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Abstract

Existing methods of face parsing have proven effective at

classifying each pixel of an RGB image into different facial

components. However, there is a lack of face parsing re-

search that utilizes depth domain. To the best of our knowl-

edge, we present the first study to exploit 2.5D data for face

parsing. We introduce a novel framework to jointly learn (1)

RGB face parsing, (2) depth face parsing and (3) RGB-to-

depth domain translation, which can be effective even when

only a small amount of annotated depth data is available

for training. To this end, we also create the first RGB-D

face parsing benchmarks based on CelebAMask-HQ, LaPa

and Helen by utilizing an off-the-shelf 3D head reconstruc-

tion model. Overall, our approach makes two main contri-

butions. First, our method leverages mutual learning be-

tween RGB and depth face parsing, which enables bidi-

rectional knowledge distillation between the two data do-

mains. Second, our method utilizes end-to-end learning of

RGB-to-depth domain translation and depth face parsing,

which can help overcome the scarcity of annotated depth

data. We perform extensive experiments to validate the ef-

fectiveness of our method, in which we achieve state-of-

the-art results in RGB face parsing. As far as we know,

we also report the first results on face parsing from depth

data. All experiments are conducted on our new RGB-

D face parsing datasets, which are publicly available at

https://github.com/jyunlee/CelebAMask-

HQ-D_LaPa-D_Helen-D.

1. Introduction

Face parsing is an important research problem. It is use-

ful in several high-level applications, including face under-

standing, synthesis and animation [16, 44, 45]. Recently,

deep learning-based methods [14, 18, 20, 21, 32, 39, 48, 49]

have proven effective for face parsing from RGB images,

and a number of datasets [12, 16, 21, 29] have been pub-

lished to this end. However, RGB images are sensitive to

Figure 1: Our results of RGB face parsing, depth face pars-

ing and RGB-to-depth domain translation. The proposed

method can jointly learn the three tasks in an end-to-end

manner.

differences in lighting conditions, which makes it difficult

for them to capture useful information in very bright or dark

scenarios. Also, RGB images do not directly capture ge-

ometric information, which has been shown to benefit se-

mantic segmentation [6, 8, 9, 17, 22, 24, 26]. For these

reasons, several studies have considered utilizing depth or

event modalities in other computer vision domains (e.g., se-

mantic segmentation) [1, 6, 31], while no such research has

yet been carried out for face parsing.

In this work, we explore depth face parsing along with

RGB face parsing in a symbiotic manner. As depth maps

are significantly less sensitive to variation in illumination

than conventional RGB images, depth face parsing can offer

advantages for indoor applications in difficult lighting envi-

ronments. Once face parsing is learned from depth data,

it can also be utilized as privileged knowledge to improve

the results of the conventional RGB face parsing methods

[4, 5, 11, 25, 27, 43].

One of the main reasons for the comparative scarcity



of similar studies on face parsing is the lack of annotated

datasets consisting of samples other than RGB images. To

address this issue, we create and publish the first RGB-D

datasets with annotated label maps, which are manufac-

tured by utilizing an off-the-shelf 3D reconstruction model

[41] on the three existing challenging RGB-based datasets:

CelebAMask-HQ [16], LaPa [21] and Helen [20]. However,

although we have constructed large-scale annotated depth

datasets, this type of data still remains relatively scarce

compared to annotated RGB data in the overall face pars-

ing literature. To potentially utilize all existing RGB-based

datasets to the fullest, we additionally introduce an RGB-

to-depth domain translation network based on Pix2Pix [13]

architecture in our framework to generate more depth train-

ing examples from the annotated RGB examples on the fly.

In Section 3.2, we will discuss how the optimization of the

RGB-to-depth domain translation network can also benefit

from the end-to-end learning mechanism put forth in our

framework.

Overall, our unified framework aims to jointly train (1)

an RGB-based face parsing network, (2) a depth-based face

parsing network and (3) an RGB-to-depth domain transla-

tion network. We first pre-train each of the base networks

separately, then jointly train them in an end-to-end man-

ner. In particular, we utilize the annotated RGB datasets not

only to learn RGB face parsing, but also depth face pars-

ing. First, we propagate a given RGB image to both the

RGB face parsing network and the RGB-to-depth domain

translation network. Then, we feed-forward the translated

depth map to the depth face parsing network. Next, the

two parallel face parsing networks perform mutual learn-

ing [46], in which activations in the last layer of the two

networks are stimulated to mimic each other. Notably, most

of the existing studies on domain transfer learning involve

one-way transfer of supervision between different data do-

mains [2, 25, 43], considering one as the target domain and

another as the privileged domain. However, we treat both

the RGB and depth domains as the target domain as well

as the privileged domain to one another by allowing knowl-

edge distillation in a bidirectional manner. To the best of

our knowledge, this is also the first study to leverage mu-

tual learning [46] mechanism for domain transfer learning.

Our main contributions can be summarized as follows.

• We propose a novel end-to-end method to jointly learn

RGB face parsing, depth face parsing and RGB-to-

depth domain translation. Our experiments demon-

strate that the method enhances the performance of all

three tasks. In particular, we achieve state-of-the-art

results in RGB face parsing.

• To the best of our knowledge, we present the first study

on face parsing from depth maps.

• As far as we know, we construct and publish the first

RGB-D face datasets with semantic label maps. We es-

timate depth information of the CelebAMask-HQ [16],

LaPa [21] and Helen [20] benchmarks by utilizing an

off-the-shelf 3D head reconstruction model [41].

2. Related Work

2.1. RGB Face Parsing

For many years, methods for face parsing from RGB

images have been actively investigated. Traditional ap-

proaches learn correlation between facial regions using

hand-crafted features and machine learning models, such

as Gaussian Radial Basis Function (RBF) [29] and epit-

ome model [38]. With the development of deep learning,

most of recent approaches adapt deep convolutional neu-

ral networks (CNNs) for more effective feature learning

[14, 18, 20, 21, 32, 39, 48, 49]. For example, Lin et al. intro-

duce a CNN-based framework with a RoI Tanh-Warping op-

erator to combine central and peripheral information [18].

Te et al. adapt edge-aware graph representation learning

to effectively model the relation between facial components

[32]. Although there exist a considerable number of studies

on face parsing from RGB images, there is a lack of face

parsing studies that utilize other data domains, due to the

unavailability of annotated datasets.

2.2. RGB­D Semantic Segmentation

Unlike in face parsing, many researches in semantic seg-

mentation for indoor scene understanding have been uti-

lizing both RGB and depth data, as numerous RGB-D

datasets [7, 15, 28, 30, 40] are available to this end. Com-

pared to conventional RGB images, RGB-D images are

widely known to improve the quality of semantic labeling,

as depth provides additional geometric and illumination-

independent features. Most previous methods fuse RGB

and depth channels based on early, middle or late fusion

mechanism [6, 9, 17, 22, 24]. Other works feed RGB im-

age and HHA images encoded from depth into two sepa-

rate networks and combine their predictions [8, 17, 26]. In

this paper, we also take advantages of both RGB and depth

modalities for face parsing. One difference of our method

from most of the forementioned techniques is that it requires

both RGB and depth data only at the training phase. During

the test phase, face parsing can be performed from either

one of RGB or depth domain.

2.3. Learning Using Privileged Information and
Distillation

Privileged information [36, 37] and distillation [10] are

techniques that enable a model to learn from other mod-

els and data representations. Learning Using Privileged In-

formation (LUPI) is first introduced by Vapnik and Vashist



Figure 2: Visual examples of the samples in CelebAMask-HQ-D, LaPa-D and Helen-D datasets.

[37], where privileged information denote additional infor-

mation related to the original data that is available only at

the training stage - not at the test stage. Knowledge distilla-

tion [10] can also be adapted as one of methods to incorpo-

rate privileged information, as suggested by Lopez-Paz et

al. [23]. Knowledge distillation enables a student network

to learn from soft predictions or internal feature represen-

tations of a teacher network, which can possibly be trained

on privileged data domains. Rad et al. [25] and Yuan et al.

[43] propose methods to benefit RGB pose estimation via

distilling knowledge from a network trained on privileged

depth modality. Asami et al. introduce a domain adapta-

tion method for acoustic models based on the knowledge

distillation framework [2]. Such existing methods usually

consider one-way knowledge distillation between different

data domains. However, our work considers RGB and depth

modalities as privileged information to each other via mu-

tual learning [46].

2.4. 3D Face Model Fitting

3D model fitting is one possible way to obtain com-

plete geometry for a face. Most of existing generative 3D

face models are based on 3D Morphable Face Model [3]

framework, which separately represent shape and appear-

ance with an assumption that all faces are in point-to-point

correspondence. With the advent of machine learning, most

of recent state-of-the-art methods utilize deep neural net-

works to learn a 3D Morphable Model and regression-based

fitting [19, 33, 34, 35]. Recently, Xu et al. proposed a

framework for 3D head reconstruction using a single im-

age, that can additionally learn hair and ear geometry along

with the face geometry [41]. In our study, we also utilize

this publicly available 3D head reconstruction model [41]

to acquire pseudo-ground truth depth maps that correspond

to an existing RGB face dataset with semantic labels.

3. Proposed Method

In Section 3.1, we first discuss the construction of the

first RGB-D face datasets with semantic label maps. Then,

in Section 3.2, we explain the proposed framework that can

jointly learn RGB face parsing, depth face parsing network

and RGB-to-depth domain translation.

3.1. First RGB­D Datasets for Face Parsing

In the current face parsing literature, a number of an-

notated RGB datasets are available while no such depth

dataset exists. To address this issue, we construct new

pseudo-ground truth RGB-D datasets with semantic anno-

tations by following the method proposed by Bodur et al.

[4]. Two differences of our dataset construction from [4]

is that (1) our dataset contains pixel-level labels for seg-

mentation, rather than image-level labels for classification,

and (2) we utilize a recently published 3D head reconstruc-

tion model [41], which allows estimation for additional hair

and ear regions. By utilizing this off-the-shelf method [41],

we first reconstruct 3D head meshes from the RGB im-

ages in CelebAMask-HQ [16], LaPa [21] and Helen [20]

datasets. Then, we project the obtained meshes to acquire

depth maps that correspond to the original RGB image and

label map pairs. However, we have discarded very few sam-

ples with low reconstruction quality. Table 1 shows the re-

sulting number of depth-augmented samples that we have

obtained from the three original datasets.

For CelebAMask-HQ dataset, we have also adjusted the

labels of classes that the reconstruction model does not ren-

der and have obtained the label maps of 13 classes as a

result: background, skin, left eyebrow, right eyebrow, left

eye, right eye, left ear, right ear, nose, mouth, upper lip,

lower lip and hair. For Helen dataset, we have applied an

additional post-processing step to discard depth and label

information for hair regions. It is widely known that Helen

has inaccurate annotations for hair [18, 21]. Since the 3D



reconstruction model [41] produces a hair mesh based on a

hair segmentation map, applying such post-processing has

helped us to obtain more plausible results. For future use,

we denote the depth-augmented version of CelebAMask-

HQ, LaPa and Helen as CelebAMask-HQ-D, LaPa-D and

Helen-D, respectively. Figure 2 shows the visual examples

of samples in the constructed datasets.

Dataset Train set Validation set Test set Total

CelebAMask-HQ [16] 24,183 2,993 2,284 30,000

CelebAMask-HQ-D 24,161 2,982 2,821 29,964

LaPa [21] 18,168 2,000 2,000 21,505

LaPa-D 17,656 1,934 1,915 21,428

Helen [20] 2,000 230 100 2,330

Helen-D 1,897 216 95 2,208

Table 1: Number of samples in train, validation and test sets

of CelebAMask-HQ-D, LaPa-D and Helen-D.

3.2. End­to­End Face Parsing From RGB and
Depth

Our framework consists of three base models: an RGB-

based face parsing network, a depth-based face parsing net-

work and an RGB-to-depth domain translation network.

The overall pipeline of our method is shown in Figure 3. We

first explain each of the base models separately. Afterwards,

we introduce our novel learning mechanism to jointly opti-

mize the three models in an end-to-end manner.

RGB Face Parsing Network. The RGB face parsing net-

work aims to classify each pixel of an input RGB image

into different facial components (see the bottom horizon-

tal branch in Figure 3). We adopt a deep CNN-based

architecture to instantiate the network, as it has shown

state-of-the-art results in the recent face parsing litera-

tures [18, 20, 32, 49]. However, we would like to note

that our framework is generic, and it is not constrained to

one base model architecture. The original loss function to

optimize the parameters of the RGB face parsing network,

which we denote by LRGB
CLS , can also vary depending on

your engineering choice for the base network architecture.

One common scenario would be to use cross entropy loss,

since it is the most widely adapted for training face parsing

networks.

Depth Face Parsing Network. The depth face parsing net-

work aims to classify each pixel of an input depth map

into different semantic components (see the top horizontal

branch in Figure 3). To instantiate the depth face parsing

network, it would be a natural choice to adapt the same

network architecture and loss function that are used for the

RGB face parsing network. For future convenience, we de-

note the original loss function for the depth face parsing

network as LDepth
CLS .

RGB-to-Depth Translation Network. The RGB-to-depth

translation network aims to convert an input RGB face im-

age into the corresponding depth map (see the left vertical

branch in Figure 3). For the network architecture, we adopt

a conditional generative adversarial network (GAN), which

has been proven to be effective in various image-to-image

translation tasks [13, 50]. We denote the original loss func-

tion for the RGB-to-depth domain translation network as

LDT , for which we can utilize the one suggested in [13]:

LDT = LCGAN + λLL1, (1)

where LCGAN and LL1 are conditional GAN loss and L1

loss, respectively. λ is a hyper-parameter to control the

weight of the L1 loss term. The comprehensive definitions

of LCGAN and LL1 can be written as follows:

LCGAN = ExR,xD
[logD(xR, xD)] +

ExR,z[log(1−D(xR, G(xR, z))] ,
(2)

LL1 = ExR,xD,z[‖xD −G(xR, z)‖1], (3)

where G and D indicate a generator network and a discrim-

inator network, respectively. xR represents an RGB image

and xD denotes its ground-truth depth counterpart. z repre-

sents a noise vector sampled from a Gaussian distribution.

Figure 3: Detailed overview of our method. Besides loss

functions to independently train each of the base models

(i.e., LRGB
CLS , LDepth

CLS , LCGAN and LL1), we propose to uti-

lize additional loss terms to stimulate joint learning between

them: LML and LE2E . LML is adapted for mutual learning

between RGB and depth face parsing networks (dashed ar-

row) and LE2E is used for end-to-end learning of an RGB-

to-depth domain translation network and a depth face pars-

ing network (dashed box).

Joint Learning Mechanism. For training our framework,

we first separately pre-train each of the base networks us-

ing the constructed RGB-D dataset (from Section 3.1), then

jointly train them in an end-to-end manner. To this end, we



introduce a novel loss formula to stimulate joint learning

between the three base models:

L = λ1 ExR,xD
‖FR(xR)− FD(xD)‖

2

2
+

λ2 ExR,yR,zFPLoss(FD(G(xR, z)), yR)+

λ3 L
RGB
CLS + λ4 L

Depth
CLS + λ5 LDT ,

(4)

where FR and FD denote the RGB face parsing network and

the depth face parsing network, respectively. FPLoss(· , ·)
denotes a loss function that measures the deviation between

a prediction map of the face parsing network and a label

map, for which we can adapt the same loss formula used

for LRGB
CLS and LDepth

CLS (e.g., cross entropy loss). yR rep-

resents the label map corresponding to xR. Lastly, λ1, λ2,

λ3, λ4 and λ5 are hyper-parameters to control weights be-

tween the loss terms. Overall, the training objective of all

the networks involved in our framework is to minimize L,

except for the discriminator of the RGB-to-depth translation

network which competes to maximize it.

Please note that the first and the second loss terms in

Equation 4 are newly introduced for the joint training phase.

The first loss term, which we denote by LML, is used

to stimulate mutual learning [46] between RGB-based and

depth-based face parsing networks. It encourages activa-

tions in the last layer of the two networks to mimic each

other, which enables bidirectional knowledge distillation

between RGB and depth domains. We would like to em-

phasize that, unlike most of existing methods for domain

transfer learning that involve one-way transfer of supervi-

sion [2, 10, 25, 43], we propose to utilize such distillation

loss for optimizing both RGB-based and depth-based net-

works. In this way, we can fully utilize LML to benefit the

learning of both RGB face parsing and depth face parsing

simultaneously. To the best of our knowledge, this is the

first study to leverage mutual learning [46] mechanism for

domain transfer learning, which we term cross-domain mu-

tual learning.

The second loss term, which we denote by LE2E , al-

lows end-to-end learning of the depth face parsing network

and the RGB-to-depth domain translation network. It en-

ables the depth face parsing network to be trained on data

generated by the RGB-to-depth translation network. We

would like to note that learning from LE2E does not re-

quire any annotated depth data. Instead, it utilizes annotated

RGB data (i.e., xR and yR pairs) to learn depth face pars-

ing (see Equation 4). Considering the current face parsing

literature where only RGB datasets with semantic annota-

tions are abundant, utilizing this loss term can effectively

help overcome the scarcity of depth data in learning depth

face parsing. From another point of view, it can also benefit

the learning of RGB-to-depth translation by incorporating

additional supervision from the auxiliary face parsing task.

4. Experimental Validation

In this section, we conduct experiments to investigate the

effectiveness of our method in learning RGB face parsing,

depth face parsing and RGB-to-depth domain translation.

4.1. Dataset and Evaluation Metric

Dataset. Our experiments are conducted on CelebAMask-

HQ-D, LaPa-D and Helen-D datasets, whose construction

process has been described in Section 3.1. We divide each

dataset into train, validation and test sets as shown in Ta-

ble 1 by following the split protocol used in CelebAMask-

HQ, LaPa and Helen for CelebAMask-HQ-D, LaPa-D and

Helen-D, respectively. However, we utilize only 10% of

the depth and label map pairs in each dataset for training

our framework. Our intention is to show that the proposed

method can be effective even in a situation where the anno-

tated depth data is not sufficiently available, which is more

practical scenario considering the current face parsing liter-

ature.

Evaluation Metrics. For RGB and depth face parsing,

we evaluate our results on the standard metric for face

parsing: F1-score. On CelebAMask-HQ-D and LaPa-D

datasets, we report F1-scores corresponding to each cate-

gory, excluding the background, and their mean F1-score.

On Helen-D dataset, we employ the overall F1-score over

the merged brows, eyes, nose and mouth categories, in

order to maintain consistency with the previous works

[18, 20, 21, 32, 48]. For RGB-to-depth domain translation,

we evaluate our results in both quantitative and qualitative

manners. For the quantitative metric, we employ L1 dis-

tance between predicted depth maps and their correspond-

ing ground truth depth maps.

4.2. Implementation Details

Network Architectures. We adapt the same network

design for both RGB and depth face parsing networks.

Throughout the evaluation, we consider two architectural

options for them: EAGRNet [32] and BiSeNet [42]. EAGR-

Net is a recently proposed method for face parsing and has

shown state-of-the-art results on CelebAMask-HQ, LaPa

and Helen datasets. It utilizes edge-aware graph representa-

tion learning to effectively model the relation between dif-

ferent facial regions (see [32] for more architectural details).

BiSeNet is a CNN-based model that incorporates a Spatial

Path and a Context Path, which is originally proposed for

general semantic segmentation. However, its public imple-

mentation tuned for face parsing 1 has shown to be effec-

tive, and it has become one of the most popular repositories

in face parsing domain. For this reason, we also utilize this

implementation of BiSeNet for evaluating our method. For

1https://github.com/zllrunning/face- parsing.

PyTorch



Method Skin Nose L-Eye R-Eye L-Brow R-Brow L-Ear R-Ear Mouth U-Lip L-Lip Hair Mean

H. Zhao et al. [47] 94.8 90.3 79.9 80.1 77.3 78.0 75.6 73.1 89.8 87.1 88.8 90.4 83.8

C. Lee et al. [16] 95.5 85.6 84.3 85.2 81.4 81.2 84.9 83.1 63.4 88.9 90.1 86.6 84.2

EAGRNetRGB [32] 96.0 93.2 87.6 87.8 85.6 85.6 86.2 81.9 91.4 88.3 91.0 95.1 89.1

EAGRNetRGB + our method 96.3 93.8 88.9 88.7 86.1 86.0 88.3 86.6 92.4 89.6 91.0 95.4 90.3

BiSeNetRGB [42] 96.6 94.0 71.1 70.1 66.9 67.4 68.4 65.7 86.3 88.5 90.6 95.4 80.1

BiSeNetRGB + our method 96.5 94.0 88.7 88.7 84.0 84.1 80.5 80.8 86.6 88.7 90.8 95.4 88.2

Table 2: Comparison of RGB face parsing results on CelebAMask-HQ (in F1-score). EAGRNet RGB and BiSeNet RGB repre-

sent EAGRNet and BiSeNet baselines trained on RGB data, respectively.

the RGB-to-depth domain translation network, we adapt the

design of Pix2Pix [13], composed of an U-Net generator

and a PixelGAN discriminator.

Training Details. During the pre-training phase, we sep-

arately train each of three base models from scratch. For

RGB and depth face parsing networks, we use stochastic

gradient descent with an initial learning rate of 1e − 3 for

EAGRnet and 1e− 2 for BiSeNet, along with a polynomial

learning rate decay schedule. We train them for 100K iter-

ations using a batch size of 8, with momentum and weight

decay parameters fixed to 0.9 and 5e − 4, respectively. We

would also like to note that the loss formula originally pro-

posed for the baseline face parsing network (i.e., EAGRNet

or BiSeNet) is adapted for LRGB
CLS , LDepth

CLS and LE2E (see

[32, 42] for more details). For Pix2Pix, we use an Adam

optimizer with an initial learning rate of 1e− 3 and a poly-

nomial learning rate decay schedule. We train it for 200K
iterations using a batch size of 1. The hyper-parameter λ

Equation 1 is set to 100, as in [13]. During the joint train-

ing phase, the optimization techniques for each network are

applied in the same way, except for the initial learning rate

which is reduced to one-tenth of its original value. Also,

in order to simultaneously incorporate LDepth
CLS and LE2E ,

the depth face parsing network is trained on mini-batches,

where each of them is composed of half of ground truth

depth maps and half of depth maps generated by the RGB-

to-depth domain translation network on the fly. The hyper-

parameters in Equation 4, λ1, λ2, λ3, λ4 and λ5, are set to

1, 1, 0.5, 0.5 and 1, respectively.

4.3. Experimental Analysis and Comparison

We report the experimental results of our method in

learning RGB face parsing, depth face parsing and RGB-

to-depth domain translation. The experiments are mainly

conducted on CelebAMask-HQ-D dataset (see 4.3.1), while

we also include the results on LaPa-D and Helen-D datasets

(see 4.3.2).

4.3.1 Evaluation on CelebAMask-HQ-D Dataset

RGB Face Parsing. We first conduct experiments to com-

pare our method with the baselines [32, 42] and the existing

works [16, 47] in RGB face parsing on CelebAMask-HQ-D

dataset. Table 2 shows the quantitative results in F1-score.

Our method leads to an improvement over the EAGRNet

baseline by 1.2 and the BiSeNet baseline by 8.1 in mean F1-

score. We would like to emphasize that the baseline EAGR-

Net is the current state-of-the-art work on RGB face pars-

ing, and our method is shown to further improve its perfor-

mance by incorporating privileged knowledge from depth.

In Figure 4, we also provide a few qualitative examples of

the experimental results. We observe that our method yields

more accurate parsing results compared to the baseline, es-

pecially for eye and brow regions (see dashed boxes in Fig-

ure 4).

Figure 4: Qualitative comparison of RGB face parsing re-

sults on CelebAMask-HQ-D (best viewed in color).

Depth Face Parsing. To the best of our knowledge, we in-

troduce the first results on face parsing from depth maps.

The quantitative results in F1-score are shown in Table

3. We observe that our method improves the EAGRNet

and BiSeNet baseline results by incorporating joint learning

losses (i.e., LE2E and LML). For your reference, we also

include a number of visual examples of our results in Fig-

ure 5. Compared to the baseline, our method yields more

reliable parsing outcomes for eye, brow and hair regions

(see dashed boxes in Figure 5). We would also like to note

that, although RGB images capture richer texture informa-

tion than depth maps, the performance gap between RGB



Method Skin Nose L-Eye R-Eye L-Brow R-Brow L-Ear R-Ear I-Mouth U-Lip L-Lip Hair Mean

EAGRNetDepth 93.9 89.8 78.0 77.6 72.5 72.7 73.7 70.9 80.8 76.9 82.5 96.2 80.5

EAGRNetDepth + our method 94.6 91.7 79.1 79.5 73.8 73.8 74.4 71.8 81.2 77.3 82.4 96.5 81.3

BiSeNetDepth 94.3 92.2 78.0 75.5 70.1 70.1 56.3 54.9 63.1 73.9 82.4 94.7 75.5

BiSeNetDepth + our method 94.9 92.2 81.5 81.1 72.4 72.7 65.3 58.4 67.7 78.0 83.6 95.9 78.6

Table 3: Comparison of depth face parsing results on CelebAMask-HQ-D (in F1-score). EAGRNet Depth and BiSeNet Depth

denote EAGRNet and BiSeNet baselines trained on depth data, respectively.

face parsing and depth face parsing are shown not to be sig-

nificant (see Table 2 and 3). This suggests that depth face

parsing can be an effective alternative to conventional RGB

face parsing for selective environments (e.g., very bright or

dark scenarios).

Figure 5: Qualitative comparison of depth face parsing re-

sults on CelebAMask-HQ-D (best viewed in color).

RGB-to-Depth Domain Translation. We compare RGB-

to-depth domain translation results of our method to those

of the Pix2Pix baseline. Evaluations are performed on

CelebAMask-HQ-D dataset in both quantitative and qual-

itative manners. Table 4 demonstrates the quantitative re-

sults in average L1 distance between the predicted depth

maps and the corresponding ground truth depth maps in

the test set. Our method leads to an improvement over

the Pix2Pix baseline by approximately 20% in L1 distance

by incorporating an auxiliary face parsing loss (i.e., LE2E)

from joint learning. We also report a number of qualitative

examples of our RGB-to-depth domain translation results

in Figure 6. As shown in the top two rows, our method

yields more detailed depth prediction for regions around

eyes and nose compared to the baseline. The bottom two

rows demonstrate that our method can more precisely esti-

mate for boundary regions between forehead and hair (see

dashed boxes in Figure 6).

Method Pix2Pix [13] Pix2Pix + our method

L1 distance 0.122 0.099

Table 4: Comparison of RGB-to-depth domain translation

results on CelebAMask-HQ-D.

Figure 6: Qualitative comparison of RGB-to-depth domain

translation results on CelebAMask-HQ-D.

4.3.2 Evaluation on LaPa-D and Helen-D Datasets

We also conduct experiments to evaluate the effectiveness

of our method on LaPa-D and Helen-D datasets. Table

5 and 6 demonstrate the quantitative results on RGB face

parsing and depth face parsing in F1-score. Similar to the

results in Section 4.3.1 on CelebAMask-HQ-D dataset, our

method leads to an improvement over the baseline in both

RGB face parsing and depth face parsing. However, un-

like on CelebAMask-HQ and LaPa datasets, the state-of-

the-art baseline RGB face parsing results on Helen dataset

reported in the original EAGRNet paper [32] could not be

reproduced. However, we would like to emphasize that

our framework is not specific to a particular baseline face

parsing method, and it demonstrates consistent performance

gains compared to the baselines.

4.4. Ablation Study

Different Loss Components. We explore the effectiveness

of different loss components on learning RGB face parsing



Method Skin Hair L-eye R-eye U-lip I-mouth L-lip Nose L-brow R-brow Mean

EAGRNet RGB[32] 97.3 96.2 89.5 90.0 88.1 90.0 89.0 97.1 86.5 87.0 91.1

EAGRNet RGB + our method 97.3 95.7 90.9 91.0 87.7 89.8 90.0 97.3 88.8 89.1 91.9

EAGRNet Depth 92.5 94.6 74.6 74.6 72.6 80.6 77.6 93.1 73.0 72.7 80.7

EAGRNet Depth + our method 92.5 94.6 75.7 75.6 72.4 80.7 77.1 93.0 74.2 74.0 81.1

Table 5: Comparison of RGB face parsing and depth face parsing results of EAGRNet on LaPa-D dataset (in F1-score).

Method Skin Nose U-lip I-mouth L-lip Eyes Brows Mouth Overall

EAGRNet RGB[32] 91.8 94.4 72.9 83.7 85.8 87.8 80.5 92.5 90.6

EAGRNet RGB + our method 94.3 94.6 73.9 83.7 86.2 87.7 81.6 92.7 91.0

EAGRNet Depth 95.4 91.3 65.7 72.2 76.3 73.5 65.3 87.5 83.7

EAGRNet Depth + our method 95.5 91.3 65.8 77.4 75.7 73.7 67.1 89.2 84.5

Table 6: Comparison of RGB face parsing and depth face parsing results of EAGRNet on Helen-D dataset (in F1-score).

and depth face parsing. Specifically, we consider different

combinations of the loss terms that are additionally intro-

duced during the joint training phase: LE2E and LML. The

experimental results in class mean F1-score are provided in

Table 7. We observe that each of the two loss terms leads

to an improvement over the baseline, while the best results

can be achieved when both terms are utilized.

Method Mean F1-score

EAGRNet RGB[32] 89.1

EAGRNet RGB + LML 90.2

EAGRNet RGB + LE2E N/A

EAGRNet RGB + LML + LE2E 90.3

EAGRNet Depth 80.5

EAGRNet Depth + LML 81.2

EAGRNet Depth + LE2E 80.8

EAGRNet Depth + LML + LE2E 81.3

Table 7: Comparison of depth face parsing results with re-

spect to different loss components (on CelebAMask-HQ-

D).

Size of Annotated Depth Dataset. We compare the face

parsing results with varying the size of the annotated depth

dataset available for training. In Figure 7, we report the

experimental results on RGB and depth face parsing in

class mean F1-score. For the dataset size, 1%, 10% and

100% indicate the fractions of depth and label map pairs of

CelebAMask-HQ-D that are used to train our framework.

For depth face parsing, we observe a decrease in perfor-

mance when a smaller annotated dataset is available. How-

ever, the RGB face parsing results of our method are not sig-

nificantly affected by the size of the annotated depth dataset,

and it has led to a noticeable increase over the baseline per-

formance in all cases. This indicates that, even in a situ-

ation where a very small amount of depth and label pairs

are available, domain transfer learning from depth can ef-

fectively improve the performance of RGB face parsing.

Figure 7: Comparison of face parsing results of BiSeNet

with respect to different sizes of the annotated depth dataset

(on CelebAMask-HQ-D).

5. Conclusions and Future Work

In this paper, we propose a novel framework to jointly

learn RGB face parsing, depth face parsing and RGB-to-

depth domain translation. To this end, we construct the first

pseudo-ground truth RGB-D face datasets with semantic la-

bel maps. For future work, one of the remaining challenges

would be to acquire a real RGB-D face dataset with seman-

tic annotations. Although our method has achieved satis-

factory results on the constructed datasets, a domain gap

between the depth maps estimated by the 3D reconstruc-

tion method [41] and real depth maps may still exist. As

this work has introduced some potential usefulness of an

RGB-D dataset in face parsing, it would be an interesting

research direction to investigate a method that can further

utilize depth modality for face parsing, possibly with real

RGB-D data.
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