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Abstract

Video-based person re-identification (Re-ID) aims at

matching the video tracklets with cropped video frames for

identifying the pedestrians under different cameras. How-

ever, there exists severe spatial and temporal misalignment

for those cropped tracklets due to the imperfect detection

and tracking results generated with obsolete methods. To

address this issue, we present a simple re-Detect and Link

(DL) module which can effectively reduce those unexpected

noise through applying the deep learning-based detection

and tracking on the cropped tracklets. Furthermore, we

introduce an improved model called Coarse-to-Fine Axial-

Attention Network (CF-AAN). Based on the typical Non-

local Network, we replace the non-local module with three

1-D position-sensitive axial attentions, in addition to our

proposed coarse-to-fine structure. With the developed CF-

AAN, compared to the original non-local operation, we can

not only significantly reduce the computation cost but also

obtain the state-of-the-art performance (91.3% in rank-

1 and 86.5% in mAP) on the large-scale MARS dataset.

Meanwhile, by simply adopting our DL module for data

alignment, to our surprise, several baseline models can

achieve better or comparable results with the current state-

of-the-arts. Besides, we discover the errors not only for the

identity labels of tracklets but also for the evaluation proto-

col for the test data of MARS. We hope that our work can

help the community for the further development of invariant

representation without the hassle of the spatial and tempo-

ral alignment and dataset noise. The code, corrected labels,

evaluation protocol, and the aligned data will be available

at https://github.com/jackie840129/CF-AAN .

1. Introduction

Person re-identification (Re-ID) aims to solve the prob-

lem of identifying pedestrians in a multi-camera surveil-

lance system. Many researches focus on the image-based

setting that identifies people with still images [18, 22, 35,

49, 45]. Recently, video-based Re-ID [10, 14, 15, 25]

has drawn significant attention since comparing continuous
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Figure 1: Video tracklet processed with our re-Detect

and Link (DL) module. (a) The tracklet is with unexpected

noise, where the frame at t = 4 is dominated by the man in

blue shirt, but the ground truth identity is the girl in white

dress. (b) The tracklet after DL is less interfered by the man.

video sequences is more practical for the real-world scenar-

ios. Besides, the appearance information with spatial and

temporal relations in a video tracklet contains more cues

for matching people under different views. The most com-

monly used methods for tackling video sequences are the

3D convolution [36] and Non-local operation [39], which

can effectively aggregate the features along the spatial and

temporal dimensions. However, in contrast to image-based

setting that the training and testing images of pedestrians are

chosen with the least noise from their belonged tracklets,

the video-based Re-ID faces more unexpected challenges

owing to the imperfect bounding box detection.

MARS [46], the largest video-based Re-ID dataset so far,

adopted traditional DPM [8] as the pedestrian detector and

applied GMMCP tracker [6] with color histogram as im-

age features, which is not robust enough for linking peo-

ple under a complicated environment with occlusion. As

Fig. 1(a) illustrated, the bounding boxes generated by the

weak detector cannot well fit the desired identity (the girl

with white dress). Recently, Gu et al. [10] proposed the



appearance preserving module (APM) inserted before the

3D convolution to align the features along the temporal axis

based on each anchor (the center) frame of the 3D sliding

windows. Although the method achieves the state-of-the-art

performance, it still cannot resolve the problems when the

center frame contains unexpected noise, such as the fourth

frame in Fig 1(a), where the APM will align the third and

fifth frames (if the filter size along the temporal axis is 3)

according to the appearance of the man with blue T-shirt.

Since efficient deep-learning algorithms are well-

developed for object detection and tracking in the past few

years [33, 26, 2, 40], to help the community for the further

development of invariant representation without the hassle

of the spatial and temporal alignment, we revised the origi-

nal dataset with our proposed simple but effective re-Detect

and Link (DL) module. Because we cannot obtain the orig-

inal video stream containing the whole image frame, our

DL module serves as a pre-processing technique on the Re-

ID data. Given the original noisy cropped sequence, we

first apply a pretrained efficient object detector [2] to gen-

erate much tighter bounding boxes. If there are multiple

pedestrian candidates, we will link the pedestrians based

on their image features using ID-discriminative embedding

(IDE) [48]. Last, according to the aspect ratio and the posi-

tion of the bounding box, we resize and pad it to the desired

image size, as shown in Fig 1(b). Surprisingly, with only the

input data processed by our DL module first, even the C2D

baseline method [10], which only averages the features of

each image generated by 2D ResNet [11], or the normal 3D

convolution model P3D-C [31] can achieve promising re-

sults. As shown in Table 1, we conduct more experiments

on the original and the processed data using some recent

state-of-the-arts reproduced by ourselves. From the table, it

can be seen that originally the AP3D with the APM module

proposed by Gu et al. [10] (the last row) can boost about

2% in mAP compared to its P3D-C counterpart (the sec-

ond row). However, with the aligned input images gener-

ated by our DL module, it only increase 0.4% in mAP. This

shows that the state-of-the-art AP3D cannot extract more

discriminative features for Re-ID given the already aligned

data. Furthermore, we can see that the self-attention based

Non-local Network [10, 25] combined with our DL mod-

ule can achieve the new state-of-the-arts, which means the

self-attention on the less noisy data can generate more rep-

resentative Re-ID features. Thus, in the next step, we focus

on the Non-local Network but developing an efficient base-

line model which can perform comparable results.

Non-local Network achieves state-of-the-art perfor-

mance on video-based Re-ID, but its high computation cost

remains an issue for practical usage. Each feature point

along spatial and temporal dimensions needs to compute its

self-attention map for all other points. To reduce the com-

putation while retaining the performance of Non-local Net-

Table 1: Performance of recent state-of-the-arts reproduced

with our re-Detect and Link (DL) on MARS [46]. The score

with underline is the runner-up.

Method
Original Results w/ our DL

mAP rank-1 mAP rank-1

FT-WFT [30] 82.9 88.6 83.8 90.0

P3D-C [31, 10] 83.1 88.5 85.0 91.0

C2D [10] 83.4 88.9 84.9 91.0

Non-Local [10, 25] 85.0 89.6 86.2 91.4

TCLNet [14] 85.1 89.8 85.8 90.8

AP3D [10] 85.1 90.1 85.4 91.0
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Figure 2: Illustration of the labeling errors and ambiguous

cases in MARS [46] testing set. More samples and details

can be found in Sec. 4.5.

work on Re-ID, following the idea of axial-attention [13]

and the multi-granularity (coarse-to-fine) structure in [44],

we propose the Coarse-to-Fine Axial-Attention Network

(CF-AAN). With the axial attention, we can factorize the

3D attention operation into three 1-D attention ones sequen-

tially along the height-, width- and temporal-axis. To fur-

ther boost the efficiency, in contrast to [44] that adding the

coarse-to-fine module after the whole model backbone, we

directly integrate it into our axial-attention. We split the

input tensor into multiple scales along the channel dimen-

sion, and transform the spatial dimension from coarse to

fine scales. To the best of our knowledge, we are the first

to adopt axial-attention in video-based Re-ID. Our DL+CF-

AAN approach not only achieves the state-of-the-art per-

formance on two large-scale datasets [46, 41], but also sig-

nificantly save the computation as compared with vanilla

Non-local Network, which can be regarded as an efficient

baseline self-attention method.

In addition to the application of our DL module that can

significantly improve the performance, we also find that

there are multiple labeling errors or noises in the MARS

testing data. As shown in Fig. 6(a), the two tracklets are

labeled as different identities (ID 142 and 184) but are ac-

tually the same person. Or in Fig. 6(b), the tracklet with ID

404 in camera 2 also appears in the distractor class (ID 0),

which will make the model easily match the two tracklets

but counted as an error matching in the evaluation. There

are also some ambiguous cases that cannot be distinguished

even by human. As in Fig 6(c), the ID 318 is the man in blue

behind but the bounding boxes also contains the woman in

white (ID 322). Thus, we revise the labels in the testing

set and the original evaluation protocol. The details will be

described in Sec. 4.5. We hope that the release of our DL



processed test data on MARS can help the community to

validate their methods on a clean testing set and push the

further development of improved representation.

Our contributions can be highlighted as follows:

• We propose a re-Detect and Link module that can align

the noisy tracklet on the image level, which makes a

simple method achieving comparable performance.

• Besides the aligned data, we additionally provide re-

vised identity labels and evaluation protocol in MARS

testing set, which helps validate the new methods on a

corrected benchmark.

• A baseline Coarse-to-Fine Axial Attention Net-

work (CF-ANN) is proposed, which performs axial-

attention from coarse to fine levels, which not only re-

duces the computation cost but achieves the promising

performance.

2. Related Work

We briefly review the recent related development of

video-based person re-identification as follows.

Video-based Person Re-identification Compared to

image-based Re-ID, video-based setting contains more

frames and additional temporal information. Typically, re-

searchers aggregate the information among a tracklet with

temporal modeling or attention-based algorithms and opti-

mize the model with discriminative learning [48] or met-

ric learning [12]. For temporal modeling, McLaughlin et

al. [29] first applied Recurrent Neural Network (RNN) on

the frame-wise CNN features to allow information flowing

among different frames and obtain a sequence-level repre-

sentation. Inspired by the success of 3D Convolutional Neu-

ral Network on action recognition [4, 17], the work [20]

first adopted the 3D convolution to automatically learn the

relation from low- to high-level features along spatial and

temporal dimensions. In order to resolve the alignment

problems, Gu et al. [10] then proposed an APM module in-

serted before the 3D convolution to align the features among

each 3D filters. In contrast to treating each frame even,

some works utilized the attention mechanism that can fo-

cus on some specific regions representing the identity bet-

ter [21, 34, 5, 9, 25, 44]. Li et al. [21] proposed multiple

spatial attention modules that can focus on many important

spatial regions across different frames and the spatial fea-

tures are then aggregated by a learnable temporal attention.

Chen et al. [5] adopted a novel co-attention mechanism that

can dynamically learn the feature representation based on

the query and gallery pairs. Zhang et al. [44] explored the

attention mechanism with a global reference, which can ef-

fectively learn the attention more on the region with close

relation to the global guidance. Besides performing atten-

tion on the last layer of CNN features, Liu et al. [25] started

to aggregate the popular non-local self-attention [39] inside

the CNN backbone. Compared to those methods, our model

is based on the self-attention operation and added with com-

putation efficient structures into the model design.

Self-Attention Since the self-attention based Trans-

former [37] obtained a great success in nature language

processing, recently many works started to tackle the prob-

lems in computer vision with self-attention [39, 1, 7, 32, 13,

38, 3]. The plain type of the self-attention is the non-local

network [39] without the position encoding and multi-head

attention and was proposed to solve the problem of video

classification. Because the non-local self-attention is com-

putation demanding, axial-attention [13, 38] were proposed

to factorize the operation into multiple 1-D self-attentions,

which can extremely reduce the cost. Dosovitskiy et al. [7]

and Carion et al. [3] even integrated the whole transformer

respectively into the image classification and object detec-

tion tasks, and they all obtained comparable performance

to the methods with original CNN backbone. Our work fo-

cus on adding the efficient axial-attention module with our

proposed coarse-to-fine structure into typical CNN to learn

spatially and temporally attentive feature representation.

Dataset and Evaluation Protocol Revision In the field

of person re-identification, there is no work exploring and

revising the original imperfect data or discussing the eval-

uation protocols, labeling errors, and the ambiguous cases

in the testing set. We found that in the field of face de-

tection, there are some works investigating the noise in the

labels or the bias in evaluation protocols [28, 24, 43]. Math-

isas et al. [28] provided improved annotations of existing

face datasets and evaluation criteria that resolved the origi-

nal problems. Besides, they also showed that when properly

used, a simple vanilla baseline can reach top performance

on face detection. Lin et al. [24] and Zhang et al. [43] both

tried to remove the data with labeling errors before training

by utilizing the inherent data distributions. Compared to

our work, we adopt pretrained deep learning-based object

detector to refine the original test data that are unfit to the

target identity. With the aligned data, even a simple base-

line method can achieve outstanding performance. More-

over, we manually check the errors with the existing Re-ID

evaluation protocol and provide some revision of not only

the labels but the evaluation protocol.

3. The Proposed Method

Fig. 3 demonstrates the pipeline of our re-Detect and

Link (DL) techniques and the proposed Coarse-to-Fine Ax-

ial Attention Network (CF-AAN). Given an original imper-

fect video tracklet V with N images, V = {I1, I2, .., IN},

we first adopt our DL module to obtain the processed track-

let V ′, which is more robust and aligned. The detail of

our DL will be described in Sec. 3.1. Then, as the typ-

ical pipeline of video-based Re-ID, we sample T frames

from V ′ as the input of our CF-AAN. Our network con-

sists of a backbone CNN and multiple Coarse-to-Fine Axial

Attention (CF-AA) modules, which are separately inserted
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Figure 3: Pipeline of our DL and CF-AAN architecture. The original tracklet V is first fed into the DL module and become

the processed tracklet V ′, which will then be sampled and fed to CF-AAN. We demonstrate one CF-AA module between the

Lth and (L + 1)th CNN block. There are two scales of features and the axial-attention will perform on each of them. The

outputs will be up-sampled and concatenated to become the input of the next CNN block.

between the CNN blocks. The operations in our CF-AAN

are described in Sec. 3.2. Last, in Sec. 3.3, the video fea-

tures generated by our CF-AAN will be aggregated with the

masks created along with DL module and optimized with

the common losses for Re-ID.

3.1. Data Alignment with re­Detect and Link

With the noisy video tracklet V with N images, we se-

quentially perform our re-Detect and Link (DL) method on

each video frame and create a new processed tracklet V ′

with N frames, too. As illustrated in Fig. 4, first, all images

are padded and fed to the object detector [2] to generate can-

didate bounding boxes with the “person” class. For the first

frame, if there are multiple candidates, we will assume that

the bounding box with larger area is the desired one. Then,

similar to the feature-based real-time object tracking [40],

we extract the feature f of the cropped image I ′
1

by the IDE

feature extractor trained on the original dataset [46], and

save it as the global feature fg = f1. Next, for each con-

secutive frame i, if there are multiple candidates, we will

compare each extracted feature f
j
i to the global feature fg

and choose the one with the smallest Euclidean distance,

where j is the index of the candidate bounding box in ith

frame. After choosing the candidate for the ith frame, the

global feature will then be updated by

fg = αfg + (1− α)fi , (1)

where α is set to 0.9 in our case.

Note that in Re-ID datasets, we cannot obtain the origi-

nal full image frame captured by cameras and perform our

DL method. Thus, after we apply object detection on the

noisy cropped image, we may obtain a new cropped identity

with only part of his/her appearance, as shown in Fig 1(b).
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Figure 4: Illustration of the re-Detect and Link module.

According to the aspect ratio and the position of the bound-

ing box in the image, if the bounding box is slim (the height

is much larger than the width) and its position is on the left

(right) of the image, we will shift it to the right (left), re-

size it based on its original aspect ratio and pad it to the

desired image size. Furthermore, we also create a mask Mi

of the output image I ′i representing whether each pixel is

the padded one or not. This mask will then be applied in

the feature aggregation of our CF-AAN, which will be de-

scribed in Sec. 3.3.

Discussion Comparing to other methods proposing an

automatically learned feature alignment mechanism inside

their backbone model [50, 10], our DL module adopts an

additional object detector to help reduce the original noise

in the data. It seems that our method requires additional

computation cost but and utilizes extra information. How-

ever, we want to point out that the goal behind our DL mod-

ule is to simulate a nowadays real-life scenario with efficient

and robust deep learning-based object detection and track-

ing before Re-ID. Thus, when it really comes to the Re-ID

phase, actually there has been no need for this additional



cost of DL module on the input tracklet. Furthermore, as

shown in the Table 1, with the aligned data, the simplest

baseline can obtain a promising Re-ID result and the orig-

inal state-of-the-art methods that specifically deal with the

problems of misalignment will not retain its competitive-

ness. We think that with the release of the data processed

by our simple alignment method, it can help the community

explore more on the attention-based methods or the meth-

ods for learning invariant feature representation.

3.2. Coarse­to­Fine Axial­Attention Network

As shown in Table 1, the existing self-attention based

Non-local Network can achieve the best result on the

aligned data. However, the efficiency is the main drawback.

We propose a simple method called Coarse-to-Fine Axial-

Attention Network that contains a coarse-to-fine mecha-

nism and a position-sensitive axial-attention which dramat-

ically reduce the computation burden but retain comparable

performance.

Self-Attention: We first introduce the typical 3D self-

attention [39] operation as follows. Given an input fea-

ture map x ∈ R
Cin×T×H×W with channels Cin, temporal

length T , height H , and width W , the output y at position

o = (i, j, t), yo ∈ R
Cout , is computed by aggregating all

the projected input as :

yo =
∑

p∈N

softmaxp(q
T
o kp)vp (2)

where N is the set of the whole HWT locations, and

queries qo, keys ko, and values vo are three different linear

projections of the input xo, ∀o ∈ N from dimension Cin

to intermediate Cq,k for query and key projection or Cout

for value projection. As opposed to convolution which only

captures local relations, this mechanism allows us to cap-

ture related but non-local context in the whole feature map.

Commonly, it will be inserted into multiple locations be-

tween the backbone CNN layers, and each complexity is

O(H2W 2T 2).

Axial-Attention: To reduce the computation of non-local

self-attention, in 2D image classification tasks, the axial-

attention has been proposed [13], they factorized the 2D

self-attention operation into two 1-D axial-attentions. When

applied to our video-based Re-ID, the 3D self-attention will

be consecutively factorized into height-axis, width-axis and

the temporal-axis. With this transformation, the complexity

can be reduced to O(H2WT + HW 2T + HWT 2). The

formulation of the axial-attention, with the height-axis as

an example, is as follows.

yo =
∑

p∈NH×1×1

softmaxp(q
T
o kp)vp (3)

where the location p only lies along the H axis.

Furthermore, based on the concept proposed in the

Transformer [37], many works start to encode the posi-

tional encoding into the self-attention structure [3, 1, 32].

Thus, the final method we adopt is based on the positional-

sensitive axial-attention proposed in [38], where the learn-

able positional encoding vectors depends on the query vec-

tors, key vectors and the value vectors. The formulation is

as follows with the height-axis as an example.

yo =
∑

p∈NH×1×1

softmaxp(q
T
o kp + qTo r

q
p−o + kTp r

k
p−o)

(vp + rvp−o) (4)

where the r
q
p−o, rkp−o, and rvp−o are the learned relative po-

sitional embedding. Besides, in practice, as shown in Fig 3,

we will extend the single-head attention into multi-head at-

tention to generate a mixture of affinities. To retain the

complexity, if there are M parallel single-head attentions,

in the mth head, each dimension of the qm,km, and vm

will be shrunk to
Cq,v

M
and Cout

M
. The dimension of the

learnable positional vectors r
q
p−o, rkp−o and rvp−o are also

shrunk but the vectors are shared across each head. Thus,

the final output zo will be the concatenation of each head,

zo = concatm(ymo ), with the same dimension Cout. Last,

after conducting the axial-attention (AA) along the three di-

mensions, we will project the output feature from dimen-

sion Cout back to Cin and added with the input tensor x

to become a new refined tensor x′, which is formulated as

follows.

x′ = x+ Conv(AAT (AAW (AAH(x)))) (5)

Coarse-to-Fine Axial Attention: In addition to multi-

head attention that learns different structure of affinities,

we propose a Coarse-to-Fine Axial-Attention module (CF-

AA) that not only makes the self-attention learn on differ-

ent scales of the spatial dimension but further reduce the

computation. Different from [44], which can only perform

multi-scale structure on the last layer of CNN backbone

with the smallest resolution, we can apply our structure

along with the axial-attention from the mid-level stage to

high-level stage inside the backbone. As shown in Fig. 3,

we split the input tensor x with S scales along the channel

dimension and for the sth scale, we downsample the spatial

resolution to Hs ×Ws, where Hs = H
2s−1 and Ws = W

2s−1 .

Thus, if S = 2 as an example, the original input tensor x

will be split into x1 ∈ R
Cin
2

×T×H×W with a fine scale and

x2 ∈ R
Cin
2

×T×H
2
×W

2 with a coarse scale. The split ten-

sors are then separately fed into the axial-attention and the

outputs are upsampled and concatenated along the channel

dimension in order to retain the original tensor size.

3.3. Feature Aggregation and Optimization

Our CF-AAN contains a 2D CNN backbone and several

CF-AA modules inserted between the CNN blocks. Af-



ter the last CNN layer, there will be T tensors with size

R
C′

×H′
×W ′

. As mentioned in Sec. 3.1, because there are

some input pixels which are the padded ones without any

information, we first downsample the mask M to M ′ ac-

cording to the spatial dimension H ′ and W ′, and utilize the

mask to average-pool on the desired spatial region to gen-

erate T vectors with C ′ dimension. Then, we aggregate the

features with the typical average operation followed by a

Batch-Normalization (BN) layer [16] to create the final fea-

ture representation fV of the video tracklet. To optimize the

network, we follow the two loss combinations in BoT [27],

which consists of a batch-hard triplet loss [12] on the fea-

tures before BN and a cross-entropy loss [48] on the identity

classifier (a fully-connected layer) after the feature fV .

4. Experiments

In this Section, we conduct extensive evaluation and ab-

lation studies of the proposed approach in addition to the

analysis and correction of data noise and labeling errors for

the evaluation dataset.

4.1. Datasets and Evaluation Protocol.

We evaluate the proposed method on two large-scale

datasets, MARS [46] and DukeMTMC-VideoReID [41],

abbreviated as DukeV. MARS consists of 17,503 tracks and

1,261 identities. Each track has 59 frames on average. De-

formable Part Model [8] is employed to detect pedestrians

and GMMCP [6] is used to track pedestrians. To make the

MARS dataset even more challenging, they include 3,248

distractor tracks. For DukeV, it comprises 4,832 tracks and

1,404 identities. Each track contains 168 frames on average.

Different from MARS, the detection and tracking ground

truth are manually labeled. We use the rank-1 (R1) in the

Cumulative Matching Characteristics (CMC) and the mean

Average Precision (mAP) [47] as evaluation metrics.

4.2. Implementation Details.

re-Detect and Link. Our object detector is the

YoloV4 [2] pretrained on the COCO dataset [23].

The IDE [46] model for linking the candidates is a ResNet-

50 [11]. We perform our DL module both on MARS and

DukeV dataset. However, because only the MARS dataset

is adopted with traditional detector and tracker, where the

data in DukeV is manually labeled, the processed data of

DukeV is almost the same as before.

CF-AAN. For our CF-AAN, we adopt ImageNet pre-

trained ResNet-50 [11] as our backbone. Similar to the

structure of Non-local Network [39], we insert 5 CF-AA

modules, 2 after conv3 3, conv3 4 and another 3 after

conv4 4, conv4 5, and conv4 6 respectively. In our

coarse-to-fine structure, we split the feature into four levels

(S = 4) and in each axial-attention, we set the number

of head M = 2. Thus, the total number of heads in a

coarse-to-fine axial-attention module is equals to 8, which

is similar to the original axial-attention network [38]. In
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Figure 5: Examples of video tracklets processed by our DL.

the training stage, we sample T = 6 images as an input

tracklet. Each frame in a tracklet is resized to 256 × 128
and synchronously augmented with random horizontal

flip. As for the optimizer, Adam [19] with weight decay

5 × 10−5 is adopted. We train the model for 220 epochs.

The learning rate is initialized to 10−4 and multiplied by

0.1 after every 50 epochs. In the testing stage, for each

tracklet, we split it into several 6-frame clips, and then

the feature representations for each clip are averaged to

become the final representation.

4.3. Ablation Study

In Table 2, we conduct ablation study on our proposed

re-Detect and Link (DL) module and our Course-to-Fine

Axial-Attention Network (CF-AAN). Besides the Re-ID

performance, we also calculate the computation cost of in-

ference in terms of GFLOPs. We first analyze the effective-

ness of the DL module on our baseline method (the first two

rows). Our “Baseline” method, with 24.52 GFLOPs op-

erations, contains the same ResNet-50 backbone, types of

losses and training details but without all the axial-attention

modules, which is just the average of features in each frame.

We can clearly see that with the aligned data processed by

DL, there is an obvious improvement of the performance

(1.7% in mAP). Thus, the alignment of the input video

tracklet is crucial and important for the subsequent feature

extraction. We also demonstrate some extra examples in

Fig. 5. We can see that the problems of misalignment in the

left tracklet and the multiple candidates in the right tracklet

are resolved after processed with the DL module.

Next, we compare the self-attention based methods. The

first one is Non-local Network (the 3th row), which is

with single head 3D self-attention but without the positional

encoding. Although it can improve about 1.1% in mAP

compared to the baseline, the computation also increases

(+17.213 GFLOPs), which is extremely large and almost

equal to the baseline. After replacing the operation with

axial-attention, the computation can reduce to only +0.361
GFLOPs, while the performance slightly decrease owing to

its factorized self-attentions. With the multi-head structure

(the 5th row), it can retain the computation cost but increase

the performance.



Table 2: The Ablation Study of our DL and CF-AAN. We compare the effectiveness of our DL and all the components in

CF-AAN with the computation cost (GFLOPs) and performance on MARS. Except the baseline itself, all other computation

costs are the increase comparing to the baseline method. CB : the computation cost of the baseline method.

Method w/ our DL
Self-attention Module

#GFLOPs
MARS

Self-attention # of heads Posi. Encoding # of scales mAP R-1

Baseline
✘ ✘ ✘ ✘ ✘

24.520 (CB)
83.4 87.7

✔ ✘ ✘ ✘ ✘ 85.1 89.7

Non-local ✔ 3D self-attention 1 ✘ 1 CB+17.213 86.2 91.4

Axial-based

✔ Axial-attention 1 ✘ 1 CB+0.361 86.0 91.1

✔ Axial-attention 8 ✘ 1 CB+0.361 86.2 91.2

✔ Axial-attention 8 Sinusoidal 1 CB+0.377 86.0 91.1

✔ Axial-attention 8 Relative 1 CB+0.424 86.4 91.2

✔ Axial-attention 8 Relative 2 CB+0.245 86.4 91.3

✔ Axial-attention 8 Relative 4 CB+0.126 86.5 91.3

We then apply two types of positional encoding to ex-

plore their effectiveness. The first one is the sinusoidal en-

coding (the 6th row) which is the same as the experiments

in [1] and the learnable relative positional embedding (the

7th row) proposed in [38]. We can see that there is no sig-

nificant influence of all kinds of positional encoding but the

relative and learnable characteristics are the best for Re-ID,

which can achieve 86.4% in mAP. Last, in the last two rows,

we demonstrate the benefits brought by our coarse-to-fine

structure. We can see that, because the spatial dimensions

decrease in the coarser scale, the total operations also de-

crease. When the number of scales is 4, the operation can

increases only 0.126 GFLOPs compared with the baseline,

which is only about 1% of those in Non-local Network. Fur-

thermore, owing to the coarse-to-fine structure that makes

the self-attention learn on different scales, the performance

even increases to 86.5% in mAP on MARS dataset. The

CF-AAN with four scales is our final model performing the

video-based Re-ID.

4.4. Comparison with State­of­the­art Approaches

We compare recent state-of-the-art approaches with our

methods on MARS and DukeV datasets in Table 3. We can

see that in the past, the methods that globally perform at-

tention mechanism on the last CNN features are the main-

stream for dealing with video tracklet [21, 34, 5, 9]. How-

ever, the noise and unaligned appearance between frames

make it hard to learn a robust attention score. In an-

other way, TCLNet [14] conduct the attention frame by

frame, which is less interfered by the alignment problems.

AP3D [10] is the recent work that adopts 3D convolution

with a feature alignment module inserted between 3D CNN

blocks. We can see that once reducing this unaligned prob-

lem, a 3D CNN can achieve the best results (in R-1). The

MG-RAFA [44] is also the attention-based method, but they

adopt the multi-granularity (multi-scales) structure on the

output of the CNN features, where the features will then be

fed to their global attention methods. This structure obtains

Table 3: Comparison with state-of-the-arts (%). The

score with underline is the runner-up.

Method
MARS DukeV

mAP R-1 mAP R-1

DRSA (CVPR18)[21] 65.8 82.3 - -

EUG (CVPR18)[42] 67.4 80.8 78.3 83.6

DuATM (CVPR18)[34] 67.7 81.2 - -

TKP (ICCV19)[21] 73.3 84.0 91.7 94.0

M3D (AAAI19)[20] 74.1 84.4 - -

Snippet (CVPR18)[5] 76.1 86.3 - -

STA (AAAI19)[9] 80.8 86.3 94.9 96.2

VRSTC (CVPR19)[15] 82.3 88.5 93.5 95.0

NVAN (BMVC19)[25] 82.8 90.0 94.9 96.3

FT-WFT (AAAI20)[30] 82.9 88.6 - -

TCLNet (ECCV20)[14] 85.1 89.8 96.2 96.9

AP3D (ECCV20)[10] 85.1 90.1 95.6 96.3

MG-RAFA (CVPR20)[44] 85.9 88.8 - -

DL+CF-AAN (Ours) 86.5 91.3 96.2 96.7

the best results in mAP. Our method consists of a simple

but effective pre-processing DL module followed by an ex-

tremely efficient CF-AAN. Different from [44], our coarse-

to-fine structure is inserted with the axial-attention module

between the backbone CNN blocks. We can see that our

methods achieve promising performance, which outperform

AP3D [10] 1.4% in mAP and 1.2% in R-1 on the MARS

dataset. Although the data in DukeV are manually labeled,

our model still can retain comparable performance. Thus,

in summary, with almost no extra computation cost com-

pared to the baseline, where conducting the DL module is

also effortless in real-life scenario, we are the state-of-the-

art in terms of the popular mAP metric for the video-based

person Re-ID task.

4.5. Label Cleaning and New Evaluation Protocols

As described in Sec. 1, we found some labeling errors

or ambiguous cases in the MARS dataset. Thus, we manu-

ally check the testing data of the unmatched ones in evalua-

tion and propose a new protocol which additionally address

three kinds of new situations: labeling errors, duplication in

distractor, and ambiguous identity.
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Figure 6: Three kinds of label noises in the MARS testing data.

Purely labeling errors by annotators: There are also

three kinds of labeling errors shown in Figs. 6(a)-(c). The

first one is that a tracklet may be annotated as another ex-

isting identity (6(a)). Or, there are completely two groups

of tracklets labeled as a different person but in fact with the

same identity (6(b)). Sometimes the tracklet does not be-

long to any other identities in the testing set. As Fig. 6(c)

shows, the identity 270 is the woman but the tracklet marked

with red box is the baby she holds. For those three cases,

we fix the annotation with the correct or new identity.

Duplication in Distractor Class: In the original evalua-

tion protocol of MARS [46], if a query tracklet matches a

gallery tracklet with the same identity but under the same

camera, this match will be ignored because Re-ID aims at

matching pairs across cameras. However, the “distractor

class (ID 0)” in MARS consists of not only the false posi-

tive bounding boxes created by pedestrian detector but also

some duplicated bounding boxes of the tracklets in testing

set. As shown in Fig. 6(d), the tracklet with ID 374 under

camera 2 will easily match the same tracklet in distractor

and strangely counted as an incorrect match. Thus, we re-

vise the evaluation protocol that if a tracklet matches the

other one under the same camera with its same identity or

the distractor class, they will both be ignored.

Ambiguous Identity: There are some ambiguous cases

in the dataset. As the tracklet in Fig. 6(e), the unfit bound-

ing box contains two persons (ID 485 and ID 422) from the

beginning to the end of the tracklet. With our DL, there

is only one person left but the true identity cannot be even

distinguished by human. For those cases, we will add an ad-

ditional ambiguous identity of the tracklet and in the eval-

uation process, the matches of those identities will all be

counted as the correct ones.

Similar to Table 1, we reproduce some existing methods

not only with data processed by our DL but evaluated under

our new protocols, which are shown in Table 4. Further-

more, with their released codes, we also demonstrate the

computation cost in inference time with fairly 6-frames clip

as input data in terms of GFLOPs. We can see that all meth-

ods can improve largely by 2.5% in mAP, but our CF-AAN

Table 4: Performance evaluated with/without new evalu-

ation protocols (N.E.) and the computation cost of recent

methods with DL on MARS [46].

Method (w/ our DL)
w/o N.E.

(mAP)

w/ N.E.

(mAP)
# GFLOPs

C2D [10] 84.9 87.5 24.520

P3D-C [31, 10] 85.0 87.5 26.030

AP3D [10] 85.4 88.2 26.369

TCLNet [14] 85.8 88.4 30.150

Non-Local [10, 25] 86.2 88.6 41.733

CF-AAN (ours) 86.5 88.9 24.646

still achieves the best result (88.9% in mAP). When regard-

ing the computation cost, those of our CF-AAN are compa-

rable to the ones of the simplest C2D baseline method and

promisingly, also lower than all existing state-of-the-arts.

5. Conclusion

In this work, we present a simple re-Detect and Link

module to further process the Re-ID datasets, which can sig-

nificantly refine the data generated with obsolete methods.

Furthermore, the proposed Coarse-to-Fine Axial-Attention

Network significantly improves the original non-local mod-

ule in terms of computational cost with three 1-D position-

sensitive axial-attentions and the proposed coarse-to-fine

structure while achieving the state-of-the-art performance.

With our refined data, we find that several baseline mod-

els can achieve comparable results with current state-of-the-

arts. In addition, we also disclose the errors not only for the

identity labels but also the evaluation protocol for the test

data of MARS. With these findings, we hope the release of

corrected data can encourage the community for the further

development of invariant representation on view, pose, il-

lumination, and other variations without the hassle of the

spatial and temporal alignment and dataset noise.
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