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Abstract

3D modeling of articulated bodies of humans or animals

and using these models for synthetic 2D and 3D pose data

generation can mitigate the small data challenges faced by

many critical applications such as healthcare. In this pa-

per, we present our efficient 3D synthetic model genera-

tion (3D-SMG) pipeline used for body pose data augmen-

tation. 3D-SMG pipeline starts with scanning point clouds

from various angles around the subject using an off-the-

shelf RGBD camera. We then implement a dual objective

iterative closest point (ICP) algorithm that uses both color

(if available) as well as geometric information from point

cloud and apply a pose graph node optimization to form

one single rigid body mesh. 3D-SMG also includes a se-

ries of post processing steps to obtain a smooth mesh at the

end of the pipeline. The approach allows it to be applied to

any articulated object such as a human body or an animal.

Our experiments also show high level of accuracy in dimen-

sions of obtained 3D meshes, when compared to the origi-

nal subject. As the final step towards developing augmented

pose dataset, we perform model rigging to articulate the 3D

model of the subject and generate dynamic avatars within

variety of context-feasible poses1.

1. Introduction

Identifying human pose over time provides critical in-

formation towards understanding human behavior and their

physical interaction with the environment surrounding them

[2, 18, 40, 50, 52]. In the past few decades, human pose

estimation has witnessed groundbreaking advances in the

computer vision field thanks to the powerful deep learn-

ing models. These models are trained using several thou-

sands of labeled sample images if not more [1]. Such ex-

1The code and models are available at: https://github.

com/ostadabbas/An-Efficient-3D-Synthetic-Model-

Generation-Pipeline

tensive data requirement poses a fundamental problem for

“Small Data” domains, such as healthcare and military ap-

plications, in which data collection or labelling is expensive

or limited due to privacy or security concerns. In this paper,

we present an efficient data augmentation pipeline to ad-

dress the small data problem in applications that require 2D

and 3D body poses by generating 3D synthetic models of

the subjects. Our synthetic data generation pipeline enables

pose data augmentation especially for non-cooperative sub-

jects, such young children and animals.

Although, in the last few years, several large-scale 2D

human pose datasets have been released to the public, these

benchmarks are still limited in the age-range of their in-

volved subjects and the diversity of the represented activ-

ities. For instance, poses in the context such as sport (e.g.

Leeds sports pose (LSP) [30]) typically include highly ar-

ticulated activities, but are limited with respect to variety of

the subjects’ ages and their appearances (e.g. mostly young

adults being in tight sports outfits). In turn, datasets such

as FashionPose [13], Max Planck Institute for Informat-

ics (MPII)’s human pose [1] and Armlets [20] aim to col-

lect images of people wearing a variety of different cloth-

ing types, and include occlusions and truncation, however

are dominated by adult humans in simple upright standing

poses performing activities of daily living.

The diversity of the subjects and contexts becomes much

more restricted in the publicly available 3D human pose

datasets [47, 29]. These benchmarks are collected from pro-

fessional motion capture (MoCap) devices in controlled lab

settings [29]. Although large in quantity of the frames [29],

they only represent limited number of characters with a few

selected daily activities [37]. This becomes evident when

many well-performed state-of-the-art human 3D pose esti-

mation models over an existing benchmark show poor per-

formance in a cross-set evaluation [34, 53, 55]. Therefore,

the generalizability of these models to novel application-

specific 3D human pose estimation remains questionable.

There is an unmet need for production of 3D human pose

data with high variability and automatic labeling in the con-



text of interest, where our 3D synthetic model generation

(3D-SMG) pipeline and the augmented 2D/3D pose dataset

are going to be a worthwhile solution.

3D-SMG is a time- and cost-efficient pipeline that allows

scanning and collection of 3D point clouds from any articu-

lated subject (human or animal) using inexpensive off-the-

shelf RGBD cameras, eliminating the need to use expen-

sive 3D scanning devices. 3D-SMG pipeline then uses a

novel 3D registration approach based on RANSAC and im-

plement iterative closest point (ICP) to obtain smooth 3D

meshes from the scanned point clouds. After a series of

pre-processing and post-processing steps, a 3D rigid body

(i.e. the avatar of the subject) will be constructed to be

used for synthetic 3D data generation and pose augmenta-

tion. We apply 3D-SMG pipeline on a set of animal toys as

well as a kid mannequin to show the feasibility of the pro-

posed pipeline for high quality yet efficient 3D model gen-

eration. These 3D models then are rigged and articulated in

the open-source Blender software to generate our dynamic

avatars in variety of context-feasible poses. An overview of

the 3D-SMG pipeline is shown in Fig. 1.

2. Related Work

The performance of the majority of the state-of-the-art

2D and 3D human pose estimation models crucially de-

pends on the availability of the annotated training pose im-

ages with high variety in the appearance of people, their

articulations, as well as the diversity of the contexts. The

data limitation challenges gets magnified when the pose es-

timation is in 3D and/or needs to be done in a novel appli-

cation or in the “wild”. Research works like [50, 40, 26, 36]

provide efficient pipelines to estimate 3D poses by tweak-

ing traditional networks like MaskRCNN [25] and ResNet

[33] or implementing innovative solutions like part affinity

fields [7], few-shot learning [16], and transfer learning [14]

to mitigate scarcity of labeled data.

An alternative approach to address the small data prob-

lem is data augmentation through synthetic data genera-

tion. A possible solution towards generation of 3D syn-

thetic dataset is reconstructing rigid 3D bodies from a se-

ries of available 3D scans. This can be accomplished using

a non-trivial algorithm called 3D registration, which is one

of the fundamental tasks in 3D computer vision [36]. In this

problem, inputs are two sets of 3D point clouds and the task

is to optimally align these by estimating the best transfor-

mation between them. Due to its fundamental importance,

it arises as a sub-task in many applications, including ob-

ject recognition and tracking [51], range data fusion [27],

graphics [35], medical image alignment [31, 54], robotics

and structural bioinformatics [22], among others.

The registration problem could also be termed as the si-

multaneous pose and correspondence (SPC) problem [36].

Among the most popular classes of methods for solving

SPC problem are algorithms based on the expectation max-

imization (EM), which includes iterative closest point (ICP)

[5], the soft-assign [21], and their variants [23] [56], all

working in an alternative fashion. Independently, [8] pub-

lished a similar iterative scheme using a specific pairing

procedure based on surface normal vector. This formula-

tion was only applicable to points on surfaces, however it

provided some efficient results.

Recent research uses different variants of these algo-

rithms to develop pipelines for 3D reconstruction. This

is primarily due to advent of affordable RGBD cameras,

which have enabled some significant headway for visual

scene and rigid body reconstruction techniques. In [58], au-

thors explained, compared, and critically analyzed the com-

mon underlying algorithmic concepts that enabled these re-

cent advancements. Furthermore, they showed how algo-

rithms are designed to best exploit the benefits of RGBD

data, while suppressing their often non-trivial data distor-

tions. Using similar techniques, researchers work on ob-

ject reconstruction algorithms using 3D scanning cameras.

In [6], authors estimated the 3D geometry and appearance

of the human body from a monocular RGBD sequence of

a freely moving user in front of the sensor. Similarly in

[26], authors presented a method for learning a statistical

3D skinned multi-infant linear body model (SMIL) from

incomplete, low-quality RGBD sequences of freely moving

infants. In [59], authors developed an approach to capture

animal pose in 3D, however they used an expensive camera

scanning tool to improve the quality of their scans.

In this work, we present a novel 3D synthetic model gen-

eration (3D-SMG) pipeline that uses data recorded from

a low-cost RGBD camera to reconstruction any complex

rigid 3D body, which also enable us to rig and articu-

late them in any context-specific poses. The details of

the 3D-SMG pipeline is introduced in Sec. 3, which de-

scribes the pipeline from data collection to the use of our

dual objective-based general and color ICP algorithm. We

also present the implementation of various post processing

steps including screened Poisson surface reconstruction and

Laplacian smoothing, which lead to creating a final smooth

3D mesh. We performed experiments using various 3D reg-

istration algorithms to compare with our approach and pro-

vide comparisons in addition to the ablation study in Sec. 4.

3. Introducing 3D Synthetic Model Generation

(3D-SMG) Pipeline

Here, we demonstrate the 3D-SMG pipeline to obtain the

3D model using 3D scans acquired from an RGBD camera.

We implement a registration algorithm that initially extracts

the global geometric features from each point cloud to help

with a quality registration. Fig. 1 demonstrates the entire

process which is categorized in three steps. The “data col-

lection and preparation” is described in Sec. 3.1. The “regis-



Figure 1: An overview of our 3D synthetic model generation (3D-SMG) pipeline.

tration and mesh creation” is presented in Sec. 3.2. Finally,

the “data rigging and articulation” is explained in Sec. 3.3.

We show that for some larger size objects, where the frag-

ments are hard to visualize, we could record RGB and depth

sequences separately and synchronize them to then obtain a

fragment point cloud for a given set of RGBD images.

Problem Formulation: Assuming the final 3D mesh as

M = f(G,CK , N,H, λ), it is a function of the scanned

point clouds dependent on the following parameters: G,

the geometry that includes the fast point feature histogram

and the surface normals obtained after voxel downsampling;

CK , the camera parameters which are intrinsic properties

like focal length and field of view; N the number of point

clouds captured; H a set of hyper parameters correspond-

ing to each step, including RANSAC convergence criteria,

pose graph edge pruning threshold, etc.; and λ, the screened

Poisson parameter which governs the surface triangulation

that converts the points to mesh. The final obtained mesh

M is a smooth polished mesh that en-captures both color

and geometry of the scanned subject. The final mesh M

will possess a pose state descriptor θ that could be modi-

fied. The process includes infusing M with an armature (a

process called rigging) in the Blender software to articulate

the avatar in any context-specific pose.

3.1. RGBD Data Collection and Preparation

We use the Intel Real-Sense™ D435i depth camera,

which can live-stream depth and color data at up to 90

frames per second, and all the processing to generate the

depth data is done on-board by their embedded application-

specific integrated circuits. The RGBD camera has a field

of view of about 68×42 degrees. To communicate with the

camera and extract camera parameters, we use the python

API librealsense [28]. The librealsense post-processing

functions have all been included into the Intel Real-Sense

Viewer app which has been included as a part of Real-Sense

software development toolkit (SDK). The app can be used

as a quick testing ground to determine whether the Intel

post-processing improvements are worth exploring [24].

The process of converting RGBD data to point cloud

starts by recording a sequence of images (RGB + depth).

The librealsense engine allows extraction of RGB and depth

images from the recorded sequence. The obtained images

are time and space synced, and therefore, they are easier

to process. This is displayed in Fig. 1 within the data col-

lection and preparation box. We next select a set of depth

variables that help us manipulate depth visualization for our

data. The variables we select include Z-accuracy (which

evaluates the depth data accuracy), fill rate (which evalu-

ates the percentage of the depth coverage of the image), root

mean square error (RMSE) and spatial noise (which evalu-

ate the spatial noise or spatial depth uniformity), and tem-

poral noise (which evaluates the temporal uniformity over

sequential frames). Together these depth variables help cap-

ture the depth around the edges of the object allowing to im-

prove quality of captured point clouds. The more fine-tuned

these parameters are, the better result we can obtain. The

selected values for these variables are provided in Sec. ??.

Once the depth variables selected, we proceed into data

collection, by recording pairs of RGB and depth images.

We then implement the RGBD registration to create indi-

vidual point clouds (also referred as fragments) as described

next. The algorithm used for this has been adopted from

[57] which has been inspired from [12, 41]. The result of

this RGBD fragment creation gives us point clouds with

color information preserved.

3.2. Registration and Mesh Creation

With the execution of the previous step, we assure that

the obtained point cloud contains improved depth quality

due to the RGBD registration. We next move to obtain-

ing geometric features related to each point cloud. Esti-

mating two types of features helps us assess the geome-

try of the point cloud. These features are fast point fea-

ture histogram (FPFH) and surface normals. FPFH is a 33-

dimensional vector that describes the local geometric prop-

erty of a point, p. In [45], authors proposed the point fea-

ture histograms (PFH) as robust multi-dimensional features,

which describe the local geometry around a point for 3D

point cloud datasets. PFH are informative pose-invariant

local features which represent the underlying surface model

properties at the point p. Their computation is based on

the combination of certain geometrical relations between

p’s nearest k neighbors. They incorporate 3D point coor-

dinates (x, y, z) and estimate surface normals (nx, ny, nz),
but are extensible to the use of other properties such as cur-



vature, 2nd order moment invariants. FPFH retains most of

the discriminative power of the PFH.

Surface normals are vectors associated with each pixel,

providing information related to the surface. They dictate

an important information related to properties of geomet-

ric surface and play a significant role in determining the

orientation of point clouds. Given a geometric surface, it

is usually trivial to infer the direction of the normal at a

certain point on the surface as the vector perpendicular to

the surface at that point. We use estimate-normal func-

tion described in [57] , which computes normals for every

point. It finds adjacent points and calculates the principal

axis of the adjacent points using covariance analysis. We

require to set two parameters that include a search radius

and maximum number of nearest neighbours. This analy-

sis will produce a set of two opposite directional normals,

and both of these could be correct without the knowledge of

the global structure. This problem is also known as normal

orientation problem and in our case, the algorithm detects

orientation by looking at the camera direction. It then uses

k-dimensional tree (KDTree) with radius and number-of-

neighbours as arguments to calculate the normals. Surface

normals and FPFH are easy to calculate once we perform

voxel downsampling, which allows us to reduce the number

of points per point cloud. The selection of voxel downsam-

pling value is one of the hyper-parameters (∈ H).

Once the Geometric features are extracted, we next move

to performing pairwise operations. We start by selecting

two point clouds and naming them as source and target,

and perform following iterative operations for the two point

clouds: (1) implementing RANSAC [17] based global reg-

istration (see Sec. 3.2.1), and (2) implementing fine ICP

(general ICP registration or color ICP registration) (see

Sec. 3.2.2). Both ICP and Colored point cloud registrations

are known as local registration methods because they rely

on a rough alignment as initialization. Therefore before we

implement the fine local registration, we apply coarse reg-

istration using RANSAC based global registration.

3.2.1 RANSAC and Global Registration

Global registration algorithms do not require an alignment

for initialization, so they usually produce less tight align-

ment results which is why we use it as initialization of the

local methods [19]. For each RANSAC iteration, random

Rn points are picked from a source point cloud. The cor-

responding points in the target point cloud are detected by

querying the nearest neighbour in the 33-dimensional FPFH

feature space, which we discussed earlier. A pruning step

is implemented, which efficiently rejects false matches us-

ing fast pruning algorithm. These correspondences between

source and target point clouds are obtained with the follow-

ing considerations: (1) “Check correspondence using dis-

tance”: This checks if aligned point clouds are closer com-

pared to a given threshold. These are the only parameters

pre-defined by us. In our experiments, we use the distance

threshold to be 1.6 times the voxel size chosen for down-

sampling. (2) “Check correspondence using edge length”:

This checks if the length of any two arbitrary edges (line

formed by two vertices) individually drawn from source and

target correspondences are similar.

In addition to this, another important hyper-parameter

that helps us consider the correspondence is the “conver-

gence criteria”. It helps setting the max number of iterations

and validation steps and it comes with a trade-off in accu-

racy of result and time taken for the algorithm process. The

selected values are provided in Sec. 4. Based on obtained

correspondences from RANSAC, the result of the algorithm

is a rough transition matrix RTi, which is a 4 × 4 matrix

containing rotation and translation

3.2.2 Fine Local Registration

We now apply RTi as initial alignment to the fine ICP. We

use two variants of ICP, one a general ICP and the other a

color variant which takes into account the RGB values as-

sociated with each pixel. If the point clouds contain RGB

information, we choose to implement color ICP variant.

General ICP with point to plane operation is implemented

when no color information is available for point clouds. In-

put to the algorithm includes: (1) Voxel-size, which is re-

quired for downsampling and other parameters; (2) Two

point clouds as source and target, which are downsam-

pled based on the voxel-size parameter; (3) The maximum-

corresponding-distance-threshold, which decides the corre-

spondence threshold for fine ICP. This is set similar to dis-

tance threshold set in global registration; (4) Input initial

alignment (since fine ICP requires an input alignment) as

the transition matrix RTi; (5) Registration type, which is

either point-to-plane or point-to-point.

In our experiments, we have used point-to-plane [9],

which according to [44] has a faster convergence speed. The

point-to-plane algorithm implements an objective function

to be minimized is in the form of:

EG =
∑

∀(p,q)∈K

(

(p− T · q) · np

)2
, (1)

where p is a point in source (P ) with corresponding point

q in the target point cloud (Q), for every pair of (p, q) be-

longing to the correspondence set K (∈ (P,Q)). np is the

normal at point p and T is the transformation matrix. At

every iteration, we update the matrix T by minimizing an

objective function EG defined over the correspondence set

K. The output of the algorithm is the transformation ma-

trix T , which will help with the registration of point clouds

(P,Q) consist of point clouds which are registered ver-

sions of source and target along with two resultant metrics:



(1) Fitness: measures the overlapping area, and (2) Inlier

RMSE: measures the RMSE of all inlier correspondences.

When there is availability of color information, we in-

stead implement color ICP variant [43]. This version of ICP

uses both geometric as well as color information for regis-

tration of two point clouds. The color information locks the

alignment along the tangent plane. Thus this algorithm is

more accurate and more robust than general ICP, while the

running speed is comparable to it. The objective function to

be minimized and used in color ICP is:

E(T ) = ((1− δ)EC(T ) + δEG(T )), (2)

where EC and EG are the photo-metric and geometric

terms, respectively. δ ∈ [0, 1] is a weight parameter de-

termined empirically by optimizing a nonlinear objective

function provided in [43]. The term EG defines the geo-

metric objective and takes the form similar to 1. The color

specific term EC calculates the changes between the color

of source point p and target point q, and the color of q’s

projection on the tangent plane of point p, as:

EC(T ) =
∑

∀(p,q)∈K

(

Cp(f(T · q))− C(q)
)2
, (3)

where Cp(·) is an approximated function that is continu-

ously defined on the tangent plane of point p (∈ P ) and de-

pendent on gradient of intensity at that point. Function f(·)
projects a 3D point to this tangent plane. C(q) depicts a dis-

crete function that retrieves the intensity of point q (∈ Q).

Similar to 1, the objective function here also provides the

optimized transformation matrix T that helps with registra-

tion of point clouds, (P,Q). In order to improve accuracy of

the algorithm, as suggested in [43], we implement a multi-

scale registration scheme. The RGB point clouds are con-

verted into 3-layers of multi-resolution point clouds using

voxel downsampling. Normals for each point clouds is cal-

culated and then individual layer registration is performed.

The output of the algorithm is a registered RGB point cloud

along with fitness and inlier RMSE.

3.2.3 Final Pose Graph Optimization

The registration algorithm explained in Sec. 3.2.2 uses only

two point clouds for the process of registration. To register

more than two point clouds, not only a global space infor-

mation is required, but also understanding of the relation or

orientation of each point cloud to one reference point cloud

in the known global space is needed. For implementation

of multiple point cloud registration, we use the concept of

“Pose Graph” from [10] to determine the order and trans-

formation of all point clouds. A node in a pose graph is a

piece of geometry (point cloud in our case) Pi associated

with a pose matrix Ti, which transforms Pi into the global

space. The matrix Ti contains unknown variables that are to

be optimized (done by registration algorithm). Initialization

is done with the ’global space set,’ which is already config-

ured to be the space of first piece P0. Thus, T0 is selected

to be an identity matrix. The other pose matrices are initial-

ized by accumulating transformation between neighboring

nodes. The neighboring nodes usually have some overlaps

and are registered using algorithm provided in Sec. 3.2.1

and Sec. 3.2.2.

A pose graph edge connects two nodes that overlap.

Each edge contains the transformation matrix Ti,j that

aligns the source geometry Pi to the target geometry Pj .

Authors in [10] observed that pairwise registration is error-

prone and false pairwise alignments can outnumber cor-

rectly aligned pairs. Therefore, they provided a way to par-

tition pose graph edges into two classes: (1) odometry edges

connect temporally close, neighboring nodes, and (2) loop

closure edges connect any non-neighboring nodes. For both

these edges we perform the global and general ICP/color

ICP registration algorithms. So for given N point clouds,

we start by selecting pairs of point clouds as source and tar-

get and proceed with the registration. For each registration

we obtain a transformation matrix Ti as well as an informa-

tion matrix ψi. We approximate root mean square error of

the corresponding points between two nodes to estimate ψi,

by line process weight given by:

E2
RMSE ≈

1

|Kij |

∑

(p,q)∈Kij

‖ω × q + t‖22, (4)

where Kij is the correspondence pair for point set (p, q), ω
is the rotation between two points and t is the translation.

After we obtain the transformation and information for

each node and edge, we move to the global optimiza-

tion of pose graph. Two types of global optimization

methods could be chosen, “Gauss Newton” or “Leven-

berg–Marquardt”. We choose the latter as it has better con-

vergence property. Along with this, selection is done for

reference node (the origin node) and edge prune threshold

(threshold for pruning each edge). Once all the variables

are selected, the pose-graph is optimized to provide a series

of registration of given point clouds. The global optimiza-

tion is performed twice on the pose graph. The first pass

optimizes poses for the original pose graph taking all edges

into account and does its best to distinguish false alignments

among uncertain edges. These false alignments have small

line process weights, and they are pruned after the first pass.

The second pass runs without them and produces a tight

global alignment. In our case, using examples shown by

[57], all the edges are considered as true alignments, hence

the second pass terminates immediately. We then finally

merge all point clouds into a single point cloud by applying

the transformation in pose graph for each incoming point

cloud to obtain a single registered point cloud out ofN input

point clouds. This explanation is influenced from [49]. At

the end of this process, we have one single registered point



cloud that incorporates the same global geometric space as

of the input point clouds.

3.2.4 Screened Poisson Process

After obtaining the registered point cloud, we perform cer-

tain operations to obtain a well-polished mesh. For the

majority of point cloud post-processing, we use the tool

provided by [11] called Meshlab. Meshlab helps visualise

and operate on point clouds and also allows perform vari-

ous post-processing algorithms. In order to insert meshing

operations to our point cloud, we start with first applying

a screened Poisson Process introduced by [32]. The Pois-

son surface reconstruction method solves a regularized op-

timization problem to obtain a smooth surface compared to

a point cloud. For this reason, Poisson surface reconstruc-

tion can be preferable to the methods like Alpha shapes with

Convex Hull [15] and ball pivoting [4], as they produce non-

smooth results since the points of the point cloud are also

the vertices of the resulting triangle mesh without any mod-

ifications. Such a reconstruction creates watertight surfaces

from oriented point sets.

Meshlab provides an efficient way to implement the pro-

cess however it comes with a disadvantage. Poisson surface

reconstruction will create triangles in areas of low point

density, and even extrapolates into some areas. This also

acts like a limitation or disadvantage of using screened Pois-

son where it creates additional triangulated meshes. With

the use of density values, we remove vertices and triangles

that have a low support using the code from [57].

3.2.5 Laplace Smoothing

The results of a screened Poisson surface reconstruction

is a well connected watertight surface from the registered

point cloud. It might still contain some bumps and edges

at points with changing depth. We use smoothing to im-

prove the quality of the obtained registered mesh. Mesh

smoothing, like mesh extraction, is an operation that should

be performed fast enough to enable real-time adjustment of

parameters. For the purpose of smoothing, we implement a

Laplace smoothing with surface preservation, which allows

us to smooth the mesh with having limited modification on

the surface of the mesh. This method sweeps over the en-

tire mesh several times, repeatedly moving each adjustable

vertex to the arithmetic average of the vertices adjacent to

it. Variations weight each adjacent vertex by the total area

of the elements around it, or use the centroid of the incident

elements rather than the centroid of the neighboring ver-

tices. Laplacian smoothing is computationally inexpensive

and fairly effective, but it does not guarantee improvement

in element quality. In fact, Laplacian smoothing can even

invert an element, unless the algorithm performs an explicit

check before moving a vertex [3].

Within this process, the points on the mesh are passed

through a low-pass filter, that moves each vertex in the aver-

age position of the neighbour vertices, with a condition that

the new position still lies on the original surface. Laplacian

smoothing is controlled by two parameters, the weighting

factor ψ and the number of iterations ρ [48]. For our exper-

iments, we implement this process in MeshLab. At the end

of this process, we finally obtain a fine smooth mesh M .

3.3. Data Rigging and Articulation

Once we obtain the smooth mesh M , we next use a spe-

cial approach provided by authors in [38] to infuse new pose

information. Similar to that work, we use Blender, a free

and open-source 3D computer graphics software tool to ma-

nipulate 3D meshes. Within this work, we use a tool named

“Riggify”, which provides various armatures (set of bones

forming skeletons) of human and animal. These armatures

could be fused in the obtained mesh M and this process is

called rigging. At this point, the pose state descriptor which

incorporates the pose information of the rigged mesh is de-

noted by θ. This concept is explained in details in [39]. We

have adopted a very similar approach by adding some mod-

ification such as reducing the number of bones and adding

more rigging steps for animals. Once the rigging is done,

the pose state descriptor θ could be modified to generate

dynamic avatars in variety of context-feasible poses.

4. Experimental Results

Here, we demonstrate the outcome of our proposed 3D-

SMG pipeline by showing developed mesh of a kid man-

nequin and some animal toys. We show the results of rig-

ging as well as the quality of final meshes. In our experi-

ments, we placed our subjects (including a kid mannequin

and a set of animal toys) on a rotating table with the angular

velocity of ≈0.066 rad/s. The camera is placed on a tripod

with height of ≈90cm (for the kid mannequin) and height

of ≈10cm (for the animal toys). The distance, height, and

angle of camera for data collection were not recorded as the

algorithm is independent of these parameters.

4.1. Parameter Tuning and Ablation Study

Selection of Depth Variables. As mentioned in Sec. 3.1,

we work with depth variables like Z-accuracy, fill rate, spa-

tial noise and temporal noise which allows us to control

the depth quality and point fill within the captured images.

Proper tuning of these variables allows us to improve the

quality of the captured depth for each frame. The calcula-

tion of the depth values depend on the intrinsic camera prop-

erties which are constant to the type of camera we use.These

values change for different subjects and in our cases (kid

mannequin and animal toy), the selected set of values are

provided in Tab. 1. Description about these variables is pro-

vided in supplementary section.



Table 1: The selected depth variables for experiments re-

lated to the two types of subjects in our experiments.

Depth variables

Subjects

Z-Accuracy

(in mm)

Fill Rate

(in mm)

Spatial Noise

(in mm)

Temporal Noise

(in mm)

Kid Mannequin 0.8 75 <=2 <=5

Animal Toys 0.8 80 <=2 <=2

Figure 2: An improvement in quality of point clouds ob-

tained after processing pairs of RGBD images: (a) the tiger

toy’s position for reference, (b) the result of point cloud cap-

tured directly from Real-Sense D435i, and (c) point cloud

obtained after processing RGB and depth images and im-

plementing RGBD registration.

Scanning RGBD vs. point clouds. As mentioned in

Sec. 3.1, we collect RGB and depth images separately in-

stead of scanning for point clouds. For experimentation, we

first scanned point clouds directly and found out that the

obtained results would lose a lot of color and depth infor-

mation. This problem is particularly serious in small sub-

jects (like animal toys), from which we can hardly expect a

high-quality point clouds. A large number of broken point

clouds would make the following registration work difficult

to execute. However, using RGBD images to get the point

cloud of each frame can decrease the dependency on depth

data and improve the quality of pair wise registration. We

performed ablation study by comparing these two data col-

lection methods, and shows the results in Fig. 2. The results

show that we can keep more details by using RGBD images.

RANSAC Variables. Once the point cloud is obtained,

then we implement RANSAC based global registration.

There are certain parameters that govern how the RANSAC

will be implemented. The best possible choices (for our kid

mannequin experiment) were one with voxel-size of 0.035
pixels, edge-length of 0.9cm, distance between point clouds

as 0.0525 meters, and convergence criteria that included

4000000 iteration with validation set of 500. Using these

values, the resulting parameter values included convergence

set size of 255 points, execution time of 0.012 seconds and

Inlier RMSE of 0.0134 points. These values can change

with different subjects.

Coarse vs. Fine Registration. We next performed ex-

periments over the two different registration algorithms:

coarse and fine. Fine registration requires a rough initial

estimation which is provided by the coarse registration. We

provide some examples in Tab. 2, that shows the effect of

registration before and after applying coarse registration

indicating the improved registration quality with the two-

stage process. The features we use to compare include point

cloud (PC) overlap, Inlier RMSE, and time taken for a sin-

gle pair of point cloud to register. The worst performance

could be seen when applying only fine registration, since

we used an identity matrix as its initial alignment.

Table 2: Comparison of results obtained from using coarse

(global registration) and fine (ICP) registration. The given

values correspond to one pair of point cloud.

Type of Registration
PC Overlap

(%)

Inlier RMSE

(mm)

Time Taken

(ms)

Coarse Registration Only 8 0.1870 1.22

Fine Registration Only 2 0.8430 17.71

Coarse+Fine Registration 19 0.0132 6.77

3D-SMG vs. Other Approaches. Finally, we compare

the performance of our 3D-SMG registration pipeline with

other registration algorithms, including the Particle filter ap-

proach in [46], and the singular value decomposition (SVD)

method in [42]. We use overlap obtained and Inlier RMSE

between pairs of point clouds. Table 3 shows resulting pa-

rameters for pairwise point cloud registration. The overlap

between the two point clouds is obtained by taking a ratio of

overlap points (Inlier points) from two point clouds over to-

tal points in the point cloud. The overlap points depends on

the correspondences obtained from respective algorithms.

The more overlap obtained, the better the algorithm. Inlier

RMSE is the error obtained after the transformation of the

point cloud is processed.

Table 3: Comparison between 3D-SMG and two well-

known point cloud alignment approaches.

Alignment Approach
PC Overlap

(%)

Inlier RMSE

(mm)

Time Taken

(ms)

Particle Filter [46] 20 0.0098 122.71

SVD [42] 22 0.0132 1.10

Our 3D-SMG 21 0.0117 1.32

4.2. Scanned Results based on 3DSMG

Our 3D-SMG pipeline demonstrates the improvements

gained by the screened Poisson along with Laplace surface

preserve process over registered point cloud as shown in

Fig. 3. The RGB image (Fig. 3(a)) of the kid mannequin

is scanned from Real-Sense camera, where individual depth

and RGB frames are extracted using Real-Sense API.

The result of the registration algorithm to obtained the

registered point cloud is shown in Fig. 3(b). We then use

screened Poisson process (and Laplace surface preserve) to

obtain a smooth mesh as shown in Fig. 3(c). The dimen-

sions of the final mesh were measured and found out to be

very close to the actual mannequin (their shoulder to shoul-

der length has an error of 0.2cm). Finally, we rigged the

obtained mesh and infused several different 2D poses cap-

tured from a real child. The results are shown in Fig. 4.



Figure 3: The final results for the 3D-SMG registration pro-

cess. (a) an RGB image of the kid mannequin. (b) the reg-

istered point cloud. (c) registered mesh after implementing

screened Poisson and Laplace surface preserve process.

Figure 4: The rigging results of the final mesh according to

the 2D poses captured from a series of real images.

In the first row, we present 6 typical real poses, and in the

second row, we show the corresponding rigging results.

In addition to the kid mannequin, we also conducted

experiments with various animal toys, which have much

smaller size (the heights of the animal toys are all around

10cm). 7 groups of results are shown in Fig. 5. In each row,

we presented the real 2D image of the animal toy and the

three views of the final model. Various animals with rich

patterns and extreme physical characteristics (tiger and gi-

raffe’s patterns, giraffe’s leg, elk’s horns) are well captured

and modeled. All the results can exactly attest to the high

precision of our 3D-SMG pipeline.

4.3. From 3DSMG to Pose Augmentation

The 3D-SMG pipeline enable us to augment the

pose data using the scanned mannequin or toys of chil-

dren/animals, and then follow the steps presented in our pre-

vious work [38]. Within [38], our team introduced a novel

synthetic human dataset called ScanAVA, and using this

dataset, we were able to train a state-of-the-art 2D human

pose model from scratch and achieve the pose estimation

accuracy of 91.2% at PCK0.5 criteria after applying an effi-

cient domain adaptation on the synthetic images. However

in [38], we employed the Skanect, a commercially-available

Figure 5: The 2D images of a series of animal toys and three

views of the final 3D scanned model using our pipeline.

3D forming software that since then has been discontinued.

3D-SMG works as an open-source tool that can be applied

on the RGBD data collected from any depth-based camera.

Once we obtain the 3d mesh, by randomly changing the

pose and background of the obtained models, we can gen-

erate a large set of pose data.

5. Conclusion

The presented 3D-SMG pipeline provides an efficient

and effective solution to 3D reconstruction from 3D scans.

We presented our parametrized technique to obtain depth

scans from Intel Real-Sense D435i camera. Our main al-

gorithm uses special geometric parameters, which are ex-

tracted from each point cloud and are then used to de-

duce the initial alignment using a deterministic RANSAC

as well as a coarse registration step. The finer alignment

could be obtained using our dual objective-based color ICP

(if the color information is available), or a more general

single objective based ICP. We finally show how we can

use more than two point cloud alignments to obtain a 3D

rigid reconstructed body using the implementation of pose

graph optimization. Our approach can deal with significant

noise around the point cloud. We also provide an approach

which could be used to obtain the final smooth mesh using

a screened Poisson surface reconstruction and Laplace sur-

face smoothing. The mesh then can be used in blender to

rig and obtain sets of various 2D/3D pose datasets in the

contexts of interest.
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