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Abstract
Building facial analysis systems that generalize to ex-

treme variations in lighting and facial expressions is a chal-

lenging problem that can potentially be alleviated using

natural-looking synthetic data. Towards that, we propose

LEGAN, a novel synthesis framework that leverages per-

ceptual quality judgments for jointly manipulating lighting

and expressions in face images, without requiring paired

training data. LEGAN disentangles the lighting and expres-

sion subspaces and performs transformations in the feature

space before upscaling to the desired output image. The

fidelity of the synthetic image is further refined by inte-

grating a perceptual quality estimation model, trained with

face images rendered using multiple synthesis methods and

their crowd-sourced naturalness ratings, into the LEGAN

framework as an auxiliary discriminator. Using objective

metrics like FID and LPIPS, LEGAN is shown to gener-

ate higher quality face images when compared with popular

GAN models like StarGAN and StarGAN-v2 for lighting and

expression synthesis. We also conduct a perceptual study

using images synthesized by LEGAN and other GAN mod-

els and show the correlation between our quality estimation

and visual fidelity. Finally, we demonstrate the effectiveness

of LEGAN as training data augmenter for expression recog-

nition and face verification tasks.

1. Introduction
Deep learning [59] has engendered tremendous progress

in automated facial analysis, with applications ranging from

face verification [72, 22, 11] to expression classification

[91]. However, building robust and accurate models that

generalize effectively in-the-wild is still an open problem.

A major part of it stems from training datasets failing to

represent the “true” distribution of real world data [54, 68,

92, 6] (e.g. extreme lighting conditions [17, 73, 38]); or

the training set may be non-uniformly distributed across

classes, leading to the long-tail problem [63].
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Figure 1: LEGAN jointly manipulates lighting and expression in face im-

ages while preserving the subject identity of the input.

One way to mitigate the imbalance problem, shown to

work in multiple domains [62, 9, 15, 99], is to introduce

synthetic samples into the training set. Many approaches

for generating synthetic data exist [18, 8, 42], none as suc-

cessful as GANs [37] in generating realistic face images

[16, 51, 52, 25]. Thus, in this work, we design a GAN

model for synthesizing variations of an existing face image

with the desired illumination and facial expression, while

keeping the subject identity and other attributes constant.

These synthetic images, when used as supplemental train-

ing data, can help build facial analysis systems that better

generalize across variations in illumination and expressions.

One drawback of GAN-based face generation is the ab-

sence of an accurate and automated metric to judge the per-

ceptual quality of synthesized images [57, 20]. In order

to solve this problem, we also introduce a quality estima-

tion model that can serve as a cheap but efficient proxy for

human judgment while evaluating naturalness of synthetic

face images. Instead of generating a single score for a distri-

bution of synthetic images [105, 45, 79] or for image pairs

[103, 75], our goal is to infer an image-quality score on a

continuum for a single synthetic face image. With this in

mind, we run an Amazon Mechanical Turk (AMT) experi-

ment where turkers are instructed to score the naturalness of

synthetic face images, generated using different 3D-model

[9] and GAN-based [51, 52, 78, 2] synthesis approaches.

We then build a feed forward CNN to learn representations

from these images that map to their corresponding percep-



Figure 2: Our quality estimation model is trained on synthetic face images, varying in gender, ethnicity, lighting and facial attributes, generated with five

methods [1, 51, 52, 9, 78] and their crowd-sourced perceptual ratings. To account for the subjective nature of human perception, our model utilizes a margin

based regression loss to learn representations. This trained model can then generate naturalness predictions (Q(I)) of unseen face images.

tual rating, using a margin based regression loss.

In addition to a traditional discriminator [37], this trained

quality model is then used as an auxiliary discriminator

in the synthesis framework, named LEGAN (Lighting-

Expression GAN), that we propose in this paper. Instead

of intertwining the two tasks [25], LEGAN decomposes

the lighting and expression sub-spaces using a pair of hour-

glass networks (encoder-decoder) that generate transforma-

tion masks capturing the intensity changes required for tar-

get generation. The desired output image is then synthe-

sized by a third hourglass network from these two masks.

To demonstrate the effectiveness of LEGAN, we quali-

tatively and quantitatively compare its synthesized images

with those produced by two popular GAN based models

[25, 26] using objective metrics like FID [45], LPIPS [103],

SSIM [94] and face match score. We also conduct a human

rater study to evaluate the perceptual quality of LEGAN’s

images and the contribution of the quality based auxiliary

discriminator towards hallucinating perceptually superior

images. Finally, we show the efficacy of LEGAN as training

data augmenter by improving the generalizability of face

verification and expression recognition models.

2. Related Work

Face Synthesis: Early approaches [18, 67] focused on

stitching together similar looking facial patches from a

gallery to synthesize a new face. Manipulating the facial

shape using 3D models [49, 88, 63, 9] or deep features

[27, 90] is another popular approach to generate new views.

In recent times however researchers have pre-dominantly

focused on using GANs [37] for synthesis, where an up-

sampling generator hallucinates faces from a noise vector,

either randomly sampled from a distribution [37, 77, 51, 52]

or interpreted from a different domain [71]. An existing

face can also be encoded and then upsampled to obtain the

desired attributes [48, 47, 95, 10, 70, 31, 35, 106, 23, 25].

Editing Expressions: Research in this domain started with

modeling skin-muscle movements [33] for different facial

expressions or swapping facial patches based on visual

proximity [18]. With the advent of 3D face models, re-

searchers used static [63] or morphable models [19, 101] to

manipulate facial expressions with a higher degree of real-

ism. Recently, the use of VAEs [13] and adversarial image-

to-image translation networks have become extremely pop-

ular for editing facial expressions [48, 106, 25], with or

without paired data for training. Some of these models use

attention masks [76], facial shape information [36, 34] or

exemplar videos [84] to guide the model in this task.

Editing Lighting: While methods like histogram equaliza-

tion [74, 107] and gamma correction can shift the global lu-

minance distribution and color encoding of an image, they

cannot manipulate the direction of the light source itself.

An early method [93] utilizes spherical harmonics to ma-

nipulate the directional lighting in 3D. In [24], local lin-

ear adjustments are performed on overlapping windows to

change the lighting profile of an image. Deep learning

based approaches have also been proposed where the re-

flectance, normal and lighting channels are disentangled

and edited to relight images [80, 83, 82, 41]. Alternatively,

the desired lighting can be passed to an encoder-decoder

pair as the target for lighting manipulation in the input im-

age [104, 85, 65, 69]. Recently, joint facial pose, lighting

and expression manipulation has been proposed in [30, 58]

where an input image can be manipulated by changing its

attributes in feature space leveraging 3D parameters or la-

tent information from synthetic images during training.

Quality Estimation of Synthetic Face Images: Synthetic

image quality is commonly evaluated using metrics like the

Inception Score [79] or FID [45], which compare statis-

tics of real and synthetic feature distributions, and output

a single score for the whole distribution rather than the in-

dividual image. The features themselves are extracted from

the Inception-v3 model [86], usually pre-trained on objects

from [29], and not specifically faces. As these metrics do



Figure 3: During training, G takes an image Ia and target expression and lighting tensor fb as input and disentangles the feature sub-spaces using a pair of

hourglass networks generating transformation masks Me and Ml that are concatenated and passed through a third hourglass to hallucinate the target output

G(Ia, fb). To eliminate the need of paired training data, we augment G(Ia, fb) with the source expression and lighting tensor fa and pass it through the

same generator to reconstruct the input G(G(Ia, fb), fa), to compute the reconstruction error Lrec. Moreover, with the help of D and the quality based

auxiliary discriminator Q, we calculate the adversarial (Ladv), feature classification (Lcls) and quality (Lqual) losses respectively. Utilizing the identity

network T , we compute the identity loss Lid. During testing, only G is required to generate synthetic images.

not take into account human judgements, they do not cor-

relate well with perceptual realism [14, 20]. Consequently,

researchers run perceptual studies to score the naturalness

of synthetic images [102, 8]. These ratings are also used

to design models that measure distortion between real and

synthetic pairs [103, 75] or the coarse realism (‘real’ vs

‘fake’) of a synthetic image [105]. None of these evalua-

tion models however are designed specifically for face im-

ages. Recently, [57] proposed a metric to rate the percep-

tual quality of a single image by using binary ratings from

[105] as ground truth for synthetic face images generated by

[51, 52]. However, their regression based model is trained

on only 4,270 images and thus insufficient to reliably model

the subjective nature of human judgements.

Unlike these methods, we build a synthetic face qual-

ity estimation model by leveraging perceptual ratings of

over 37,000 images generated using five different synthe-

sis techniques [51, 52, 78, 1, 9]. Our quality model takes

into account the variability in human judgements and gen-

erate a realism score for individual images rather than the

whole set. We leverage this model as an auxiliary discrim-

inator in the LEGAN framework for simultaneous lighting

and facial expression manipulation. This novelty together

with LEGAN’s feature disentanglement improves the natu-

ralness of the hallucinated images. Additionally, we do not

require external 3DMM information or latent vectors dur-

ing training nor do we need to fine-tune our model during

testing on input images [30, 58].

3. Quality Estimation Model

Our quality estimator model is trained with synthetic

face images assembled and annotated in two sequential

stages, as described below.

Stage I: We first generate 16,507 synthetic face im-

ages using the StyleGAN [52] generator. These images are

then annotated by labelers using Amazon Mechanical Turk

(AMT) on a scale of 0 - 10 for naturalness, where a 0 rat-

ing represents an unnatural image and 10 a hyper-realistic

one. The images are then binned into two broad groups

- ‘unnatural’ for AMT ratings between 0 - 5 and ‘natural’

for 5 - 10. We extract descriptors for each image from the

‘avg pool’ layer of the ResNet50 [44] model, pre-trained

on VGGFace2 [22] and train a linear SVM [28] with the ex-

tracted features of around 12,000 images from this dataset

and use the rest for parameter tuning. Post training, we use

this SVM as a rough estimator of naturalness.

Stage II: In this stage, we perform the same AMT ex-

periment again with a larger set of synthetic face images,

collected from the following datasets:

1. FaceForensics++[78] - we randomly sample 1000

frames from this dataset consisting of 1000 video sequences

that have been manipulated with four automated face ma-

nipulation methods.

2. DeepFake[2, 3] - we use sampled frames from 620 ma-

nipulated videos of 43 actors from [1].

3. ProGAN [51] - we generate 10,000 synthetic face im-

ages of non-existent subjects by training NVIDIA’s progres-

sively growing GAN model on the CelebA-HQ dataset [51].

4. StyleGAN [52] - we extract 100,000 hyper-realistic face

images of non-existent subjects generated using the Style-

GAN model that were pre-filtered for quality [4].

5. Notre Dame Synthetic Face Dataset [9] - we randomly

sample 163,000 face images, from the available 2M, of syn-

thetic subjects generated using ‘best-fitting’ 3D models.

To focus on near-frontal faces, we remove images with

yaw over 15◦ in either direction, estimated using [43]. Since



gender information is absent in most of the above datasets,

we group the synthetic images using gender predictions

from a pre-trained model [60]. Our trained SVM (from

Stage I) is also used to rate the coarse naturalness of the

collected images, using their ResNet50 features. We ensure

balance in our synthetic dataset by sampling evenly from

the natural and unnatural sets, as estimated by the SVM,

and the perceived gender classes. To focus solely on the

facial region, the pixels outside the convex hull formed by

the facial landmarks, estimated using [21], of an image are

masked. After the gender, facial yaw and naturalness based

filtering, and the pre-processing step, we end up with 37,267

synthetic face images1 for our second AMT experiment.

Again, we ask Turkers to rate each image for naturalness

on a scale of 0 - 10. Each image is shown to a Turker for

60 seconds to allow them time to make proper judgement

even with slow network connection. We divide the full set

of images into 72 batches such that each batch gets sepa-

rately rated by 3 different Turkers. Post crowd-sourcing, we

compute the mean (µ) and standard deviation (σ) from the

3 scores and assign them as naturalness label for an image.

To train the quality estimation model, we use 80% of

this annotated data and the rest for validation and test-

ing. For augmentation, we only mirror the images as other

techniques like translation, rotation and scaling drastically

change their appearance compared to what the Turkers ex-

amined. Our model downsamples an input image using a

set of strided convolution layers with Leaky ReLU [98] ac-

tivation followed by two fully connected layers with linear

activation and outputs a single realness scoring. Since both

µ and σ are passed as image labels, we try to capture the in-

consistency in the AMT ratings (i.e. the subjective nature of

human perception) by formulating a margin based loss for

training. The model weights are tuned such that its predic-

tion is within an acceptable margin, set to σ, from the mean

rating µ of the image. The loss LN can be represented as:

LN =
1

n

n
∑

i=1

∥

∥

∥
σ − ‖µ−Q(Ii)‖

2

2

∥

∥

∥

2

2

(1)

where n is the batch size, Q(Ii) is the model prediction for

the i-th image in the batch. Since the model is trained on

the mean rating µ (regression) as the target rather than fixed

classes (classification), LN pushes the model predictions to-

wards the confidence margin σ from µ.

4. LEGAN

We build LEGAN as a lightweight network that works

with unpaired data, similar to the StarGAN family, to focus

more on assessing the effect of our quality estimation model

(Q) as a perceptual loss. Unlike [30, 58], LEGAN does not

1Available here: https://github.com/Affectiva/LEGAN_

Perceptual_Dataset

Figure 4: Sample LEGAN result G(Ia, fb), with generated expression

Me and lighting Ml masks for input Ia. The salient pixels for the transla-

tion task automatically ‘heat up’ in Me and Ml, similar to flow maps.

require additional networks to regress 3DMM parameters

or fine-tuning during inference. We describe the architec-

ture and objective functions of LEGAN in this section, an

overview of which can be seen in Figure 3.

4.1. Architecture

Generator: Our generator G, composed of three hour-

glass networks (encoder-decoder), starts with an input RGB

face image Ia and a target attributes vector fb that cor-

responds to expression and lighting conditions ce and cl
respectively. The first hourglass receives Ia concatenated

with ce while the second one receives Ia concatenated with

cl, thus disentangling the transformation task. Inside each

hourglass, the concatenated tensor is downsampled using

strided convolutions and then passed through a set of resid-

ual blocks [44] before being upsampled using pixel shuf-

fling layers [81]. Each convolution layer is followed by

instance normalization [89] and ReLU activation [64] for

non-linearity. These upsampled images are the transforma-

tion masks Me and Ml that map the changes in pixel inten-

sity required to translate Ia to conditions specified in fb. Me

and Ml are concatenated together and fed to the third hour-

glass to generate the output image G(Ia, fb). The objective

of dividing the generation process into two stages and hal-

lucinating the transformation masks is two fold - (a) easing

the task of each hourglass by simply making it focus on reg-

istering the required expression or lighting changes instead

of both registration and hallucination, and (b) making the

transformation process more explainable, with salient pix-

els prominent in Me and Ml, as can be seen in Figure 4.

Discriminator: The discriminator D takes the output

image G(Ia, fb) and predicts not only its realness score but

also classifies its attributes fb. D is composed of strided

convolution layers with Leaky ReLU [98] activation that

downsample the image to extract its encoded feature map.

We use a patch discriminator [48] that takes this encoded

feature map and passes it through a single channel convolu-

tion to get the realness map Dsrc. This feature map is also

operated by a conv layer with k filters to get the attributes

prediction map Dcls, where k = no. of channels in fb.

Auxiliary Discriminator: We integrate the perceptual

quality model Q, described in Section 3, into the LEGAN

model graph to further refine the naturalness of the images

synthesized by G. Unlike D, we do not train Q jointly with



Figure 5: Sample results on MultiPIE [39] test images comparing LEGAN with popular GAN models. The target conditions are (a) (Disgust, Slight

Left Shadow), (b) (Surprise, Slight Right Shadow), (c) (Squint, Ambient lighting), and (d) (Smile, Bright lighting). LEGAN hallucinates subtle muscle

movements like nose wrinkles more prominently (top row) while preserving the subject identity. Additionally, our quality loss eliminates blob artifacts [53]

from synthesized images (bottom row, StarGAN vs. StarGAN w/ Lqual).

G but use the weights of a pre-trained snapshot.

Identity Network: We also add a pre-trained identity

preserving network T to estimate the deviation of the output

identity from that of the input. T is trained offline on face

images with different pose, expression and lighting and its

weights are kept frozen throughout LEGAN’s training.

4.2. Loss Function

1. Adversarial Loss: D is trained to distinguish a real

face image Ia from its synthetic counterpart and judge the

realness of the hallucinated image G(Ia, fb). To stabilize

the gradients and improve quality, we use the WGAN [7]

based objective Ladv for this task with a gradient penalty

[40], set as:

Ladv = EIa [Dsrc(Ia)]− EIa,fb [Dsrc(G(Ia, fb))]−

λgpEÎ
[(
∥

∥

∥
∇

Î
Dsrc(Î)

∥

∥

∥

2

− 1)2] (2)

where Î is sampled uniformly from real and synthetic im-

ages and λgp is an tunable parameter. While D tries to min-

imize this to separate the synthetic from the real, G tries to

maximize it by fooling D.

2. Classification Loss: To ensure the target lighting and

expression are correctly rendered by G and enable LEGAN

to do many-to-many translations, we formulate a classifica-

tion loss using D’s predictions, in the form of Dcls. The

loss Lcls is computed as:

Lcls = EIa,fa [− logDcls(fa | Ia)]+

EIa,fb [− logDcls(fb | G(Ia, fb))] (3)

where fa and fb are the original and target attributes of an

input image Ia.

3. Identity Loss: To preserve the subject identity with-

out using paired data, we add an identity loss between the

input and the translated output G(Ia, fb) by utilizing repre-

sentations from T. Both Ia and G(Ia, fb) are passed through

T for feature extraction and we set the objective Lid to min-

imize the cosine distance between these two features as:

Lid = EIa,fb [1−
T (Ia) · T (G(Ia, fb))

‖T (Ia)‖2 ‖T (G(Ia, fb))‖2
] (4)

Ideally, the cosine distance between these two feature vec-

tors should be 0, as they belong to the same identity.

4. Reconstruction Loss: To keep non-translating fea-

tures from the input intact in the output image, we use a

cyclic reconstruction loss [106] Lrec between Ia and its re-

construction G(G(Ia, fb), fa), computed as:

Lrec = EIa,fb,fa [‖Ia −G(G(Ia, fb), fa)‖1] (5)

5. Quality Loss: We use Q’s predictions for fur-

ther improving with perceptual realism of the synthetic

images. Masked versions of the input image Ia
′, the

synthesized output G(Ia, fb)
′

and the reconstructed in-

put G(G(Ia, fb), fa)
′

, produced using facial landmarks ex-



Table 1: Quantitative comparison with popular GAN models on held out CMU-MultiPIE [39] test set.

Models FID [45] ↓ LPIPS [103] ↓ SSIM [94] ↑ Match Score [44, 22] ↑ Quality Score ↑ Human Preference ↑

StarGAN [25] 38.745 0.126 0.559 0.635 5.200 22.3%

StarGAN w/ Lqual 34.045 0.123 0.567 0.647 5.391 34.7%

StarGAN-v2 [26] 54.842 0.212 0.415 0.202 5.172 3.75%

LEGAN 29.964 0.120 0.649 0.649 5.853 39.3%

Real Images 12.931 - - 0.739 5.921 -

Table 2: Quantitative performance of popular GAN models, trained only on CMU-MultiPIE [39], when tested on AFLW [56] images.

Metrics FID [45] ↓ LPIPS [103] ↓ SSIM [94] ↑ Match Score [44, 22] ↑ Quality Score ↑

StarGAN [25] 43.987 0.302 0.639 0.622 6.41

StarGAN w/ Lqual 41.641 0.268 0.624 0.614 6.73

StarGAN-v2 [26] 59.328 0.445 0.279 0.213 6.60

LEGAN 38.794 0.271 0.622 0.628 6.68

Real Images - - - - 6.83

tracted by [21], are used for loss computation as follows:

Lqual = EIa,fb [
∥

∥q −Q(G(I, fb)
′

)
∥

∥

1
]+

EIa,fb,fa [
∥

∥Q(Ia
′)−Q(G(G(I, fb), fa)

′

)
∥

∥

1
] (6)

where q is a hyper-parameter that can be tuned to lie be-

tween 5 (realistic) and 10 (hyper-realistic). We find synthe-

sis results to be optimal when q = 8.

Full Loss: We also apply total variation loss [50] Ltv on

G(Ia, fb) and G(G(Ia, fb), fa) to smooth boundary pixels

and set the final training objective L as a weighted sum of

the six losses as:

L = Ladv + λ1Lcls + λ2Lrec + λ3Lid + λ4Lqual + λ5Ltv

(7)

5. Experiments and Results
Training Data. We utilize 36,657 frontal RGB images from

the CMU-MultiPIE dataset [39], with 20 different light-

ing conditions and 6 acted facial expressions, to build our

model. For training we use 33,305 images of 303 subjects

and the remaining 3,352 images of 34 subjects for testing.

The training data is highly skewed towards ‘Neutral’ and

‘Smile’ compared to the other 4 expressions but the distri-

bution is almost uniform for the lighting classes. We align

each image using their eye landmarks extracted with [21]

and resize to 128×128×3. We do not fine-tune LEGAN on

any other data and solely rely on its generalizability for the

different experimental tasks.

Testing Data. Along with MultiPIE’s held out test set, we

also utilize the AFLW [56] and CelebA [61] datasets to test

the robustness of LEGAN towards in-the-wild conditions.

We do not train or fine-tune LEGAN on these datasets and

use the model trained on MultiPIE for translation tasks.

Augmentation: Recoloring. Since MultiPIE [39] was ac-

quired in a controlled setting, it has more or less uniform

hue and saturation across all images. To artificially inject

some diversity in the overall image color, and prevent vi-

sual overfitting, we build an image colorization model. In-

spired by [102], we train two separate pix2pix [48] style

GAN models where the input is a grayscale image and the

target is set as its colored counterpart (i.e. original image).

To manipulate the color style of the same grayscale image

differently, we train these two models with randomly sam-

pled 10K images from the UMDFaces [12] and FFHQ [51]

datasets respectively. The trained generators are used to

augment the color style of the MultiPIE training set.

Augmentation: White Balancing. In addition to changing

the color style, we also artificially edit the white balance of

the training images by utilizing the pre-trained model from

[5]. This model can automatically correct the white balance

of an image or render it with different camera presets. For

each training input, we randomly use it as is or select its

recolored or color corrected version, and pass it to LEGAN.

Implementation Details. To learn the model, we use the

Adam optimizer [55] with a learning rate of 0.0001 and pa-

rameters β1 and β2 set to 0.5 and 0.999 respectively. The

different loss weights λgp, λ1, λ2, λ3 λ4 and λ5 are set em-

pirically to 10, 20, 10, 10, 0.5 and 0.0000001 respectively.

As done in [76], we train D 5 times for each training itera-

tion of the G. We train the LightCNN-29 model [97] on the

CASIA-WebFace dataset [100] and utilize it as our identity

network T. Features from its penultimate layer are used to

compute Lid. LEGAN is trained with a batch size of 10 on

a single Tesla V100 GPU for 100 epochs.

Comparison with Other GAN Models: Our proposed

model is simple and unique as it does not require 3DMM

information or external synthetic images during training

[30, 58] nor do we need to fine-tune our model during test-

ing on input images. Due to this simplicity, we choose

2 popular publicly available unpaired domain translation

models for comparison - StarGAN [25] and the more recent

StarGAN-v2 [26]. We train these models for lighting and

expression manipulation with the same MultiPIE [39] train-

ing split for 100 epochs. Additionally, to gauge the effect of

Lqual on off-the-shelf models we train StarGAN separately

with the auxiliary discriminator added (StarGAN w/ Lqual).

Metrics for Quality Estimation. To evaluate the quality of



Table 3: Quantitative performance of popular GAN models, trained only on CMU-MultiPIE [39], when tested on CelebA [61] images.

Metrics FID [45] ↓ LPIPS [103] ↓ SSIM [94] ↑ Match Score [44, 22] ↑ Quality Score ↑

StarGAN [25] 42.089 0.173 0.623 0.620 6.98

StarGAN w/ Lqual 36.189 0.145 0.614 0.621 7.15

StarGAN-v2 [26] 50.360 0.311 0.312 0.295 6.89

LEGAN 29.059 0.184 0.662 0.635 7.07

Real Images - - - - 7.31

Figure 6: LEGAN synthesized output images from randomly sampled images from the AFLW [56] and CelebA [61] datasets. Although, trained only on

frontal MultiPIE images, LEGAN can realistically manipulate lighting and expression in images with variance in pose, resolution and domain (sketch).

synthetic face images generated by LEGAN and other GAN

models, we compare the synthesized output with the corre-

sponding target image2 using these metrics - (1) FID [45]

and (2) LPIPS [103] to gauge the realism, (3) SSIM [94] to

measure noise, and (4) face match score using pre-trained

ResNet50 [44, 22] features and Pearson correlation coeffi-

cient. We also use our trained quality estimator to directly

extract the (5) quality score of real and synthetic images.

Human Evaluation. We also run a perceptual study us-

ing face images generated by these models where we ask

17 non-expert human raters to pick an image from a lineup

that best matches - (1) a target facial expression and (2) a

target lighting condition, while (3) preserving the identity

for 30 different MultiPIE [39] subjects. The raters are first

shown real examples of the target expressions and lighting

conditions. Each lineup consists of an actual image of the

subject with bright lighting and neutral expression and the

same subject synthesized for the target expression and light-

ing by the StarGAN [25], StarGAN w/ Lqual, StarGAN-v2

[26] and LEGAN, presented in a randomized order. We ag-

gregate the rater votes across all rows and normalize them

for each model (rightmost column of Table 1).

Quantitative Results. As can be seen from Table 1,

LEGAN synthesizes perceptually superior face images

(FID, LPIPS, Quality Score) while retaining subject iden-

tity (Match Score) better than the other GAN models. As

validated by the human evaluation, LEGAN also effectively

translates the input image to the target lighting and expres-

2Since target images are not available for the AFLW [56] and CelebA

[61] datasets, we evaluate metrics between the source and output images.

sion conditions. Surprisingly, the StarGAN-v2 fails to gen-

erate realistic images in these experiments. This can be at-

tributed to the fact that our task of joint lighting and expres-

sion manipulation presents the model with a much higher

number of possible transformation domains (101 to be ex-

act). The StarGAN-v2 model does learn to separate and

transform lighting and expression to a certain degree but

fails to decouple the other image attributes like identity,

gender and race3. Therefore, it synthesizes images that can

be easily picked out by human perusal or identity matching.

We also find adding Lqual to StarGAN improves almost all

its metric scores underpinning the value our quality estima-

tor Q even when coupled with off-the-shelf models. On top

of enhancing the overall sharpness, Lqual removes bullet-

hole artifacts, similar to [53], from the peripheral regions of

the output face. Such an artifact can be seen in (row 4, col

2, forehead-hair boundary) of Figure 5, which is eliminated

by adding Lqual (row 4, col 3).

For the unseen, in-the-wild datasets, the performance of

LEGAN is mostly superior to the other models, as shown

in Tables 2 and 3 respectively. Due to the non-uniform na-

ture of the data, especially the facial pose, most of the met-

rics deteriorate from Table 1. However, the boost in quality

score overall suggests the high quality images from AFLW

[56] and especially CelebA [61] to be visually more appeal-

ing than images from MultiPIE [39]. Some sample results

have been shared in Figure 6.

Effectiveness as Training Data Augmenter: We examine

3We are not the first to encounter this issue, as shared here: https:

//github.com/clovaai/stargan-v2/issues/21



Table 4: Verification performance (TPR@FPR = 1%) of LightCNN-29 [97] on IJB-B [96] and LFW [46] with and without LEGAN based augmentation.

Training Data Real Images [100] (# Identities) Synthetic Images (# Identities) IJB-B [96] Performance LFW [46] Performance

Original 439,999 (10,575) 0 0.954 ± 0.002 0.966 ± 0.002

Augmented 439,999 (10,575) 439,999 (10,575) 0.967 ± 0.001 0.972 ± 0.001

Table 5: Model [32] performance (ROC AUC) on AffectNet [66] with and without LEGAN based augmentation

Training Data Real Images [66] Synthetic Images ‘Neutral’ ‘Happy’ ‘Surprise’ ‘Disgust’

Original 204,325 0 0.851 ± 0.005 0.955 ± 0.001 0.873 ± 0.004 0.887 ± 0.005

Augmented 204,325 279,324 0.868 ± 0.005 0.956 ± 0.001 0.890 ± 0.003 0.897 ± 0.001

the use of LEGAN as training data augmenter for face ver-

ification and expression recognition tasks using the IJB-B

[96], LFW [46] and AffectNet [66] datasets. For face ver-

ification, we use the CASIA-WebFace dataset [100] and

the LightCNN-29 [97] architecture due to their popular-

ity in this domain. We randomly sample 439,999 images

of 10,575 subjects from [100] for training and 54,415 im-

ages for validation. We augment the training set by ran-

domly manipulating the lighting and expression of each im-

age (Table 4, row 2). The LightCNN-29 model is trained

from scratch separately with the original and augmented

sets and its weights saved when validation loss plateaus

across epochs. These saved snapshots are then used to ex-

tract features from a still image or video frame in the IJB-B

[96] dataset. For each IJB-B template, a mean feature is

computed using video and media pooling operations [62]

and match score between such features is calculated with

Pearson correlation. For the LFW [46] images, we sim-

ply compare features between similar and dissimilar identi-

ties. To measure statistical significance of any performance

benefit, we run each training 3 separate times. We find the

model trained with the augmented data to improve upon the

verification performance of the baseline (Table 4). This sug-

gests that the LEGAN generated images retain their original

identity and can boost the robustness of classification mod-

els towards intra-class variance in expressions and lighting.

For expression classification, we use a modified ver-

sion of the AU-classification model from [32] (Leaky ReLU

[98] and Dropout added) and manually annotated AffectNet

[66] images for the (‘Neutral’, ‘Happy’, ‘Surprise’, ‘Dis-

gust’) classes, as these 4 expressions overlap with Multi-

PIE [39]. The classification model is trained with 204,325

face images from AffectNet’s training split, which is highly

skewed towards the ‘Happy’ class (59%) and has very few

images for the ‘Surprise’ (6.2%) and ‘Disgust’ (1.6%) ex-

pressions. To balance the training distribution, we popu-

late each sparse class with synthetic images generated by

LEGAN from real images belonging to any of the other 3

classes. We use the original and augmented (balanced) data

separately to train two versions of the model for expression

classification. As there is no test split, we use the 2,000

validation images for testing, as done in other works [91].

We find the synthetic images, when used in training, to sub-

stantially improve test performance especially for the pre-

viously under-represented ‘Surprise’ and ‘Disgust’ classes

(Table 5). This further validates the realism of the expres-

sions generated by LEGAN.

6. Conclusion

We propose LEGAN, a GAN framework for performing

many-to-many joint manipulation of lighting and expres-

sions of an existing face image without requiring paired

training data. Instead of translating the image representa-

tions in an entangled feature space like [25], LEGAN esti-

mates transformation maps in the decomposed lighting and

expression sub-spaces before combining them to get the de-

sired output image. To enhance the perceptual quality of the

synthetic images, we directly integrate a quality estimation

model into LEGAN’s pipeline as an auxiliary discrimina-

tor. This quality estimation model, built with synthetic face

images from different methods [51, 52, 78, 2, 9] and their

crowd-sourced naturalness ratings, is trained using a mar-

gin based regression loss to capture the subjective nature

of human judgement. The usefulness of LEGAN’s feature

disentangling towards synthesis quality is shown by objec-

tive comparison [45, 103, 94] of its synthesized images to

that of the other popular GAN models like StarGAN [25]

and StarGAN-v2 [26]. These experiments also highlight

the usefulness of the proposed quality estimator in LEGAN

and StarGAN w/ Lqual, specifically comparing the latter to

vanilla StarGAN.

As a potential application, we use LEGAN as training

data augmenter for face verification on the IJB-B [96] and

LFW [46] datasets and for facial expression classification

on the AffectNet [66] dataset (Tables 4 and 5). An improve-

ment in the verification scores in both datasets suggests

LEGAN can enhance the intra-class variance while preserv-

ing subject identity. The boost in expression recognition

performance validates the realism of the LEGAN generated

facial expressions. The output quality, however, could be

further improved when translating from an intense expres-

sion to another. We plan to address this by - (1) using atten-

tion masks in our encoder modules, and (2) building trans-

lation pathways of facial action units [87] while going from

one expression to another. Another future goal is to incor-

porate a temporal component in LEGAN for synthesizing a

sequence of coherent frames.
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