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Abstract

The detection of traffic anomalies is a critical compo-

nent of the intelligent city transportation management sys-

tem. Previous works have proposed a variety of notable in-

sights and taken a step forward in this field, however, deal-

ing with the complex traffic environment remains a chal-

lenge. Moreover, the lack of high-quality data and the com-

plexity of the traffic scene, motivate us to study this problem

from a hand-crafted perspective. In this paper, we propose

a straightforward and efficient framework that includes pre-

processing, a dynamic track module, and post-processing.

With video stabilization, background modeling, and vehi-

cle detection, the pro-processing phase aims to generate

candidate anomalies. The dynamic tracking module seeks

and locates the start time of anomalies by utilizing vehicle

motion patterns and spatiotemporal status. Finally, we use

the post-processing to fine-tune the temporal boundary of

anomalies. Not surprisingly, our proposed framework was

ranked 1st in the NVIDIA AI CITY 2021 leaderboard for

traffic anomaly detection. Codes will be available.

1. Introduction

With the ongoing expansion of urban traffic system con-

struction, large-scale traffic management systems and acci-

dent warning systems have become an essential component

of urban infrastructure development. Traffic anomaly de-

tection is a critical task in video understanding, which has

attracted widespread attention from both academia and in-

dustry. As shown in Figure 1, due to the complexity of the

traffic scene and the diversity of camera views, there remain

great challenges in traffic anomaly detection.

Generally, anomalies rarely occur as compared to normal

activities. Hence, developing intelligent computer vision

methods for automatic video anomaly detection is a press-

ing need. The goal of a practical anomaly detection system

is to timely signal an activity that deviates normal patterns

*The first two authors contributed equally to this work. This work was

done when Yuxiang Zhao was a research intern at Baidu.
†Corresponding author.

Figure 1. Examples of traffic anomalies. Red rectangles highlight

the abnormal instances.

and identifies the time window of the occurring anomaly.

Therefore, anomaly detection can be considered as coarse-

level video understanding, which filters out anomalies from

normal patterns.

Recently, deep neural networks have achieved great

success in image recognition [32, 12, 6], video recogni-

tion [4, 11], object detection [28, 27, 21], etc. Deep Con-

vNets come with excellent modeling capacity and are ca-

pable of learning discriminative representations from visual

data in large-scale supervised datasets (e.g., ImageNet [9],

Kinetics-400 [14], Places [43], MS COCO [19]). However,

unlike these above tasks, the application of end-to-end Con-

vNets to traffic anomaly detection is impeded by the follow-

ing major obstacle: Training deep ConvNets framework in

an end-to-end manner usually requires a large volume of

training samples to achieve optimal performance. However,

the training set of Track4 only consists of 100 videos, which

remain limited in both size and diversity.

These challenges motivate us to study traffic anomaly de-

tection from a hand-crafted perspective. In this paper, we

develop a customized architecture with human prior knowl-

edge, which provides a conceptually simple, and robust

framework for traffic anomaly detection. As shown in Fig-

ure 2, our framework consists of pre-processing, dynamic

tracking module, and post-processing.

Concretely, the pipeline of pre-processing including ve-

hicle detection, video stabilization, background modeling.
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Figure 2. The illustration of hierarchical strategy framwork pipeline. This framework includes pre-processing, dyanmic tracking module

and post-processing.

The pro-processing phase aims to generate the candidate

anomalies with video stabilization, background modeling,

and vehicle detection. The dynamic tracking module uti-

lizes the motion patterns and spatio-temporal status of ve-

hicles to seek and locate the start time of the anomalies.

Finally, we employ the post process to further refine the

temporal boundary of anomalies. The experimental results

show that our proposed framework is effective and robust

in the Track4 test set of the NVIDIA AI CITY 2021 Chal-

lenge, which ranks first place in this competition with a

95.24% F1-score and 5.3080 root mean square error, and

the final score is 93.55%.

The main contributions are summarized as follows:

• We present a hierarchical architecture with human

prior knowledge, which provides a conceptually sim-

ple framework for traffic anomaly detection.

• We investigate a series of good practices for temporal

localization and anomaly detection (e.g., video stabi-

lization, vehicle collision detection, temporal bound-

ary refinement, etc.).

• Results demonstrate that our method outperforms

other challengers on the Track 4 test set of the NVIDIA

AI CITY 2021 Challenge.

2. Related Work

Anomaly detection is the process of detecting rare or un-

usual patterns that deviate from the normal behavior, which

is called “Outliers” or “Anomalies”. Many studies have

explored this field with a variety of methods for a long

time. These approaches can be divided into two parts by

the types of models, traditional methods and deep learning

based methods. Some works use traditional machine learn-

ing models like Gaussian mixture models [16], Regression

models [8], histogram-based [41], Dirichlet process mix-

ture models (DPMM) [25], Bayesian network-based models

[2] to seek anomalies. With the great development of com-

puter vision leveraged on deep learning, autoencoder based

networks and well-designed loss becomes the key point of

anomaly forecasting task [23, 15, 26, 36, 37, 5, 34, 40, 42,

20, 24, 7, 35]. Sultani et al. [33] construct a new large-

scale dataset, called UCF-Crime, which contains real-world

anomaly videos.

Traffic anomaly detection is a more fine-grained

anomaly detection, which includes multiple kinds of viola-

tions of regulations such as driving in the wrong direction,

illegal parking,etc.

In the past years of NVIDIA AI CITY Challenges, un-

supervised traffic anomaly detection methods have become

the mainstream in real traffic accident scenarios and pro-

mote the development of intelligent transportation. Wei et

al. [38] first remove the moving vehicles using MOG2

while keeping the stopped vehicles as part of the back-

ground, then perform multi-scale detection and classifica-

tion to detect anomalies. Shine et al. [30] show an un-

supervised method to tackle this problem including a back-

ground extraction stage, an anomaly detection that identifies

the stalled vehicles in the background, and a final anomaly

confirmation module. Bai et al. [1] present a novel spatial-

temporal information matrix, which transforms the analy-

sis of a strip trajectory into an analysis of the spatial po-

sition. Shine et al. [31] conduct background subtraction

using GMM and utilize YOLO detector to select anomaly

candidates, then detect anomalies by transfer learning with-

out using training data [10]. Li et al. [17] present a multi-

granularity tracking approach, which combines a box-level

branch and a pixel-level branch to analyze the candidate ab-

normal vehicles at different granularity levels. They ranked

first in NVIDIA AI CITY 2020.
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Figure 3. Visualization of video stabilization.

(a) Forward background modeling.

(b) Backward background modeling

Figure 4. Examples of background modeling.

In this paper, we propose a simple and effective frame-

work for traffic anomaly detection in track 4 of the NVIDIA

AI CITY 2021 Challenge. We obtain a 0.9524 F1-score

with a detection time error of just 5.3080 seconds and our

results rank first place on the track 4 test set among all the

participant teams.

3. Method

In this section, we first present the pipeline of pre-

processing, which includes video stabilization, background

modeling, vehicle detection, and mask generation. Then

we illustrate our dynamic track module to locate the start

time of the anomaly. Finally, we depict our post-processing

pipeline which aims to further refine the temporal boundary

of anomalies.

3.1. Pre­Processing

Video Stabilization. In a real scenario, the traffic cam-

era under adverse conditions usually results in non-precise

motion and occurrence of shaking, which may compromise

the stability of the obtained videos, and directly influence

the performance of the modules (e.g., detection, background

modeling) in our framework.

To overcome such a problem, we perform digital video

stabilization (DVS) to correct camera motion oscillations

that occur in the acquisition process, through software tech-

niques, without the use of specific hardware, to enhance vi-

sual quality and improve final applications, such as vehicle

detection and tracking of vehicles. The whole pipeline of

DVS could be roughly divided into two stages: The first

stage is to estimate the camera movements. Then the sec-

ond stage is to correct and smooth the camera motion.

Considering the moving vehicles may affect the qual-

ity of motion detection, we apply a robust video stabiliza-

tion method to compensate the undesired movements of

the camera. To be specific, we utilize the combination of

feature point matching based on GFTT [29] and calculate

sparse optical flow to generate frame-to-frame transforma-

tions. A hybrid filter was used in the video stabilization pro-

cess to smooth the trajectory of transformations. Figure 3

shows the variety of δx, δy and δangle in transformation ma-

trix. By using these parameters, we can filter the shacking

heavily videos that exceed accumulated threshold δt and av-

erage threshold δavg to imply video stabilization.

Background Modeling. It is common knowledge that ve-

hicles involved in a traffic accident or anomaly will often

come to a complete stop naturally. As a result, the traf-

fic anomaly detection task is transformed into static vehicle

detection. This allows us to effectively detect anomalies of

the stopped vehicle on the lane, even when the videos are of

poor quality.

Various works in the field of object tracking have at-

tempted to distinguish the foreground and background. Due

to the poor video sources, these methods require a robust

and adaptive background representation. To dynamically

model backgrounds, we use the background modeling ap-

proach based on the mixture of Gaussians (MOG) [44]. We

perform an ablation analysis on the duration of background

modeling to make a trade-off between effectiveness and ef-

ficiency. We compare the difference between the forward

and backward background modeling results in Figure 4,

which shows that backward background modeling results

will make stopped vehicles clearer, and we use the forward

background modeling approach as an auxiliary method to

get a more accurate start time of the anomaly.

Vehicle Detection. For object detection, there are two

mainstream methods as follows: one-stage detectors and

two-stage detectors. Two-stage detectors are more accu-

rate and require a higher computational time. On the con-

trary, one-stage detectors benefited from straightforward ar-

chitectures, which are faster and simpler but might poten-

tially drag down the performance. To obtain robust detec-

tion results, in this paper, we build a two-stream vehicle
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Figure 5. Visualization of vehicle detection. Left is the results of

Faster RCNN and right is results of Cascase RCNN. Red circles

highlight the false detection.

detection module that consists of two two-stage detectors:

Faster R-CNN [28] and Cascade R-CNN [3]. Concretely,

we employ the Faster R-CNN with SENet-152 [13] as our

main detector for vehicle detection. The Cascade R-CNN

with CBResnet-200 [22], is used as an auxiliary detector to

reduce the fail of vehicle detection. Following the common

practice, we apply the Feature Pyramid Network (FPN) [18]

to build high-level semantic feature maps at all scales. Fig-

ure 5 shows the results of our detector.

Mask Generation. In general, traffic anomalies usually

happen on vehicles driving the main road. Hence, we need

to filter the static vehicles on the side roads and parking lots.

A practicable solution is to segment out hypothetical abnor-

mal mask regions automatically. To do so, image segmenta-

tion is an intuitive approach to distinguish the hypothetical

abnormal area. However, due to the complexity of the road

scene and limited training videos, it is hard to learn a robust

segmentation model.

Inspired by the motion-based mask extraction method in

[17]. Then, we suggest an enhanced trajectory-based mask

solution to produce finer masks. To obtain the vehicle’s tra-

jectory, we use the Track1 dataset to train the multi-object

tracking algorithm DeepSORT [39]. We cluster these tra-

jectories into the primary and secondary parts by calculat-

ing the angle of moving direction, which is different from

the previous process. The bounding box of the detected ve-

hicle will be used to expand the trajectory-based mask if the

absolute value of arctan θ is in the primary part. The cam-

era orientation is taken into account in this way, resulting in

a more reasonable traffic road mask. Finally, we combine

the two masks above to get the final result. These two masks

can be used in conjunction, and Figure 6 demonstrates some

results of the abnormal mask.

3.2. Dynamic Tracking Module

Pixel Tracking. Inspired by [17], we adopt pixel-level in-

formation to filter out suspicious events as much as pos-

Figure 6. Examples of the abnormal mask. From the left to

the right: motion-based mask, original trajectory-based mask,

our enhanced trajectory-based mask, and final fused mask. Our

trajectory-based mask effectively reduces false auxiliary road re-

call, and the abnormal area adjacent to the main road is reserved.

Figure 7. Visualization of Pixel track.

sible. Six spatial-temporal matrics, including Vundetected,

Vdetected, Vscore, Vstate, Vstart and Vend, are combined to

record anomaly car detection results iteratively. As shown

in Figure 2, the pixel region and time stamp of the detec-

tion will be continuously accumulated on the six matrixes

when a car appears on the background frame. If the peak

temporal span exceeded the time threshold, the suspicious

results will be thrown out. In addition, we jointly develop

two mechanisms to optimize the anomaly detection result

as follows: 1) When an abnormal object is observed, we

will utilize the IOU algorithm to compare the current object

position with the detection result in the next frame. When

the intersection of the two regions is greater than 0.5, we

update the start timestamp of an anomaly. 2) We develop

a backtrack approach based on the spatial-temporal corre-

lation similarity since certain cars do not stop immediately

in an accident. When IoU is less than the threshold, the

PSNR and color histogram features are extracted for the

non-overlapped bounding boxes to calculate box similarity.

Then, in the following phase, we begin to process the

candidate results. First, we filter the true anomaly start time

using intra tube judgment. Second, we use intra tube fusion

to join tubes from the same vehicle together.

Intra tube judgment. The candidate tube may contain

several vehicles, making it difficult for the model to deter-
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(a) Video 33 on test set

(b) Video 73 on test set

Figure 8. Example results of vehicle collision detection. For video 33, we backtrack the start time from the stopped time (612 seconds) to

the crash time (603 seconds). For video 73, we backtrack the start time from the delayed stopped time (37 seconds) to the crash time (17

seconds).

mine the true anomaly start time. So we conduct intra tube

judgment to remove the parts that do not belong to current

anomalous vehical. Here we denote the i-th tube as U i,

and the j-th frame of it as U i
j . Regi are regions of tube

U i in chronological order. The start time of tube U i is de-

noted by U i
Start, the end time is denoted by U i

End. The re-

gions in Regi across the timeline are composited by the set

S(Regi). We first calculate the similaritiy between every

element in S(Regi) and the mean over the interval U i, and

store it in the set S(Simi
j). We use SSIM as the similarity

measure which ranges from (0, 1).
Then we compute mean-subtracted value S′(Simi

j) for

every element in S(Simi
j). We judge whether the region in

j-th frame belongs to current anomalous car or not in this

manner:
{

S′(Simi
j) > ThreSim, False

LowerBound < S′(Simi
j) ≤ ThreSim, T rue

That is to say, the S′(Simi
j) which exceeds the threshold

ThreSim demenstrates that Regij is not the bbox of the cur-

rent anomalous car on the global time. This comparison is

performed in a chronological order until Simi
j is lower than

ThreSim and j-th timestamp is recorded as a potential start

of an anomaly. If a successive satisfied duration from j-th

timestamp exceeds γ(U i
End −U i

Start), then j-th timestamp

is assigned as the starting time of the true anomaly. γ is

a hyperparameter that controls the tolerance. This process

should be continued until all the candidate tubes are judged.

Inter tube fusion. One vehical can appears in two tubes.

In order to fuse candidate tubes which represent to the

same vehicle, we perform following steps to fuse these

tubes. Generally, one vehical appeared in two spatial lo-

cations in a picture are highly similar in apperence and

bounding box scale. Based on this hypothesis, we com-

pute the similarity between the mean of region sets of two

tubes, Sim(U i, Uk). If the similarity results exceed a

defined threshold, the initial start time and end time are

min(U i
Start, U

j
Start) and max(U i

End, U
j
End) respectively.
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3.3. Post Processing

Vehicle Collision Detection. Stalled vehicles and crashes

are the most common anomalies in the training set. The

anomaly start time for a stalled vehicle is when the vehicle

comes to a complete stop. The methods described above are

capable of accurately predicting the stalled vehicle’s abnor-

mal start time. The start time for a single-vehicle crash or a

multiple-vehicle crash is the moment the first crash happens

rather than the time the vehicle comes to a complete stop.

As a result, the above method’s prediction would be some-

what delayed. To that end, we devise a method for detecting

vehicle collisions. First, we obtain the estimated time when

the vehicle comes to a full stop. Then, along the temporal

axis, we trace this vehicle backwards.

By analyzing the videos of crashes, we find that there

will be obvious changes in the foreground at the moment of

collision on the surrounding areas the wrecked car. Mean-

while, the background image of the surrounding areas will

be different between the time of the crash and after the ve-

hicle has stopped completely. Based on the above, we can

judge the accurate collision time of vehicles. The results is

shown in Figure 8.

Temporal Boundary Refinement. Forward background

modeling will cause the anomaly to be displayed as after-

images after a delay, causing a temporal prediction delay.

To obtain a more accurate temporal localization, we use re-

verse background modeling and appearance similarity to re-

fine the anomaly’s start and end times.

4. Experiments

NVIDIA AI CITY 2021 Challenge presents a dataset of

100 videos for training and 150 videos for testing. The

dataset includes events that occurred naturally or abnor-

mally in a variety of severe weather conditions, such as rain-

ing, snowing, or fogging. Each video is about 15 minutes

long and has a resolution of 800×410 pixels. In this section,

we first introduce the experimental setup, then we provide

the implementation details. Finally, we describe the evalua-

tion metrics and present the results of our method.

4.1. Implementation Details

Vehicle Detection. To train the Faster R-CNN and Cas-

cade R-CNN, we use SGD with momentum 0.9 and weight

decay 1e-4. With an initial learning rate of 0.01 and a mini-

batch of 8, the Faster R-CNN model is trained for 50K iter-

ations. The learning rate is reduced by a factor of 10 at iter-

ation 30K and 40K. Besides, the Cascade R-CNN model is

trained with an initial learning rate of 0.005 and reduced by

a factor of 10 at iteration 40K and 60K. To obtain more data

for training, following the official instructions, we use data

across different challenge tracks (i.e., Track1 and Track3)

to pre-train our detectors, then we finetune the model with

the training videos of Track4. The shorter side of the input

images is resized to 800 pixels while keeping the aspect ra-

tio. We use 5 scale anchors of {162, 322, 642, 1282, 2562}
and ground-truth boxes are associated with anchors, which

have been assigned to pyramid levels. The NMS is used to

filter the final vehicle detection result, which is made up of

the union of two models with a threshold of 0.8. Moreover,

we train our models with the PaddlePaddle deep learning

framework 1.

Video Stablization. For distinguishing a shacking video,

the accumulated threshold δt is set to 17200 for video sta-

bilization, and the average threshold δavg is set to 0.645.

Road Mask. Following the protocal in [17], we use the

same parameters in motion-based mask. In our enhanced

trajectory-based mask, the minimum trajectory length n is

set to 5, and the minimum distance d of the trajectory is set

to 50. Further, threshold of the angle of moving direction to

distinguish primary and secondary parts is set to 0.8.

Pixel Tracking. The thresholds for the normal-suspicious

and suspicious/abnormal-normal state transitions are all set

to three consecutive frames. The time thresholds for suspi-

cious and coarse anomaly candidates have been set to 20s

and 30s, respectively. The relaxed constraint satisfaction ra-

tio T r
ratio is 0.6 and the shortest traceback time Ttime is 30s.

The IoU thresholds TIoU and T r
IoU are 0.3 and 0.5, respec-

tively; the PSNR thresholds TPSNR and T r
PSNR are 18 and

20, respectively; and the color histogram thresholds TColor

and T r
Color are 0.88 and 0.9, respectively.

Intra Tube Judgment & Inter tube fusion. In In-

tra tube, the min and max threshold of ssim similarity

Threshsimilarity is set to 0.25 and 0.6 respectively. The

duration time ratio γ is fixed to 0.3. In inter tube, the PSNR

threshold between two tube is set to 18.

Vehicle Collision Detection. The threshold of surround-

ing area is set to 50, the threshold of foreground changes is

set to 1000 and the similarity threshold of the background

image is 0.9.

4.2. Evaluation Metrics

Evaluation for Track 4 will be based on model anomaly

detection performance, measured by the F1-score, and de-

tection time error, measured by RMSE. Specifically, the

track 4 score will be computed as:

S4 = F1× (1−NRMSE), (1)

1https://github.com/paddlepaddle/paddle
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where F1 is the F1-score and NRMSE is the normalized root

mean square error (RMSE). The S4 score ranges between 0

and 1, and higher scores are better.

The F1-score is computed as Eq. 2. For the purpose of

computing the F1-score, a true-positive (TP) detection will

be considered as the predicted anomaly within 10 seconds

of the true anomaly (i.e., seconds before or after) that has

the highest confidence score. Each predicted anomaly will

only be a TP for one true anomaly. A false-positive (FP)

is a predicted anomaly that is not a TP for some anomaly.

Finally, a false-negative (FN) is a true anomaly that was not

predicted.

F1 = 2 ·
Precision · Recall

Precision + Recall
=

TP

TP + 1

2
(FP + FN)

.

(2)

We compute the detection time error as the RMSE of the

ground truth anomaly time and predicted anomaly time for

all TP predictions. In order to eliminate jitter during sub-

missions, normalization will be done using min-max nor-

malization with a minimum value of 0 and a maximum

value of 300, which represents a reasonable range of RMSE

values for the task. NRMSE is the normalized root mean

square error (RMSE) as follow:

NRMSE =
min(

√

1

TP

∑

TP

i=1
(tpi − t

gt
i )2, 300)

300
. (3)

4.3. Experiments results

We evaluate our model on NVIDIA AI CITY 2021 Chal-

lenge test dataset. The F1-score is 0.9524, and the RMSE is

5.3080, as shown in Table 1. The results demonstrate the ef-

fictiveness and robustness of our method. The leaderboard

for all teams is shown in Table 2, and we are in first place

with a score of 0.9355.

Table 1. Our results on Track4 test set.

F1 RMSE S4 Score

0.9524 5.3080 0.9355

5. Conclusion

In this paper, we propose a simple and effective frame-

work for detecting traffic anomalies (e.g., stalled car, car

crash). In Track 4 of the NVIDIA AI CITY 2021 Chal-

lenge, we obtain a 0.9524 F1-score with a detection time

error of just 5.3080 seconds. Our results rank first place on

the Track 4 test set among all the participant teams, which

demonstrates that the superiority of our method.
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