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Abstract

Head pose estimation is an important task in many

real-world applications. Since the facial landmarks usu-

ally serve as the common input that is shared by multi-

ple downstream tasks, utilizing landmarks to acquire high-

precision head pose estimation is of practical value for

many real-world applications. However, existing landmark-

based methods have a major drawback in model expres-

sive power, making them hard to achieve comparable per-

formance to the landmark-free methods. In this paper, we

propose a strong baseline method which views the head

pose estimation as a graph regression problem. We con-

struct a landmark-connection graph, and propose to lever-

age the Graph Convolutional Networks (GCN) to model the

complex nonlinear mappings between the graph typologies

and the head pose angles. Specifically, we design a novel

GCN architecture which utilizes joint Edge-Vertex Atten-

tion (EVA) mechanism to overcome the unstable landmark

detection. Moreover, we introduce the Adaptive Channel

Attention (ACA) and the Densely-Connected Architecture

(DCA) to boost the performance further. We evaluate the

proposed method on three challenging benchmark datasets.

Experiment results demonstrate that our method achieves

better performance in comparison with the state-of-the-art

landmark-based and landmark-free methods.

1. Introduction

Head pose estimation has become an active research area

in recent years, as it is an essential module in many applica-

tions such as virtual reality [16], driving assistance [28] and

human–computer interaction [32]. Existing methods can be

roughly divided into two categories: 1) landmark-based ap-

proaches [17, 16] that estimate facial landmarks first then

regress the pose angle accordingly, and 2) landmark-free
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Figure 1. Given the facial landmarks, we construct a graph, and es-

timate the head pose utilizing the proposed EVA-GCN model. See

the video demo “Roman Holiday” 1. All the codes are available.

approaches [35, 25, 23, 1] which estimate the head pose

directly from images. Despite the latter is a hotspot in re-

cent studies, landmark-based methods are wildly required

by many real-life applications. This is because facial land-

marks often serve as the input shared by multiple down-

stream tasks such as face alignment [3], head pose estima-

tion [17], expression transfer [31] and so on. Moreover,

certain advanced sensors [14] integrate the landmark detec-

tion. Hence, high-precision head pose estimation based on

facial landmarks is quite attractive.

However, existing landmark-based head pose estimation

methods can not present equivalent performance with the

state-of-the-art landmark-free methods. The model expres-

sive power is argued to be the main reason [21]. The prin-

cipal of landmark-based methods is to achieve the 3D angle

information according to the landmark distribution. There-

fore, it is crucial to model the complex nonlinear relation-

ships between the geometric distribution of landmarks and

head poses robustly and efficiently. However, current meth-

ods [17, 16] are lack of the corresponding designs to ful-

fill such objective, resulting in the current performance bot-

tleneck. Hence, it is natural to wonder that, can ded-

icated models designed specifically for landmark-based



head pose estimation improve accuracy further? To an-

swer this question, we provide a strong baseline method.

In this work, we propose to leverage the graph convo-

lutional networks (GCN) [33] to improve the performance

of the landmark-based head pose estimation. We propose

a landmark-connection graph which takes the selected fa-

cial landmarks as the vertexes, and connect them via the

k-Nearest Neighbor [38] method. We utilize the spatial

GCN to regress three directions of pose angles. Specifically,

we introduce the joint edge-vertex attention, the automatic

channel attention and the densely-connected architecture in

the graph convolutional networks. These designs boost the

performance significantly. Our main contributions can be

summarized as follows:

• We propose a graph convolutional network architec-

ture which regresses the 3D head pose angle. To the

best of our knowledge, this is the first method that in-

troduces GCN into the head pose estimation.

• We propose joint edge-vertex attention mechanism

into the vanilla GCN architecture, forming a strong

baseline. Furthermore, we introduce the adaptive

channel attention and the deeply-connected architec-

ture into the model, improving the performance signif-

icantly.

• We evaluate the proposed method comprehensively

on three challenging datasets. Our method achieves

the state-of-the-art performance within the landmark-

based methods and outperforms the current published

landmark-free methods. We also provide the detailed

ablation analysis, result discussions, and the theoreti-

cal performance bound of our method in the paper.

2. Related Work

Head Pose Estimation. Following the previous liter-

ature [35, 26], we classify the previous works into two

basic categories. Landmark-based methods estimate

the head pose using facial landmarks, geometric informa-

tion or facial models. With the progress of deep learning

methods, learning-based landmark detection methods [3]

demonstrate superior performance. A number of landmark-

based head pose estimation methods attract much atten-

tion in the research community. For example, Hyperface

[24] is a multi-task model for simultaneous face detection,

landmarks localization, pose estimation and gender recog-

nition using deep convolutional neural networks (CNN).

KEPLER [16] presents an iterative method for landmark

prediction and pose estimation of unconstrained faces by

regression. Landmark-free methods are proposed with

the rise of the end-to-end methodology. Unlike the former

ones, these methods do not have the explicit intermediate

step such as landmark detection, but the mapping learning

from RGB images to the pose angles is assign to the data-

driven network learning. For example, FSA-Net [35] learns

a fine-grained structure mapping from images for spatially

grouping features before aggregation. HopeNet [26] em-

ploys very deep networks and trains using both MSE and

cross-entropy losses. Thanks to the powerful non-linear fea-

ture extraction models, these methods achieve good perfor-

mance in diverse situations. However, landmark-free meth-

ods have higher computational overhead and require mas-

sive data to drive the network learning. In many real-world

applications, facial landmarks are important intermediate

results shared by multiple downstream tasks. Therefore, it

is necessary to take full advantage of landmarks to save the

computation in multi-task applications.

Graph Convolutional Networks. Extending neural net-

works to graph data is a hotspot in the deep-learning com-

munity. GCN is applied successfully in many computer vi-

sion tasks such as skeleton-based action recognition [33],

anomaly detection [39] and 3D hand shape estimation [8].

Deep GCNs are able to capture complex node interactions

in graphs. However, they are hard to train owing to the van-

ishing gradient problem. The gated architecture [22] and the

residual architecture [12] are proposed to address this prob-

lem. Recent studies introduce attention mechanism into the

vanilla GCN. For instance, GAT [30] introduces vertex at-

tention into spectral-based graph neural networks. GaAN

[37] proposes a convolutional sub-network to control each

attention head’s importance. Edge attention is introduced

into a spatial-based GCN [33]. 2s-AGCN [29] proposes an

adaptive GCN to learn adaptively the graph topology.

3. Our Method

In this section, we first introduce the landmark-

connection graph. Next, we introduce the graph convolu-

tional networks with joint edge-vertex attention, automatic

channel attention and densely-connected architecture. Fi-

nally, we report the implementation details.

3.1. Landmark­connection Graph Construction

We take FAN [3] as the landmark detector. Given K

landmark locations, we select a vertex set V = {vi|i =
1, . . . , N} among them. The landmarks are selected accord-

ing to the following principles:

• Stableness. For the same head pose presented by di-

verse persons, the selected landmarks should move less

than the other landmarks.

• Saliency. For different head poses from the identical

person, the selected landmarks should move markedly

than the other landmarks.

We decide the landmarks by preliminary experiments

(Sect. 4.2). Given the selected N vertexes (Figure 2(a)),

we connect them with edges E = {vivj |i, j ∈ N} via the



k-Nearest Neighbor [38] method. For each vertex in V, we

figure out its 5 nearest vertexes in the Euclidean space for all

poses on average, and connect them to form an undirected

landmark-connection graph G = (V, E) (Figure 2(c)).

Figure 2. Landmark-connection Graphs. (a) Facial landmark lo-

cations. (b) Graph-k3: 3-NN connection. (c) Graph-k5: 5-NN

connection (our final choice). (d) Graph-k7: 7-NN connection.

3.2. GCN with Joint Edge­Vertex Attention

We aim to leverage the graph convolutional network to

mine the complex non-linear mapping between landmark-

connection graphs and pose angles.

Graph convolution. The standard spatial graph convo-

lution [33] can be represented as:

Xout = Λ
−

1

2 (A+ I)Λ−
1

2XinW, (1)

where A is the graph adjacency matrix. I is an identity

matrix representing the self-connections. All vertexes in the

graph have the self-connection to balance the graph degree

[15]. Λ is a diagonal matrix in which Λii =
∑

j(A
ij +

Iij). W is a convolution weight matrix. Xin and Xout are

the input and output feature maps, respectively. The Eq.1

implicitly have a vertex partition strategy [33].

Joint edge-vertex attention (EVA). Certain characteris-

tics should be considered in the head pose estimation task.

First of all, different landmarks contribute unequally to the

final pose estimation results. Moreover, since distinct edges

are of unique importance in predicting different directions,

the weight for each edge should not be the same. Hence, we

introduce attention mechanism into the graph convolution,

which is composed by two parts: the vertex attention and

the edge attention. The vertex attention is implemented by:

X̃in = Xin ⊗Mv, (2)

where Mv is the attention matrix and ⊗ denotes element-

wise multiplication between a 3D tensor and a 2D matrix.

X̃in are weighted input feature maps. Furthermore, we in-

troduce residual learning to mitigate potential adverse ef-

fects. The residual vertex-attention operation is represented

as:

X̃in = Xin ⊗ (Mv + 1). (3)

The edge attention is implemented by:

Ã = A⊗Me, (4)

where ⊗ denotes element-wise multiplication operation be-

tween two tensors. All elements in Mv and Me are initial-

ized with 1, and learned via Stochastic Gradient Descent.

Thus, the graph convolution with joint edge-vertex atten-

tion in one vanilla EVA-GCN cell is defined as:

Xout = Λ
−

1

2 (A+ I)⊗MeΛ
−

1

2Xin ⊗ (Mv + 1)W.

(5)

Adaptive channel attention (ACA). Inspired by the

Squeeze-and-Excitation Network (SENet) [11], we intro-

duce the channel attention into the vanilla EVA-GCN

to model interdependencies between channels. This is

achieved by contextual information extraction and channel

reweighting.

The channel context extraction is to extract the global

information representation of each channel. Unlike the

SENet, the contextual information in our graph scenario is

extracted by the global average graph pooling. Formally,

given the k-th feature map x
k
o in Xout = [x1

o, ...,x
C
o ], the

global average graph pooling is implemented by

zk =
1

N

N∑

k=1

x
k
o , (6)

where N is the number of vertexes in the graph. zk is the

global context representation of the feature map.

Next, the model learns the nonlinear interactions be-

tween channels to capture channel-wise dependencies. This

is implemented by

s = σ(W2δ(W1z)), (7)

where W1 ∈ R
C

r
×C and W2 ∈ R

C×
C

r . r is the reduction

ratio (r = 8, see Sect. 4.5 for the discussion). δ and σ

denote the ReLU and sigmoid activation function [2].

Finally, a reweighted feature channel x̃k
o is obtained by

element-wise rescaling with sk:

x̃
k
o = x

k
o ⊗ sk. (8)

Thus, the reweighted feature maps X̃out = [x̃1

o, ..., x̃
C
o ]

with adaptive channel attention are achieved.



Figure 3. The architecture of the proposed densely-connected EVA-GCN with adaptive channel attention. One densely-connected EVA-

GCN block contains 3 EVA-GCN cells.

Densely-connected architecture (DCA). Deeper GCNs

are able to capture richer neighborhood information [18].

However, it may suffer from over-smoothing or vanishing

gradient problems [10]. To improve the performance of

deep EVA-GCNs, we introduce a densely-connected archi-

tecture [12] to the stacked EVA-GCN. As shown in Fig-

ure 3, the l-th block receives information from the previous

blocks. Formally, the densely-connected structure can be

represented as

X̃
l
out = C(αl−1

X̃
l−1

out , ..., α
1
X̃

1

out), (9)

where C is a concatenation operation. α is a learnable pa-

rameter which is initialized by 1. We call it the densely-

connected EVA-GCN block, which contains 3 EVA-GCN

cells with the adaptive channel attention by default.

Final model architecture. As shown in Figure 1,

the network is composed of 2 densely-connected EVA-

GC blocks. The first EVA-GCN cell in the first densely-

connected EVA-GC block has 64 channels. The channel

number is unchanged until the last block that it is enlarged

to 128. The last 1×1 convolution layer is connected with a

global average pooling operation to achieve a 3-dimensional

output vector. We use MSE loss as the training loss func-

tion.

3.3. Implementation details

Input data and normalization. The network takes ver-

tex features as input. The vertex feature is a 2-dimensional

spatial coordinate vector vi =< xi, yi > in the image. We

normalize all vertexes to the same scale by:

vi =
vi − v0

vmax − vmin

, (10)

where v0 is the center vertex (the blue vertexes in Figure

2). vmax and vmin are the maximum and minimum values

in the graph. All experiment results reported in this paper

follow the same data pre-processing.

Training details. We use PyTorch [20] for imple-

menting the proposed model. EVA-GCN is trained using

Stochastic Gradient Descent (SGD) with a mini-batch size

of 256. We set the initial learning rate to 0.1. The learning

rate is divided by 10 at epoch [40, 70, 90, 95]. We termi-

nate the training at the 100th epoch. We do not use data

augmentation or other tricks with bells and whistles so as to

facilitate the reproduction.

4. Experiments

This section illustrates the datasets, the comparison re-

sults with state-of-the-art methods, the discussions and the

ablation studies.

4.1. Dataset and evaluation protocols

We train and evaluate the proposed model on 3 challeng-

ing datasets: 300W-LP [40], BIWI [7] and AFLW2000

[40]. BIWI dataset have more than 15,000 frames.

AFLW2000 dataset is the relabeled images from the AFLW

dataset. 300W-LP dataset contains 61,225 images with 2D

and 3D landmark annotations. These datasets have dif-

ferent characteristics. Most of faces in BIWI dataset are

small angles (yaw: ±75◦, pitch: ±60◦, roll: ±50◦), while

300W-LP extend original 300-W dataset to large pose ([-

90◦, 90◦]) but large-pose faces are generated synthetically.

AFLW2000 dataset have large-pose faces and more varia-

tions in illumination and expressions. Hence, we employ

these datasets to evaluate the proposed methods compre-

hensively. For a fair comparison with other methods, we

use mean absolute error (MAE) as the evaluation metric.



4.2. Preliminary experiments

We determine the graph structure via the preliminary ex-

periments. First, to select the salient landmarks, we calcu-

late the moving distances of landmark locations along with

the head pose changes for the identical person. As shown in

Figure 4, 34 landmarks (highlight in the figure) are of larger

saliency, which decides them to be the candidates.

cheek eyebrow nose 

center
eyes mouth

Figure 4. Comparison results w.r.t. the landmarks’ saliency. More

details and the high-resolution figure are in the supplementary.

Then, we compare the stableness of these candidates for

the same head pose from diverse persons. As shown in Fig-

ure 5, we can find that the highlighted landmarks move less.

Therefore, we choose these N = 19 landmarks (Figure

2(a)) as the vertexes of the landmark-connection graph.

vv

v

v

Figure 5. Comparison results w.r.t. the landmarks’ stableness.

k value. Since the graph is constructed by k-Nearest

Neighbor, we determine the k value by control experiments.

In Figure 2, we shows other two graphs with different k

value. In the control groups, Graph-k3 has the fewest edges,

so the graph structure is more sparse. Graph-k7 is supe-

rior in information interaction between vertexes, while it’s

edge number is the largest. Graph-k5 is a trade-off between

Graph-k3 and Graph-k7. Table 1 shows the results. Since

Graph-k5 achieves the best results in all three directions, we

choose it as the final graph.

Yaw Pitch Roll MAE

Graph-k3 5.23 5.89 4.49 5.20

Graph-k7 5.18 5.72 4.35 5.08

Graph-k5 5.13 5.68 4.31 5.04

Table 1. Comparisons of different graphs for EVA-GCN perfor-

mance. Graph-k5 is selected by this experiment.

4.3. Comparison with state­of­the­art

We compare our method to the state-of-the-art meth-

ods, including landmark-based methods (KEPLER [16],

FAN [3], Dlib [13]) and landmark-free methods (FSA-

Net [35], HopeNet [26], TriNet [4], SSR-Net-MD [36],

VGG16 [9], 3DDFA [40], DeepHeadPose [19]). Table 2

shows the results on AFLW2000 dataset. Our method out-

performs the compared methods by a large margin.

Yaw Pitch Roll MAE

Dlib (68 points) 23.1 13.6 10.5 15.8

3DDFA 5.40 8.53 8.25 7.39

HopeNet (α=2) 6.47 6.56 5.44 6.16

HopeNet (α=1) 6.92 6.64 5.67 6.41

SSR-Net-MD 5.14 7.09 5.89 6.01

FSA-Caps (1×1) 4.82 6.19 4.76 5.25

FSA-Caps (var.) 4.96 6.34 4.78 5.36

EVA-GCN (vanilla) 5.13 5.68 4.31 5.04

EVA-GCN 4.46 5.34 4.11 4.64
Table 2. Comparison results with the state-of-the art methods on

AFLW2000 dataset. All models are trained on 300W-LP dataset.

In these compared methods, HopeNet uses three separate

losses in order to boost the performance, while we merely

use one MSE loss to supervise the learning. FSA-Caps is

a FSA-Net using capsule network [27] for feature aggregat-

ing. It has complex design in structure mapping learning

and feature aggregation. By contrast, our model is more

elegant and compact. 3DDFA is designed for large poses

face alignment (up to 90◦). However, its performance is not

balance in a wide angle range. SSR-Net takes a coarse-to-

fine strategy and performs multi-stage classification. Dlib

is a tradition landmark-based method. But its weak abil-

ity in feature extraction is the main reason causing its low

performance.

Generalization ability. To evaluate the generalization

ability of our model, we test the model on BIWI-test dataset

directly without fine-tuning. The results are shown in Table

3. The compared methods include not only landmark-based

methods, but also landmark-free methods. Our method

outperforms all state-of-the-art landmark-based methods

(FAN, KEPLER) and the current best landmark-free model

(FSA-Caps). A very recent work, img2pose [1], utilizes

a super large face recognition dataset [34] to pre-train

the model and achieves MAE=3.90 (Yaw:3.97, Pitch:5.27,

Roll:2.46) one the head pose estimation task. We do not use

auxiliary datasets but the result is comparable.

Furthermore, we retrain the model on BIWI-train dataset

and evaluate it on BIWI-test dataset to know how good per-

formance it can achieve. We use 70% of videos in the BIWI

dataset for training and the rest videos for testing. Ta-

ble 4 shows the results. MAE of our method is lower than

FSA-Net by 0.56, which means that the advantage is more



significant if we fine-turn the model using given datasets.

The results show the method’s good generalization capabil-

ity across datasets. Moreover, since BIWI dataset is com-

posed by synthetic data, this result suggests that our method

can utilize the existing data better and is robust to the do-

main shift, meaning that the cost in data acquisition is lower.

Yaw Pitch Roll MAE

Dlib 16.8 13.8 6.19 12.2

KEPLER 8.80 17.3 16.2 13.9

FAN 8.53 7.48 7.63 7.89

3DDFA 36.2 12.3 8.78 19.1

FSA-Caps (1×1) 4.78 6.24 3.31 4.31

FSA-Caps (var.) 4.56 5.21 3.07 4.28

EVA-GCN (vanilla) 3.90 5.31 3.02 4.08

EVA-GCN 4.01 4.78 2.98 3.92
Table 3. Comparison results with the state-of-the art methods on

BIWI-test dataset. All models are trained on 300W-LP dataset.

Yaw Pitch Roll MAE

DeepHeadPose 5.67 5.18 - -

SSR-Net-MD 4.24 4.35 4.19 4.26

VGG16 3.91 4.03 3.03 3.66

FSA-Caps-Fusion 2.89 4.29 3.60 3.60

TriNet 2.93 3.04 2.44 2.80

EVA-GCN (vanilla) 3.39 3.97 2.59 3.32

EVA-GCN 2.01 2.82 1.89 2.24
Table 4. Comparison results with the state-of-the art methods on

BIWI-test dataset. All models are trained on BIWI-train dataset.

4.4. Discussion

Stability. To evaluate the prediction stability of our

method, we enumerates the per-frame pose estimation er-

rors on a 492-frame video in Figure 6. Comparing to other

methods, our method is more stable, and the predicted re-

sults are more smooth. This nature is attractive for certain

applications in virtual reality (VR).

Figure 6. Visualization on a 492-frame video from BIWI dataset

(24th video). Our method (red curve) is more stable.

Case analysis. To evaluate our method comprehen-

sively, we analyze the failure and successful cases by de-

tailed statistics. Figure 7 shows a few of cases. We cal-

culate the failure cases on BIWI-test dataset (error thresh-

old is ±5◦) in 10◦ per group. The results on three direc-

tions are plotted as three curves in Figure 8. Our failure

cases are relatively less and distributed mostly in large poses

(> |65◦|). However, checking the cause of errors, we find

that the main reason is that the face detectors perform unsat-

isfactorily on some large-pose examples. Less than 2% of

large-pose faces can not be detected from the images, so the

head pose estimators receive some incorrect face regions.

Actually, all compared methods suffer from this issue (e.g.,

FSA-Net’s results in Figure 7). Hence, we argue that more

robust face detectors can help head pose estimators achieve

better performance.

Figure 7. Top: EVA-GCN results; Middle: FSA-Net results; Bot-

tom: Detected landmarks.

Speed and model size. The interference speed of EVA-

GCN is 586 FPS on one Nvidia Titan RTX GPU. This sug-

gests that the time consuming caused by the EVA-GCN is

almost negligible, and the final speed of the head pose esti-

mation is up to the landmark detector. The EVA-GCN with

the FAN landmark detector achieves 56 FPS. Our method

achieves nearly the same speed as the FSANet (58 FPS).

Our model is only 1.03 MB of size. Comparing to FSA-Net

and HopeNet (2.9 and 95.9 MB), it is light-weight. Note

that our model do not have any compression, pruning or

other engineering optimizations, so there is still much room

for efficiency boosting. This result suggests that the pro-

posed model enjoys high efficiency and good performance.

We also implement an end-to-end EVA-GCN with CNN-

based landmark detection and our GCN-based pose estima-

tion. It achieves 82 FPS and MAE = 4.92 on AFLW2000.

We also implement it on a low-power ARM edge comput-

ing device, which achieves 45 FPS. Note that this is beyond

the scope of this paper. More details can be found in the

supplementary material.

4.5. Ablation study

We examine the effectiveness of the proposed compo-

nents in EVA-GCN, all models are trained on 300W-LP

dataset, and then tested on AFLW2000 dataset.



Figure 8. Error distributions of different methods on BIWI-test dataset.

Edge-vertex attention and visualization. Table 5

shows the result that compares the EVA-GCN with the stan-

dard GCN. EVA-GCN (v.) denotes the vanilla EVA-GCN

(without ACA and DCA). We can find the edge-vertex at-

tention improves the GCN effectively. To understand the

effect of the edge-vertex attention mechanism intuitively,

we visualize the learned attention in Figure 9. The edges

and vertexes with lighter color represent their importance is

larger. The distribution of the learned attention weights is

uneven among edges and vertexes. We are hardly able to

design it by hand without data-driven parameter learning.

Although seemingly complex, we can still find some char-

acteristics in attention distribution. For example, the edge-

attention weights are almost distributed symmetrically. The

importance of certain vertexes are relatively lower. These

results are consistent with the preliminary experiments.

Yaw Pitch Roll MAE

GCN 4.93 5.89 4.75 5.19

EVA-GCN (v.) 5.13 5.68 4.31 5.04

Table 5. Ablation analysis: the edge-vertex attention.

Figure 9. Vertex and edge attention visualization.

Adaptive channel attention and the reduction ratio.

To evaluate the effectiveness of the proposed adaptive chan-

nel attention, we ablate it from the proposed model to ob-

serve the results. As shown in Table 6, we can find that

the adaptive channel attention mechanism improve the per-

formance significantly. Since r is a hyper-parameter, we

conduct experiments w.r.t. a range of r values. Seen from

Table 6, the model achieves the best result when r = 8.

Therefore, r is determined to be 8.

Densely-connected architecture. We compare the

Yaw Pitch Roll MAE

EVA-GCN(v.) 5.13 5.68 4.31 5.04

EVA-GCN(v.)+ACA(r=2) 5.03 5.48 4.23 4.91

EVA-GCN(v.)+ACA(r=4) 4.96 5.42 4.19 4.86

EVA-GCN(v.)+ACA(r=8) 4.86 5.39 4.17 4.81

EVA-GCN(v.)+ACA(r=16) 4.92 5.46 4.22 4.87

Table 6. Ablation analysis: MAE across different reduction ratios.

vanilla EVA-GCN with the vanilla EVA-GCN + densely-

connected architecture. As reported in Table 7, we can find

that the densely-connected architecture can boost the per-

formance effectively.

Yaw Pitch Roll MAE

EVA-GCN (v.) 5.13 5.68 4.31 5.04

EVA-GCN (v. + DCA) 4.98 5.56 4.22 4.92

EVA-GCN 4.46 5.34 4.11 4.64

Table 7. Ablation analysis: the densely-connected architecture.

Network configuration. We explore diverse network

configurations with different network depth. Table 9 shows

the results. In general, deeper networks have better perfor-

mance, and the deeply-connected structure performs posi-

tive effect to the final results. Nevertheless, since head pose

estimation is a speed-sensitive task, we argue that EVA-

GCN with 2 densely-connected EVA-GC blocks (6 layers)

is acceptable for most applications.

Summary. We can summarize the above ablation stud-

ies. Seen from Table 8, with all aforementioned designs,

our method boost the performance consistently. Figure 10

shows the improvement ratios of each components.

4.6. Performance bound analysis

Since the landmark is an important factor in landmark-

based pose estimation, we choose several mainstream detec-

tors, including OpenPose [5], Dlib [13], RetinaFace (repro-

ductive) [6] and FAN [3], and extract landmarks on 300W-

LP dataset. We train the EVA-GCN using these landmarks

results, and test the model on AFLW2000. The result is

shown in Table 10. We can find that the landmark detec-

tor is important for the final results. However, even if us-

ing relatively weak detectors (e.g., Dlib), our method is still

comparable to some other methods, which reflects the ro-

bustness of our method to the landmark detection errors.



GCN vanilla EVA-GCN vanilla EVA-GCN + ACA EVA-GCN (ACA+DCA) Deeper EVA-GCN MAE

X 5.19

X X 5.04 (↓0.15)

X X X 4.81 (↓0.23)

X X X X 4.64 (↓0.17)

X X X X X 4.59 (↓0.05)

Table 8. Influence of each component for the final model performance.

Yaw Pitch Roll MAE MB

EVA-GCN (v., 6 layers) 5.11 5.64 4.29 5.01 0.98

EVA-GCN (v., 9 layers) 5.07 5.58 4.27 4.97 1.31

EVA-GCN (w/o ACA, 6 layers) 4.87 5.48 4.21 4.85 1.03

EVA-GCN (w/o ACA, 9 layers) 4.81 5.34 4.13 4.76 1.36

EVA-GCN (w/o DCA, 6 layers) 4.92 5.46 4.19 4.86 0.98

EVA-GCN (w/o DCA, 9 layers) 4.85 5.38 4.15 4.79 1.31

EVA-GCN (6 layers) (final choice) 4.46 5.34 4.11 4.64 1.03

EVA-GCN (9 layers) 4.41 5.27 4.09 4.59 1.36

Table 9. Performance of various EVA-GCNs with different depth.

Graph-5k is used in this experiment.

Figure 10. Improvement ratios of each components in the model

for the final performance.

Landmark Detectors Yaw Pitch Roll MAE

EVA-GCN + OpenPose 7.25 5.52 4.78 5.85

EVA-GCN + Dlib 6.39 5.76 3.63 5.26

EVA-GCN + RetinaFace 5.02 5.33 4.26 4.87

EVA-GCN + FAN (ours) 4.96 5.34 4.11 4.64

EVA-GCN + GT* 3.23 4.15 3.05 3.48

Table 10. Comparisons of different landmark detectors for EVA-

GCN performance. GT* means ground-truth data.

To further evaluate the model’s robustness to impre-

cise landmarks, we artificially introduce various degrees of

stochastic noise to the ground-truth landmarks. For arbi-

trary m landmarks, we shift them randomly in a 2l × 2l
(pixels) square region that takes the ground-truth locations

as the centers (Figure 11). Then we evaluate the results

achieved by our model. We test two groups (m = 3, 6),

and the offset range l is in [0, 4, 8, 12, 16] for each group.

Seen from the histograms in Figure 12, we can find that

the model is robust to the noise. When 16% landmarks are

shifted by less than 10 pixels, the model’s performance is

barely affected. Even when 32% landmarks deviated their

ground truth locations by no more than 16 pixels, the EVA-

GCN is still able to achieve the state-off-the-art accuracy.

The GCN and attention mechanism has a positive effect in

error tolerance, which is verified by other works [33, 30] as

well. That forms the strong expressive power of our model.

Figure 11. Landmarks with stochastic noise.

Figure 12. Performance changes with various degrees of noise.

Horizontal axis: offset l ∈ [0, 4, 8, 12, 16]. Vertical axis: MAE.

Performance bound. Finally, we report the result

achieved by using the ground-truth landmark labels (GT*)

in Table 10. Therefore, MAE = 3.48 (on AFLW2000

dataset) can be viewed as the theoretical performance up-

per bound of our method.

5. Conclusion and Future Works

In this paper, we propose a GCN-based head pose es-

timation method. We present a novel method and achieve

state-of-the-art performance. Our new method gives a re-

sponse to the question raised at the beginning of this paper:

landmark-based methods are still worth to explore and it re-

mains an open problem. For future works, we argue that

more efficient and hybrid CNN-GCN are worth expecting.

We hope this initial work can inspire more researchers.
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