

tories. Different from the excessively pre-defined zones

and complicated rules in [16], we simply pre-define a zone

just for each enter/exit area of every camera as shown in

Figure 6. We first define “in zone” and “out zone”: “in

zone” is defined as the zone where the detected vehicles

first touched, and “out zone” is defined as the zone where

they last touched. The zone construction must be followed

two principles: One is to be the first touched zone that cov-
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ers the entering vehicles as much as possible for “in zone”,

and to be the last touched zone that covers the exiting vehi-

cles as much as possible for “out zone”. Another is to avoid

ambiguity, which means that an entering vehicle should not

be assigned to two different “in zone”s, and an exiting ve-

hicle should not be assigned to two different “out zone”s.

Particularly, as shown in Figure 6(a), because of the traffic

rules, some zones can be designed as only a “in zone” (e.g.

zone 1 and zone 3) or only a ”out zone” (e.g. zone 2 and

zone 4), while others can be defined as both a “in zone” and

a “out zone” (e.g. zone 5 and zone 6).

Distinguishing trajectory candidates. After pre-

defined all “in zone”s and “out zone”s for all camera. Our

goal is to use those zones to distinguish each trajectory.

Specifically, we define a distinguished trajectory within a

camera as,

Traji = [m,n] (3)

where m, n is the “in zone” id and “out zone” id of trajec-

tory i, respectively. As shown in Figure 6(a), if one vehicle

is just entering the c042 camera and its center point first

touches zone 1, the “in zone” m and the “out zone” n are

set as 1. Then m is fixed but n is updated every frame. The

trajectory is determined as [1, 4] if zone 4 is the final ap-

peared zone of the vehicle. With the elaborately designed

algorithm, the in/out zone accuracy for all trajectories is al-

most up to 100% in our experiments.

Filtering out trajectory candidates. Using the previ-

ously obtained trajectories Traj, we filter out those trajec-

tories as the matching candidates who directly follow traffic

rules, road structures, and traveling time. For example, let

us consider the vehicles from camera c042 to camera c043

in Figure 6, only those vehicles leaving zone 4 of the “out”

camera c042 will be able to access zone 1 of the “in” camera

c043. Therefore, we keep all trajectories whose “out zone”

m is 4 in camera c042 and whose “in zone” n is 1 in camera

c043 as the matching candidates between c042 and c043.

Multi-Camera trajectory matching. To further reduce

the re-identification search space and accelerate the match-

ing time, we consider find matching pairs between two suc-

cessive cameras and then fuse all matched pairs among all

cameras. For matching within two cameras, we first com-

pute the pairwise distance matrix D ∈ R
Nout×Nin with

Nout and Nin filtered tracklet candidates in “out” camera

and “in” camera. The distance between two candidates is

calculated as,

dist(nout, nin) =
1

k

k∑

i=1

sorted(Fnout
◦ Fnin

)[: k] (4)

Where nout ∈ Nout, nin ∈ Nin. The operation ◦ calcu-
lates the cosine distance between each pair of two sets. The
length of the result is n1×n2 if the length of set1 is n1 and
the length of set2 is n2. Fnout

= [f1

nout
, f2

nout
, . . . , fmout

nout
]

and Fnin
= [f1

nin
, f2

nin
, . . . , fmin

nin
] are Re-ID feature sets

for nout th candidate in “out” camera and nin th candidate
in “in” camera, respectively. sorted(·) arranges the calcu-
lated distances in ascending order. k is the parameter that
we use to measure the distance between two candidates by
averaging the top k minimized distances. In our experiment,
we choose k = 3. Before matching, we need to refine D
with the constraint of traveling time. If the traveling time is
out of the valid time window, we multiply a penalty factor
to the distance of the pair.

dist(nout, nin) =











α×dist(nout, nin), t ≤ Tl

dist(nout, nin), Tl < t < Tu

α×dist(nout, nin), t ≥ Tu.

(5)

Where Tl and Tu are the thresholds of traveling time win-

dow, and α being 2 in the paper is the penalty factor for

those pairs outside the time window. After refining D, the

final matching pairs between two cameras are found with

the Hungarian matching algorithm [23] directly. Following

the matching process, we fuse all matched pairs throughout

all cameras as our final result using a simple rule that two

pairs will be identified with the same global id if they share

one tracklet. For example, there are two matching pairs:

One is [Traj1, T raj2] between camera 41 and 42. An-

other is [Traj2, T raj3] between camera 42 and 43. As the

two pairs share Traj2 in camera 42, we simply merge the

two pairs into one [Traj1, T raj2, T raj3] among camera

41, 42, and 43.

4. Experiments

4.1. Datasets

The CityFlowV2 1 dataset contains 3.58 hours (215.03

minutes) videos collected from 46 cameras spanning 16 in-

tersections in a mid-sized U.S. city. The distance between

the two furthest simultaneous cameras is 4 km. The dataset

covers a diverse set of location types, including intersec-

tions, stretches of roadways, and highways. For city-scale

multi-camera vehicle tracking track, the dataset is divided

into 6 scenarios. 3 scenarios are used for training, 2 scenar-

ios are for validation, and the remaining scenario is for test-

ing. The dataset contains 313931 bounding boxes for 880

distinct annotated vehicle identities in total. Only vehicles

passing through at least 2 cameras have been annotated. The

resolution of each video is at least 960p and the majority of

the videos have the frame rate of 10 FPS. Additionally, in

each scenario, the offset from the start time is available for

each video, which can be used for synchronization.

The data of our Re-ID module is the AIC21 benchmark

(CityFlowV2-ReID), which is captured by 46 cameras in

real-world traffic environment. There are 85058 images in

total, and 880 vehicles are annotated and 52717 images (440

1https://www.aicitychallenge.org/2021-data-and-evaluation/
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IDF1 IDP IDR Precision Recall

Mid 50.1 69.5 39.2 83.2 46.9

k=3 56.4 82.9 42.8 87.6 45.2

k=10 55.8 77.9 43.5 86.2 48.1

Table 1. The performance of different distance computing meth-

ods. “Mid”: we select the feature in the middle of the feature set

F as the feature of the tracklet, and we simply compute the cosine

distance of the selected two features as the distance between two

tracklets. “k=3” and “k=10”: we use equation 4 with k = 3 and

k = 10 to compute the distance between two tracklets.

IDF1 IDP IDR Precision Recall

DeepSort 56.4 82.9 42.8 87.6 45.2

TPM 66.8 74.9 60.2 77.7 62.4

Table 2. The performance of different single camera tracking

schemes.

vehicles) are used for training. There are some synthesis

dataset is generated by VehicleX [35, 42], which is a pub-

licly aviablable 3D engine. A total of 1362 vehicles and

192150 images are annotated with detailed labels.

4.2. Implementation Details

Detection. For the Cascade R-CNN ResNet-101 model,

Stochastic Gradient Descent (SGD) is adopted for the train-

ing process, weight decay and momentum are set as 0.0001

and 0.9, respectively. ResNet-101 model is trained in 50K

iterations with the initial learning rate 0.02 and the batch

size 2. The learning rate is reduced by the factor of 10

at iteration 30K and 40K, respectively. We have 5 lay-

ers (i.e. level 2 to level 6) feature map for FPN. We cluster

ground truth boxes in the training dataset same as [26], and

the selected anchors for each level are [16, 32, 64, 128, 256].
We train our detection model using all train/val data from

track1, track3, and track4. All detection experiments are

implemented based on PaddlePaddle.

ReID We mainly also use PaddlePaddle to train our

global models, and the model is trained using SGD with

momentum 0.9. Random crop, random flip and scale jit-

tering are used as data augmentations in training. During

training, the cos-decay learning rate scheduler is adopted

with base learning rate 0.001.

4.3. Metrics of Evaluation

For MTMC tracking, the IDF1 score [28] is used to rank

the performance in the final leader board. IDF1 measures

the ratio of correctly identified detections over the average

number of ground-truth and computed detections. The eval-

uation tool provided by the challenge also computes other

evaluation measures, which are adopted by the MOTChal-

lenge [3, 18], such as Multiple Object Tracking Accu-

Team ID IDF1 score

75 80.95

29 77.87

7 76.51

85 69.10

42 62.38

27 57.63

15 56.54

48 55.34

79 54.58

112 54.52

Table 3. Comparison of out method with other teams on the

CityFlowV2 dataset. Our team ID is marked as bold.

racy (MOTA), Multiple Object Tracking Precision (MOTP),

Mostly Tracked targets (MT), and False Alarm Rate (FAR).

However, they are not used for ranking. The measures,

which are computed in the evaluation system, are IDF1,

IDP, IDR, Precision (detection) and Recall (detection).

4.4. Experiments results

In this section, we conduct two ablation studies and com-

pare our results to other teams.

Distance between two tracklets. We conduct an abla-

tion study using various different distance computing meth-

ods to find the best way to measure the distance between

two tracklets. As shown in Table 1, computing distance

with multiple features outperforms using only one feature.

However, it damages the IDF1 score when k is too large.

The result of different k demonstrates that not all features

are suitable for representing the tracklet.

Different single camera tracking schemes. We con-

structed an ablation experiment to select a baseline scheme

for single-camera tracking. We compare the performance of

two classical tracking-by-detection algorithms: TPM and

DeepSort algorithm. As shown in the Table 2, TPM al-

gorithm outperforms the DeepSort algorithm with a large

margin in most indicators. Specifically, TPM achieves

66.8% IDF1, which is the most important metrics. As TPM

not only combines multiple short trajectories into a single

long trajectory but also attaches missing detection boxes

for tracked trajectories, it would recall more trajectories but

may also introduce several incorrect trajectories. The IDP

and IDR metrics have proved this. Since IDF1 is the official

metric on the leader board, we select TPM as our tracking

algorithm.

Comparison with other teams The proposed system is

submitted to the track 3 of NVIDIA AI City Challenge 2021

for evaluation. We rank second place among over 20+ teams

from all over the world. In the final experiment, our sys-

tem obtains 77.87% IDF1, which outperforms third place by

1.4%. Meanwhile, because of the fast speed and robustness

7



Figure 7. Visualization of final matching results on CityFlowV2. The same vehicles are marked with same ID. For example, in the first

row, the vehicle with ID 170 in every column image is identified as the same vehicle.

of the system, it is easy to apply to real-world Multi-Target

Multi-Camera applications.

4.5. Visualization

The final matching results of proposed algorithm on

CityFlowV2 are shown in Figure 7. Each row represents

the matched trajectories in different cameras with the same

ID. Our algorithm can find the right matching pairs even if

the trajectories have different angles or occlusion in differ-

ent cameras. For example, in the second row of Figure 7,

the matched id is 76, and the camera ids are c042, c043,

c044, and c045 from left to right. As we can see, the ve-

hicles in cameras c044 and c045 have different angles and

appearances than those in cameras c042 and c043, but they

still match correctly.

5. Conclusion

In this paper, we propose an effective system for MTMC

tracking. First, the system uses Cascade R-CNN and Re-ID

module to detect vehicles and extract their appearance fea-

tures in single cameras. In the MTSC stage, TPM algorithm

used to associate vehicles in every camera based on the de-

tection results and appearance features. In the ICA stage, it

associates all trajectory candidates between two successive

cameras using the established distance matrix, and com-

bines all matching results for final submission. Particularly,

The established distance matrix is simply computed by the

Re-ID features and refined by the constraints of traveling

time, road structures, and traffic rules to reduce the search-

ing space as well as accelerate the matching time. The re-

sult shows the effectiveness of the system, which achieves

77.87% IDF1 on the track3 test set of NVIDIA AI CITY

2021 CHALLENGE.
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