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Abstract

Existing methods of face parsing have proven effective at
classifying each pixel of an RGB image into different facial
components. However, there is a lack of face parsing re-
search that utilizes depth domain. To the best of our knowl-
edge, we present the first study to exploit 2.5D data for face
parsing. We introduce a novel framework to jointly learn (1)
RGB face parsing, (2) depth face parsing and (3) RGB-to-
depth domain translation, which can be effective even when
only a small amount of annotated depth data is available
for training. To this end, we also create the first RGB-D
face parsing benchmarks based on CelebAMask-HQ, LaPa
and Helen by utilizing an off-the-shelf 3D head reconstruc-
tion model. Overall, our approach makes two main contri-
butions. First, our method leverages mutual learning be-
tween RGB and depth face parsing, which enables bidi-
rectional knowledge distillation between the two data do-
mains. Second, our method utilizes end-to-end learning of
RGB-to-depth domain translation and depth face parsing,
which can help overcome the scarcity of annotated depth
data. We perform extensive experiments to validate the ef-
fectiveness of our method, in which we achieve state-of-
the-art results in RGB face parsing. As far as we know,
we also report the first results on face parsing from depth
data. All experiments are conducted on our new RGB-
D face parsing datasets, which are publicly available at
https://github.com/ jyunlee/CelebAMask -
HO-D LaPa-D_Helen-D.

1. Introduction

Face parsing is an important research problem. It is use-
ful in several high-level applications, including face under-
standing, synthesis and animation [16, 44, 45]. Recently,
deep learning-based methods [ 14, 18, 20, 21, 32, 39, 48, 49]
have proven effective for face parsing from RGB images,
and a number of datasets [12, 16, 21, 29] have been pub-
lished to this end. However, RGB images are sensitive to
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Figure 1: Our results of RGB face parsing, depth face pars-
ing and RGB-to-depth domain translation. The proposed
method can jointly learn the three tasks in an end-to-end
manner.

differences in lighting conditions, which makes it difficult
for them to capture useful information in very bright or dark
scenarios. Also, RGB images do not directly capture ge-
ometric information, which has been shown to benefit se-
mantic segmentation [6, 8, 9, 17, 22, 24, 26]. For these
reasons, several studies have considered utilizing depth or
event modalities in other computer vision domains (e.g., se-
mantic segmentation) [, 6, 31], while no such research has
yet been carried out for face parsing.

In this work, we explore depth face parsing along with
RGB face parsing in a symbiotic manner. As depth maps
are significantly less sensitive to variation in illumination
than conventional RGB images, depth face parsing can offer
advantages for indoor applications in difficult lighting envi-
ronments. Once face parsing is learned from depth data,
it can also be utilized as privileged knowledge to improve
the results of the conventional RGB face parsing methods
[4,5, 11,25, 27, 43].

One of the main reasons for the comparative scarcity



of similar studies on face parsing is the lack of annotated
datasets consisting of samples other than RGB images. To
address this issue, we create and publish the first RGB-D
datasets with annotated label maps, which are manufac-
tured by utilizing an off-the-shelf 3D reconstruction model
[41] on the three existing challenging RGB-based datasets:
CelebAMask-HQ [16], LaPa [21] and Helen [20]. However,
although we have constructed large-scale annotated depth
datasets, this type of data still remains relatively scarce
compared to annotated RGB data in the overall face pars-
ing literature. To potentially utilize all existing RGB-based
datasets to the fullest, we additionally introduce an RGB-
to-depth domain translation network based on Pix2Pix [13]
architecture in our framework to generate more depth train-
ing examples from the annotated RGB examples on the fly.
In Section 3.2, we will discuss how the optimization of the
RGB-to-depth domain translation network can also benefit
from the end-to-end learning mechanism put forth in our
framework.

Overall, our unified framework aims to jointly train (1)
an RGB-based face parsing network, (2) a depth-based face
parsing network and (3) an RGB-to-depth domain transla-
tion network. We first pre-train each of the base networks
separately, then jointly train them in an end-to-end man-
ner. In particular, we utilize the annotated RGB datasets not
only to learn RGB face parsing, but also depth face pars-
ing. First, we propagate a given RGB image to both the
RGB face parsing network and the RGB-to-depth domain
translation network. Then, we feed-forward the translated
depth map to the depth face parsing network. Next, the
two parallel face parsing networks perform mutual learn-
ing [46], in which activations in the last layer of the two
networks are stimulated to mimic each other. Notably, most
of the existing studies on domain transfer learning involve
one-way transfer of supervision between different data do-
mains [2, 25, 43], considering one as the target domain and
another as the privileged domain. However, we treat both
the RGB and depth domains as the target domain as well
as the privileged domain to one another by allowing knowl-
edge distillation in a bidirectional manner. To the best of
our knowledge, this is also the first study to leverage mu-
tual learning [46] mechanism for domain transfer learning.

Our main contributions can be summarized as follows.

* We propose a novel end-to-end method to jointly learn
RGB face parsing, depth face parsing and RGB-to-
depth domain translation. Our experiments demon-
strate that the method enhances the performance of all
three tasks. In particular, we achieve state-of-the-art
results in RGB face parsing.

¢ To the best of our knowledge, we present the first study
on face parsing from depth maps.

* As far as we know, we construct and publish the first
RGB-D face datasets with semantic label maps. We es-
timate depth information of the CelebAMask-HQ [16],
LaPa [21] and Helen [20] benchmarks by utilizing an
off-the-shelf 3D head reconstruction model [41].

2. Related Work
2.1. RGB Face Parsing

For many years, methods for face parsing from RGB
images have been actively investigated. Traditional ap-
proaches learn correlation between facial regions using
hand-crafted features and machine learning models, such
as Gaussian Radial Basis Function (RBF) [29] and epit-
ome model [38]. With the development of deep learning,
most of recent approaches adapt deep convolutional neu-
ral networks (CNNs) for more effective feature learning
[14,18,20,21,32,39,48,49]. For example, Lin et al. intro-
duce a CNN-based framework with a Rol Tanh-Warping op-
erator to combine central and peripheral information [18].
Te et al. adapt edge-aware graph representation learning
to effectively model the relation between facial components
[32]. Although there exist a considerable number of studies
on face parsing from RGB images, there is a lack of face
parsing studies that utilize other data domains, due to the
unavailability of annotated datasets.

2.2. RGB-D Semantic Segmentation

Unlike in face parsing, many researches in semantic seg-
mentation for indoor scene understanding have been uti-
lizing both RGB and depth data, as numerous RGB-D
datasets [7, 15, 28, 30, 40] are available to this end. Com-
pared to conventional RGB images, RGB-D images are
widely known to improve the quality of semantic labeling,
as depth provides additional geometric and illumination-
independent features. Most previous methods fuse RGB
and depth channels based on early, middle or late fusion
mechanism [0, 9, 17, 22, 24]. Other works feed RGB im-
age and HHA images encoded from depth into two sepa-
rate networks and combine their predictions [8, 17, 26]. In
this paper, we also take advantages of both RGB and depth
modalities for face parsing. One difference of our method
from most of the forementioned techniques is that it requires
both RGB and depth data only at the training phase. During
the test phase, face parsing can be performed from either
one of RGB or depth domain.

2.3. Learning Using Privileged Information and
Distillation

Privileged information [36, 37] and distillation [10] are
techniques that enable a model to learn from other mod-
els and data representations. Learning Using Privileged In-
formation (LUPI) is first introduced by Vapnik and Vashist
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Figure 2: Visual examples of the samples in CelebAMask-HQ-D, LaPa-D and Helen-D datasets.

37], where privileged information denote additional infor-
mation related to the original data that is available only at
the training stage - not at the test stage. Knowledge distilla-
tion [10] can also be adapted as one of methods to incorpo-
rate privileged information, as suggested by Lopez-Paz et
al. [23]. Knowledge distillation enables a student network
to learn from soft predictions or internal feature represen-
tations of a teacher network, which can possibly be trained
on privileged data domains. Rad ef al. [25] and Yuan ef al.
[43] propose methods to benefit RGB pose estimation via
distilling knowledge from a network trained on privileged
depth modality. Asami et al. introduce a domain adapta-
tion method for acoustic models based on the knowledge
distillation framework [2]. Such existing methods usually
consider one-way knowledge distillation between different
data domains. However, our work considers RGB and depth
modalities as privileged information to each other via mu-
tual learning [46].

2.4. 3D Face Model Fitting

3D model fitting is one possible way to obtain com-
plete geometry for a face. Most of existing generative 3D
face models are based on 3D Morphable Face Model [3]
framework, which separately represent shape and appear-
ance with an assumption that all faces are in point-to-point
correspondence. With the advent of machine learning, most
of recent state-of-the-art methods utilize deep neural net-
works to learn a 3D Morphable Model and regression-based
fitting [19, 33, 34, 35]. Recently, Xu ef al. proposed a
framework for 3D head reconstruction using a single im-
age, that can additionally learn hair and ear geometry along
with the face geometry [41]. In our study, we also utilize
this publicly available 3D head reconstruction model [41]
to acquire pseudo-ground truth depth maps that correspond
to an existing RGB face dataset with semantic labels.

3. Proposed Method

In Section 3.1, we first discuss the construction of the
first RGB-D face datasets with semantic label maps. Then,
in Section 3.2, we explain the proposed framework that can
jointly learn RGB face parsing, depth face parsing network
and RGB-to-depth domain translation.

3.1. First RGB-D Datasets for Face Parsing

In the current face parsing literature, a number of an-
notated RGB datasets are available while no such depth
dataset exists. To address this issue, we construct new
pseudo-ground truth RGB-D datasets with semantic anno-
tations by following the method proposed by Bodur et al.
[4]. Two differences of our dataset construction from [4]
is that (1) our dataset contains pixel-level labels for seg-
mentation, rather than image-level labels for classification,
and (2) we utilize a recently published 3D head reconstruc-
tion model [4 1], which allows estimation for additional hair
and ear regions. By utilizing this off-the-shelf method [4 1],
we first reconstruct 3D head meshes from the RGB im-
ages in CelebAMask-HQ [16], LaPa [21] and Helen [20]
datasets. Then, we project the obtained meshes to acquire
depth maps that correspond to the original RGB image and
label map pairs. However, we have discarded very few sam-
ples with low reconstruction quality. Table 1 shows the re-
sulting number of depth-augmented samples that we have
obtained from the three original datasets.

For CelebAMask-HQ dataset, we have also adjusted the
labels of classes that the reconstruction model does not ren-
der and have obtained the label maps of 13 classes as a
result: background, skin, left eyebrow, right eyebrow, left
eye, right eye, left ear, right ear, nose, mouth, upper lip,
lower lip and hair. For Helen dataset, we have applied an
additional post-processing step to discard depth and label
information for hair regions. It is widely known that Helen
has inaccurate annotations for hair [18, 21]. Since the 3D



reconstruction model [41] produces a hair mesh based on a
hair segmentation map, applying such post-processing has
helped us to obtain more plausible results. For future use,
we denote the depth-augmented version of CelebAMask-
HQ, LaPa and Helen as CelebAMask-HQ-D, LaPa-D and
Helen-D, respectively. Figure 2 shows the visual examples
of samples in the constructed datasets.

Dataset Train set Validation set Test set | Total
CelebAMask-HQ [16] | 24,183 2,993 2,284 | 30,000
CelebAMask-HQ-D 24,161 2,982 2,821 29,964
LaPa [21] 18,168 2,000 2,000 | 21,505
LaPa-D 17,656 1,934 1,915 21,428

Helen [20] 2,000 230 100 2,330
Helen-D 1,897 216 95 2,208

Table 1: Number of samples in train, validation and test sets
of CelebAMask-HQ-D, LaPa-D and Helen-D.

3.2. End-to-End Face Parsing From RGB and
Depth

Our framework consists of three base models: an RGB-
based face parsing network, a depth-based face parsing net-
work and an RGB-to-depth domain translation network.
The overall pipeline of our method is shown in Figure 3. We
first explain each of the base models separately. Afterwards,
we introduce our novel learning mechanism to jointly opti-
mize the three models in an end-to-end manner.

RGB Face Parsing Network. The RGB face parsing net-
work aims to classify each pixel of an input RGB image
into different facial components (see the bottom horizon-
tal branch in Figure 3). We adopt a deep CNN-based
architecture to instantiate the network, as it has shown
state-of-the-art results in the recent face parsing litera-
tures [18, 20, 32, 49]. However, we would like to note
that our framework is generic, and it is not constrained to
one base model architecture. The original loss function to
optimize the parameters of the RGB face parsing network,
which we denote by LE¢E, can also vary depending on
your engineering choice for the base network architecture.
One common scenario would be to use cross entropy loss,
since it is the most widely adapted for training face parsing
networks.

Depth Face Parsing Network. The depth face parsing net-
work aims to classify each pixel of an input depth map
into different semantic components (see the top horizontal
branch in Figure 3). To instantiate the depth face parsing
network, it would be a natural choice to adapt the same
network architecture and loss function that are used for the
RGB face parsing network. For future convenience, we de-
note the original loss function for the depth face parsing
network as Lgi’g ",

RGB-to-Depth Translation Network. The RGB-to-depth
translation network aims to convert an input RGB face im-

age into the corresponding depth map (see the left vertical
branch in Figure 3). For the network architecture, we adopt
a conditional generative adversarial network (GAN), which
has been proven to be effective in various image-to-image
translation tasks [13, 50]. We denote the original loss func-
tion for the RGB-to-depth domain translation network as
L pr, for which we can utilize the one suggested in [13]:

Lpr = Lcgan + AL, 9]

where Logan and L7 are conditional GAN loss and L1
loss, respectively. A is a hyper-parameter to control the
weight of the L1 loss term. The comprehensive definitions
of Loaan and L1 can be written as follows:

Loaan =Eqzpapllog D(xgr,xp)] + )
E., :[log(1 — D(xg,G(zR, 2))],

»CLl = ECER,:ED,Z[”xD - G(I'R, Z)||1]7 (3)

where G and D indicate a generator network and a discrim-
inator network, respectively. z represents an RGB image
and zp denotes its ground-truth depth counterpart. z repre-
sents a noise vector sampled from a Gaussian distribution.
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Figure 3: Detailed overview of our method. Besides loss
functions to independently train each of the base models
(.e., ngg, £gz’gth, Lcaan and L11), we propose to uti-
lize additional loss terms to stimulate joint learning between
them: Ly, and Lgog. Ly, is adapted for mutual learning
between RGB and depth face parsing networks (dashed ar-
row) and Lo p is used for end-to-end learning of an RGB-
to-depth domain translation network and a depth face pars-

ing network (dashed box).

Joint Learning Mechanism. For training our framework,
we first separately pre-train each of the base networks us-
ing the constructed RGB-D dataset (from Section 3.1), then
jointly train them in an end-to-end manner. To this end, we



introduce a novel loss formula to stimulate joint learning
between the three base models:

L=MEq;, ., |Fr(zr) — Fp(zp)|3 +
A2 EIRny-,ZFPLOSS(FD(G(fL'Rv Z)), yR) + @)

A3 LETE + M ﬁgz%th + X5 Lpr,

where F'r and F)p denote the RGB face parsing network and
the depth face parsing network, respectively. FPLoss(-, )
denotes a loss function that measures the deviation between
a prediction map of the face parsing network and a label
map, for which we can adapt the same loss formula used
for LECE and ﬁgi’gh (e.g., cross entropy loss). yr rep-
resents the label map corresponding to xr. Lastly, A1, Ao,
A3, A\q and A5 are hyper-parameters to control weights be-
tween the loss terms. Overall, the training objective of all
the networks involved in our framework is to minimize L,
except for the discriminator of the RGB-to-depth translation
network which competes to maximize it.

Please note that the first and the second loss terms in
Equation 4 are newly introduced for the joint training phase.
The first loss term, which we denote by Ly, is used
to stimulate mutual learning [46] between RGB-based and
depth-based face parsing networks. It encourages activa-
tions in the last layer of the two networks to mimic each
other, which enables bidirectional knowledge distillation
between RGB and depth domains. We would like to em-
phasize that, unlike most of existing methods for domain
transfer learning that involve one-way transfer of supervi-
sion [2, 10, 25, 43], we propose to utilize such distillation
loss for optimizing both RGB-based and depth-based net-
works. In this way, we can fully utilize £, to benefit the
learning of both RGB face parsing and depth face parsing
simultaneously. To the best of our knowledge, this is the
first study to leverage mutual learning [46] mechanism for
domain transfer learning, which we term cross-domain mu-
tual learning.

The second loss term, which we denote by Lgsp, al-
lows end-to-end learning of the depth face parsing network
and the RGB-to-depth domain translation network. It en-
ables the depth face parsing network to be trained on data
generated by the RGB-to-depth translation network. We
would like to note that learning from Lgop does not re-
quire any annotated depth data. Instead, it utilizes annotated
RGB data (i.e., xp and yg pairs) to learn depth face pars-
ing (see Equation 4). Considering the current face parsing
literature where only RGB datasets with semantic annota-
tions are abundant, utilizing this loss term can effectively
help overcome the scarcity of depth data in learning depth
face parsing. From another point of view, it can also benefit
the learning of RGB-to-depth translation by incorporating
additional supervision from the auxiliary face parsing task.

4. Experimental Validation

In this section, we conduct experiments to investigate the
effectiveness of our method in learning RGB face parsing,
depth face parsing and RGB-to-depth domain translation.

4.1. Dataset and Evaluation Metric

Dataset. Our experiments are conducted on CelebAMask-
HQ-D, LaPa-D and Helen-D datasets, whose construction
process has been described in Section 3.1. We divide each
dataset into train, validation and test sets as shown in Ta-
ble 1 by following the split protocol used in CelebAMask-
HQ, LaPa and Helen for CelebAMask-HQ-D, LaPa-D and
Helen-D, respectively. However, we utilize only 10% of
the depth and label map pairs in each dataset for training
our framework. Our intention is to show that the proposed
method can be effective even in a situation where the anno-
tated depth data is not sufficiently available, which is more
practical scenario considering the current face parsing liter-
ature.

Evaluation Metrics. For RGB and depth face parsing,
we evaluate our results on the standard metric for face
parsing: Fl-score. On CelebAMask-HQ-D and LaPa-D
datasets, we report Fl-scores corresponding to each cate-
gory, excluding the background, and their mean F1-score.
On Helen-D dataset, we employ the overall F1-score over
the merged brows, eyes, nose and mouth categories, in
order to maintain consistency with the previous works
[18, 20, 21, 32, 48]. For RGB-to-depth domain translation,
we evaluate our results in both quantitative and qualitative
manners. For the quantitative metric, we employ L1 dis-
tance between predicted depth maps and their correspond-
ing ground truth depth maps.

4.2. Implementation Details

Network Architectures. We adapt the same network
design for both RGB and depth face parsing networks.
Throughout the evaluation, we consider two architectural
options for them: EAGRNet [32] and BiSeNet [42]. EAGR-
Net is a recently proposed method for face parsing and has
shown state-of-the-art results on CelebAMask-HQ, LaPa
and Helen datasets. It utilizes edge-aware graph representa-
tion learning to effectively model the relation between dif-
ferent facial regions (see [32] for more architectural details).
BiSeNet is a CNN-based model that incorporates a Spatial
Path and a Context Path, which is originally proposed for
general semantic segmentation. However, its public imple-
mentation tuned for face parsing ! has shown to be effec-
tive, and it has become one of the most popular repositories
in face parsing domain. For this reason, we also utilize this
implementation of BiSeNet for evaluating our method. For

Ihttps://github.com/zllrunning/ face - parsing.
PyTorch



Method Skin Nose L-Eye R-Eye L-Brow R-Brow L-Ear R-Ear Mouth U-Lip L-Lip Hair | Mean
H. Zhao et al. [47] 948 903 799 80.1 71.3 78.0 75.6 73.1 89.8 87.1 88.8 904 | 83.8
C.Leeetal [16] 955 856 843 85.2 81.4 81.2 84.9 83.1 63.4 88.9 90.1  86.6 | 84.2
EAGRNetrgp [32] 96.0 932 87.6 87.8 85.6 85.6 86.2 81.9 91.4 88.3 91.0 95.1 | 89.1
EAGRNetggp + our method | 96.3  93.8  88.9 88.7 86.1 86.0 88.3 86.6 92.4 89.6 91.0 954 | 90.3
BiSeNetgrgp [42] 96.6 940 71.1 70.1 66.9 67.4 68.4 65.7 86.3 88.5 90.6 954 | 80.1
BiSeNetggp + our method | 96.5 94.0  88.7 88.7 84.0 84.1 80.5 80.8 86.6 88.7 90.8 954 | 88.2

Table 2: Comparison of RGB face parsing results on CelebAMask-HQ (in F1-score). EAGRNetrgs and BiSeNetrgp repre-
sent EAGRNet and BiSeNet baselines trained on RGB data, respectively.

the RGB-to-depth domain translation network, we adapt the
design of Pix2Pix [13], composed of an U-Net generator
and a Pixel GAN discriminator.

Training Details. During the pre-training phase, we sep-
arately train each of three base models from scratch. For
RGB and depth face parsing networks, we use stochastic
gradient descent with an initial learning rate of le — 3 for
EAGRnet and le — 2 for BiSeNet, along with a polynomial
learning rate decay schedule. We train them for 100K iter-
ations using a batch size of 8, with momentum and weight
decay parameters fixed to 0.9 and 5e — 4, respectively. We
would also like to note that the loss formula originally pro-
posed for the baseline face parsing network (i.e., EAGRNet
or BiSeNet) is adapted for LEGE, L2 and Ly (see
[32, 42] for more details). For Pix2Pix, we use an Adam
optimizer with an initial learning rate of 1e — 3 and a poly-
nomial learning rate decay schedule. We train it for 200K
iterations using a batch size of 1. The hyper-parameter A
Equation 1 is set to 100, as in [13]. During the joint train-
ing phase, the optimization techniques for each network are
applied in the same way, except for the initial learning rate
which is reduced to one-tenth of its original value. Also,
in order to simultaneously incorporate £gi’gh and Lgog,
the depth face parsing network is trained on mini-batches,
where each of them is composed of half of ground truth
depth maps and half of depth maps generated by the RGB-
to-depth domain translation network on the fly. The hyper-
parameters in Equation 4, A1, A2, A3, A4 and A5, are set to
1,1,0.5,0.5 and 1, respectively.

4.3. Experimental Analysis and Comparison

We report the experimental results of our method in
learning RGB face parsing, depth face parsing and RGB-
to-depth domain translation. The experiments are mainly
conducted on CelebAMask-HQ-D dataset (see 4.3.1), while
we also include the results on LaPa-D and Helen-D datasets
(see 4.3.2).

4.3.1 Evaluation on CelebAMask-HQ-D Dataset

RGB Face Parsing. We first conduct experiments to com-
pare our method with the baselines [32, 42] and the existing
works [16, 47] in RGB face parsing on CelebAMask-HQ-D

dataset. Table 2 shows the quantitative results in F1-score.
Our method leads to an improvement over the EAGRNet
baseline by 1.2 and the BiSeNet baseline by 8.1 in mean F1-
score. We would like to emphasize that the baseline EAGR-
Net is the current state-of-the-art work on RGB face pars-
ing, and our method is shown to further improve its perfor-
mance by incorporating privileged knowledge from depth.
In Figure 4, we also provide a few qualitative examples of
the experimental results. We observe that our method yields
more accurate parsing results compared to the baseline, es-
pecially for eye and brow regions (see dashed boxes in Fig-
ure 4).

BiSeNet BiSeNet + our method

Figure 4: Qualitative comparison of RGB face parsing re-
sults on CelebAMask-HQ-D (best viewed in color).

Depth Face Parsing. To the best of our knowledge, we in-
troduce the first results on face parsing from depth maps.
The quantitative results in Fl-score are shown in Table
3. We observe that our method improves the EAGRNet
and BiSeNet baseline results by incorporating joint learning
losses (i.e., Lgop and Lys1). For your reference, we also
include a number of visual examples of our results in Fig-
ure 5. Compared to the baseline, our method yields more
reliable parsing outcomes for eye, brow and hair regions
(see dashed boxes in Figure 5). We would also like to note
that, although RGB images capture richer texture informa-
tion than depth maps, the performance gap between RGB



Method Skin Nose L-Eye R-Eye L-Brow R-Brow L-Ear R-Ear I-Mouth U-Lip L-Lip Hair | Mean

EAGRNetpep 939 89.8 780 77.6 72.5 72.7 73.7 70.9 80.8 76.9 825 962 | 805
EAGRNetpepn + our method | 94.6 917 79.1 79.5 73.8 73.8 74.4 71.8 81.2 71.3 824 965 | 813
BiSeNetpepin 943 922 780 755 70.1 70.1 56.3 54.9 63.1 73.9 824 947 | 755

BiSeNetpepn + our method | 94.9  92.2 81.5 81.1 72.4

72.7 65.3 58.4 67.7 78.0 83.6 959 | 78.6

Table 3: Comparison of depth face parsing results on CelebAMask-HQ-D (in F1-score). EAGRNet pepn and BiSeNet pepin
denote EAGRNet and BiSeNet baselines trained on depth data, respectively.

face parsing and depth face parsing are shown not to be sig-
nificant (see Table 2 and 3). This suggests that depth face
parsing can be an effective alternative to conventional RGB
face parsing for selective environments (e.g., very bright or
dark scenarios).

BiSeNet + our method

Input Ground truth BiSeNet

Figure 5: Qualitative comparison of depth face parsing re-
sults on CelebAMask-HQ-D (best viewed in color).

RGB-to-Depth Domain Translation. We compare RGB-
to-depth domain translation results of our method to those
of the Pix2Pix baseline. Evaluations are performed on
CelebAMask-HQ-D dataset in both quantitative and qual-
itative manners. Table 4 demonstrates the quantitative re-
sults in average L1 distance between the predicted depth
maps and the corresponding ground truth depth maps in
the test set. Our method leads to an improvement over
the Pix2Pix baseline by approximately 20% in L1 distance
by incorporating an auxiliary face parsing loss (i.e., Lg2E)
from joint learning. We also report a number of qualitative
examples of our RGB-to-depth domain translation results
in Figure 6. As shown in the top two rows, our method
yields more detailed depth prediction for regions around
eyes and nose compared to the baseline. The bottom two
rows demonstrate that our method can more precisely esti-
mate for boundary regions between forehead and hair (see
dashed boxes in Figure 6).

Method | Pix2Pix [13] Pix2Pix + our method
L1 distance |  0.122 0.099

Table 4: Comparison of RGB-to-depth domain translation
results on CelebAMask-HQ-D.

Input Ground truth Pix2Pix Pix2Pix + our method

Q99

rg
SIS

Figure 6: Qualitative comparison of RGB-to-depth domain
translation results on CelebAMask-HQ-D.

4.3.2 Evaluation on LaPa-D and Helen-D Datasets

We also conduct experiments to evaluate the effectiveness
of our method on LaPa-D and Helen-D datasets. Table
5 and 6 demonstrate the quantitative results on RGB face
parsing and depth face parsing in F1-score. Similar to the
results in Section 4.3.1 on CelebAMask-HQ-D dataset, our
method leads to an improvement over the baseline in both
RGB face parsing and depth face parsing. However, un-
like on CelebAMask-HQ and LaPa datasets, the state-of-
the-art baseline RGB face parsing results on Helen dataset
reported in the original EAGRNet paper [32] could not be
reproduced. However, we would like to emphasize that
our framework is not specific to a particular baseline face
parsing method, and it demonstrates consistent performance
gains compared to the baselines.

4.4. Ablation Study

Different Loss Components. We explore the effectiveness
of different loss components on learning RGB face parsing



Method Skin Hair L-eye R-eye U-lip I-mouth L-lip Nose L-brow R-brow | Mean
EAGRNetggg[32] 973 962 895 90.0  88.1 90.0 89.0 97.1 86.5 87.0 91.1
EAGRNetggp + our method | 97.3 957  90.9 91.0 877 89.8 90.0 973 88.8 89.1 91.9
EAGRNet pepin 925 946 74.6 746  72.6 80.6 77.6  93.1 73.0 72.7 80.7
EAGRNet pepiy + our method | 92.5  94.6  75.7 756 724 80.7 77.1  93.0 74.2 74.0 81.1

Table 5: Comparison of RGB face parsing and depth face parsing results of EAGRNet on LaPa-D dataset (in F1-score).

Method Skin Nose U-lip I-mouth L-lip Eyes Brows Mouth | Overall
EAGRNet rgg[32] 91.8 944 729 83.7 85.8 878 80.5 92.5 90.6
EAGRNetggp + our method | 943  94.6 739 83.7 86.2 87.7 81.6 92.7 91.0
EAGRNet pepin 954 913 657 72.2 763 735 653 87.5 83.7
EAGRNet pepn + our method | 95.5 913 65.8 77.4 757 737 67.1 89.2 84.5

Table 6: Comparison of RGB face parsing and depth face parsing results of EAGRNet on Helen-D dataset (in F1-score).

and depth face parsing. Specifically, we consider different
combinations of the loss terms that are additionally intro-
duced during the joint training phase: Lgop and L£y;y,. The
experimental results in class mean F1-score are provided in
Table 7. We observe that each of the two loss terms leads
to an improvement over the baseline, while the best results
can be achieved when both terms are utilized.

Method Mean F1-score
EAGRNet RGB [ } 89.1
EAGRNetgrgg + L1 90.2
EAGRNetrgp + Li2E N/A
EAGRNetgrgs + Ly + Lpog 90.3
EAGRNet Depth 80.5
EAGRNet pepy + Ly 81.2
EAGRNet pepin + LE2E 80.8
EAGRNet pepin + Ly, + LE2E 81.3

Table 7: Comparison of depth face parsing results with re-
spect to different loss components (on CelebAMask-HQ-
D).

Size of Annotated Depth Dataset. We compare the face
parsing results with varying the size of the annotated depth
dataset available for training. In Figure 7, we report the
experimental results on RGB and depth face parsing in
class mean Fl-score. For the dataset size, 1%, 10% and
100% indicate the fractions of depth and label map pairs of
CelebAMask-HQ-D that are used to train our framework.
For depth face parsing, we observe a decrease in perfor-
mance when a smaller annotated dataset is available. How-
ever, the RGB face parsing results of our method are not sig-
nificantly affected by the size of the annotated depth dataset,
and it has led to a noticeable increase over the baseline per-
formance in all cases. This indicates that, even in a situ-
ation where a very small amount of depth and label pairs
are available, domain transfer learning from depth can ef-
fectively improve the performance of RGB face parsing.

90 BiSeNet RGB
B BiSeNet RGB
+ our method
BiSeNet Depth
80 B BiSeNet Depth
© + our method
)
=
3
= 70
60
1% 10% 100%
Depth dataset size

Figure 7: Comparison of face parsing results of BiSeNet
with respect to different sizes of the annotated depth dataset
(on CelebAMask-HQ-D).

5. Conclusions and Future Work

In this paper, we propose a novel framework to jointly
learn RGB face parsing, depth face parsing and RGB-to-
depth domain translation. To this end, we construct the first
pseudo-ground truth RGB-D face datasets with semantic la-
bel maps. For future work, one of the remaining challenges
would be to acquire a real RGB-D face dataset with seman-
tic annotations. Although our method has achieved satis-
factory results on the constructed datasets, a domain gap
between the depth maps estimated by the 3D reconstruc-
tion method [41] and real depth maps may still exist. As
this work has introduced some potential usefulness of an
RGB-D dataset in face parsing, it would be an interesting
research direction to investigate a method that can further
utilize depth modality for face parsing, possibly with real
RGB-D data.
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