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1. Quality Estimation Model: Architecture De-
tails

We share details of the architecture of our quality esti-
mator Q in Table 1. The fully connected layers in Q are
denoted as ‘fc’ while each convolution layer, represented as
‘conv’, is followed by Leaky ReLU [20] activation with a
slope of 0.01.

Table 1: Detailed architecture of our quality estimation model Q (input
size is 128×128×3).

Layer Filter/Stride/Dilation # of filters
input 128×128 3
conv0 4×4/2/1 64
conv1 4×4/2/1 128
conv2 4×4/2/1 256
conv3 4×4/2/1 512
conv4 4×4/2/1 1024
conv5 4×4/2/1 2048

fc0 - 256
fc1 - 1

2. Quality Estimation Model: Naturalness Rat-
ing Distribution in Training

In this section, we share the distribution of the natural-
ness ratings that we collected from the Amazon Mechanical
Turk (AMT) experiment (Stage II). To do this, we average
the perceptual rating for each synthetic face image from its
three scores and increment the count of a particular bin in
[(0 - 1), (1 - 2), ... , (8 - 9), (9 - 10)] based on the mean score.
As described in Section 3 of the main paper, we design the
AMT task such that a mean rating between 0 and 5 sug-
gests the synthetic image to look ‘unnatural’ while a score
between 5 and 10 advocates for its naturalness. As can be
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Table 2: Hourglass architecture for expression mask (Me) synthesis in the
generator G. The input size is 128×128×9, three RGB channels (Ia) and
six expression channels (ce).

Layer Filter/Stride/Dilation # of filters
input 128×128/-/- 9
conv0 7×7/1/1 64
conv1 4×4/2/1 128
conv2 4×4/2/1 256
RB0 3×3/1/1 256
RB1 3×3/1/1 256
RB2 3×3/1/1 256
RB3 3×3/1/1 256
RB4 3×3/1/1 256
RB5 3×3/1/1 256
PS0 - 256

conv3 4×4/1/1 128
PS1 - 128

conv4 4×4/1/1 64
conv5 (Me) 7×7/1/1 3

seen in Figure 1, majority of the synthetic images used in
our study generates a mean score that falls on the ‘natural’
side, validating their realism. When used to train our qual-
ity estimation model Q, these images tune its weights to
look for the same perceptual features in other images while
rating their naturalness.

To further check the overall perceptual quality of each
of the different synthesis approaches used in our study [10,
11, 1, 15, 3], we separately find the mean rating for each
synthetic face image generated by that method, depicted in
Figure 2. It comes as no surprise for the StyleGAN [11]
images to rank the highest, with a mean score over 7, as its
face images were pre-filtered for quality [2]. The other four
approaches perform roughly the same, generating a mean
score that falls between 6 and 7.



Figure 1: Histogram depicting the number of images in each naturalness bin, as rated by the Amazon Mechanical Turkers. Much more images fell on the
‘natural’ half (5 - 10) rather than the ‘unnatural’ one (0 - 5), suggesting the synthetic face images used in our study to be more or less realistic.

Figure 2: Mean naturalness rating of the different synthesis approaches used in our study [10, 11, 1, 15, 3]. As expected, the StyleGAN [11] images are
rated higher than others as they were pre-filtered for quality[2].

3. Quality Estimation Model: Loss Function

Our loss uses the L2 norm between the predicted qual-
ity (p) and mean label (µ) and then computes a second L2

norm between this distance and the standard deviation (σ).
σ acts as a margin in this case. If we consider µ as the
center of a circle with radius of σ, then our loss tries to
push p towards the boundary to fully capture the subjective-



Figure 3: Mean naturalness rating, as estimated by Turkers (blue) and predicted by our trained quality estimation model Q (red), for the different synthesis
approaches used in our study [10, 11, 1, 15, 3]. These ratings are specifically for images from the test split in our experiments, so Q never encountered them
during training. Yet, Q is able to predict the naturalness of these images with a high degree of certainty.

Table 3: Hourglass architecture for lighting mask (Ml) synthesis in the
generator G. The input size is 128×128×23, three RGB channels (Ia)
and twenty expression channels (cl).

Layer Filter/Stride/Dilation # of filters
input 128×128/-/- 23
conv0 7×7/1/1 64
conv1 4×4/2/1 128
conv2 4×4/2/1 256
RB0 3×3/1/1 256
RB1 3×3/1/1 256
RB2 3×3/1/1 256
RB3 3×3/1/1 256
RB4 3×3/1/1 256
RB5 3×3/1/1 256
PS0 - 256

conv3 4×4/1/1 128
PS1 - 128

conv4 4×4/1/1 64
conv5 (Ml) 7×7/1/1 3

ness of human perception. We also tried a hinge version of
this loss: max

(
0,
(
‖µ− p‖22 − σ

))
. This function penal-

izes p falling outside the permissible circle while allowing
it to lie anywhere within it. When σ is low, both functions
act similarly. We found the quality estimation model’s (Q)
predictions to be less stochastic when trained with the mar-
gin loss than the hinge. On a held-out test set, both losses

Table 4: Hourglass architecture for target image (G(Ia, fb)) synthesis in
the generator G. The input size is 128×128×6, three expression mask
channels (Me) and three lighting mask channels (Ml).

Layer Filter/Stride/Dilation # of filters
input 128×128/-/- 6
conv0 7×7/1/1 64
conv1 4×4/2/1 128
conv2 4×4/2/1 256
RB0 3×3/1/1 256
RB1 3×3/1/1 256
RB2 3×3/1/1 256
RB3 3×3/1/1 256
RB4 3×3/1/1 256
RB5 3×3/1/1 256
PS0 - 256

conv3 4×4/1/1 128
PS1 - 128

conv4 4×4/1/1 64
conv5 (G(Ia, fb)) 7×7/1/1 3

performed similarly with only 0.2% difference in regres-
sion accuracy. Experimental results with LEGAN, and es-
pecially StarGAN trained usingQ (Tables 1, 2, 3 in the main
text), underpin the efficiency of the margin loss in compre-
hending naturalness. The improvements in perceptual qual-
ity, as demonstrated by LPIPS and FID, further justify its
validity as a good objective for training Q.



Figure 4: Perceptual quality predictions by our trained quality estimation model (Q) on sample test images generated using [11, 10, 1, 15, 3]. For each
image, the (mean ± standard deviation) of the three naturalness scores, collected from AMT, is shown below while Q’s prediction is shown above in red.

Table 5: Detailed architecture of LEGAN’s discriminator D (input size is
128×128×3).

Layer Filter/Stride/Dilation # of filters
input 128×128 3
conv0 4×4/2/1 64
conv1 4×4/2/1 128
conv2 4×4/2/1 256
conv3 4×4/2/1 512
conv4 4×4/2/1 1024
conv5 4×4/2/1 2048

conv6 (Dsrc) 3×3/1/1 1
conv7 (Dcls) 1×1/1/1 26

4. Quality Estimation Model: Prediction Accu-
racy During Testing

As discussed in Section 3 of the main text, we hold out
10% of the crowd-sourced data (3,727 face images) for test-
ing our quality estimation model Q post training. Since
Q never encountered these images during training, we use
them to evaluate the effectiveness of our model. We sepa-

rately compute the mean naturalness score for each synthe-
sis approach used in our study and compare this value with
the average quality score as predicted by Q. The results can
be seen in Figure 3. Overall, our model predicts the natu-
ralness score for each synthesis method with a high degree
of certainty. Some qualitative results can also be seen in
Figure 4.

5. LEGAN: Detailed Architecture
In this section, we list the different layers in the genera-

torG and discriminatorD of LEGAN. SinceG is composed
of three hourglass networks, we separately describe their ar-
chitecture in Tables 2, 3 and 4 respectively. The convolution
layers, residual blocks and pixel shuffling layers are indi-
cated as ‘conv’, ‘RB’, and ‘PS’ respectively in the tables.
After each of ‘conv’ and ‘PS’ layer in an hourglass, we use
ReLU activation and instance normalization [18], except for
the last ‘conv’ layer where a tanh activation is used [14, 16].
The description of D can be found in Table 5. Similar to Q,
each convolution layer is followed by Leaky ReLU [20] ac-
tivation with a slope of 0.01 in D, except for the final two



convolution layers that output the realness matrix Dsrc and
the classification map Dcls.

6. LEGAN: Ablation Study
To analyze the contribution of each loss component

on synthesis quality, we prepare 5 different versions of
LEGAN by removing (feature disentanglement, Ladv , Lcls,
Lrec, Lqual, and Lid) fromGwhile keeping everything else
the same. The qualitative and quantitative results, produced
using MultiPIE [7] test data, are shown in Figure 5 and Ta-
ble 6 respectively. For the quantitative results, the output
image is compared with the corresponding target image in
MultiPIE, and not the source image (i.e. input).

As expected, we find Ladv to be crucial for realistic hal-
lucinations, in absence of which the model generates non-
translated images totally outside the manifold of real im-
ages. The disentanglement of the lighting and expression
via LEGAN’s hourglass pair allows the model to indepen-
dently generate transformation masks which in turn synthe-
size more realistic hallucinations. Without the disentangle-
ment, the model synthesizes face images with pale-ish skin
color and suppressed expressions. When Lcls is removed,
LEGAN outputs the input image back as the target attributes
are not checked by D anymore. Since the input image is re-
turned back by the model, it generates a high face matching
and mean quality score (Table 6, third row). When the re-
construction error Lrec is plugged off the output images lie
somewhere in the middle, between the input and target ex-
pressions, suggesting the contribution of the loss in smooth
translation of the pixels. Removing Lqual and Lid deteri-
orates the overall naturalness, with artifacts manifesting in
the eye and mouth regions. As expected, the overall best
metrics are obtained when the full LEGAN model with all
the loss components is utilized.

7. LEGAN: Optimal Upsampling
To check the effect of the different upsampling ap-

proaches on hallucination quality, we separately apply bi-
linear interpolation, transposed convolution [22] and pixel
shuffling [17] on the decoder module of the three hourglass
networks in LEGAN’s generator G. While the upsampled
pixels are interpolated based on the original pixel in the
first approach, the other two approaches explicitly learn the
possible intensity during upsampling. More specifically,
pixel shuffling blocks learn the intensity for the pixels in
the fractional indices of the original image (i.e. the up-
sampled indices) by using a set convolution channels and
have been shown to generate sharper results than transposed
convolutions. Unsurprisingly, it generates the best quanti-
tative results by outperforming the other two upsampling
approaches on 3 out of the 5 objective metrics, as shown in
Table 7. Hence we use pixel shuffling blocks in our final
implementation of LEGAN.

However, as can be seen in Figure 6, the expression and
lighting transformation masks Me and Ml are more mean-
ingful when interpolated rather than explicitly learned. This
interpolation leads to a smoother flow of upsampled pixels
with facial features and their transformations visibly more
noticeable compared to transposed convolutions and pixel
shuffling.

8. LEGAN: Optimal Value of q
As discussed in the main text, we set the value of the

hyper-parameter q = 8 for computing the quality loss Lqual.
We arrive at this specific value after experimenting with dif-
ferent possible values. Since q acts as a target for perceptual
quality while estimating Lqual during the forward pass, it
can typically range from 5 (realistic) to 10 (hyper-realistic).
We set q to all possible integral values between 5 and 10 for
evaluating the synthesis results both qualitatively (Figure 7)
and quantitatively (Table 8).

As can be seen, when q is set to 8, LEGAN generates
more stable images with much less artifacts compared to
other values of q. Also, the synthesized expressions are
visibly more noticeable for this value of q (Figure 7, top
row). When evaluated quantitatively, images generated by
LEGAN with q = 8 garner the best score for 4 out of 5 ob-
jective metrics. This is interesting as setting q = 10 (and not
8) should ideally generate hyper-realistic images and con-
sequently produce the best quantitative scores. We attribute
this behavior of LEGAN to the naturalness distribution of
the images used to train our quality model Q. Since major-
ity of these images fell in the (7-8) and (8-9) bins, and very
few in (9-10) (as shown in Figure 1), Q’s representations
are aligned to this target. As a result, Q tends to rate hyper-
realistic face images (i.e. images with mean naturalness rat-
ing between 8 - 10) with a score around 8. Such an example
can be seen in the rightmost column of the first row in Fig-
ure 4, where Q rates a hyper-realistic StyleGAN generated
image [11] as 8.3. Thus, setting q = 8 for Lqual compu-
tation (using trained Q’s weights) during LEGAN training
produces the optimal results.

9. LEGAN: Perceptual Study Details
In this section, we share more details about the interface

used for our perceptual study. As shown in Figure 8, we
ask the raters to pick the image that best matches a target
expression and lighting condition. To provide a basis for
making judgement, we also share a real image of the same
subject with neutral expression and bright lighting condi-
tion. However, this is not necessarily the input to the syn-
thesis models for the target expression and lighting gener-
ation, as we want to estimate how these models do when
the input image has more extreme expressions and lighting
conditions. The image order is also randomized to eliminate
any bias.



Figure 5: Sample qualitative results from LEGAN and its ablated variants on randomly sampled input images from MultiPIE [7] test set. The target
expression and lighting conditions for each row are - (a) (Smile, Left Shadow), (b) (Squint, Ambient), (c) (Disgust, Left Shadow), and (d) (Surprise,
Ambient).

Table 6: Ablation studies - quantitative results on held out CMU-MultiPIE [7] test set.

Models FID [9] ↓ LPIPS [23] ↓ SSIM [19] ↑ Match Score [8, 6] ↑ Quality Score ↑
wo/ disentangling 40.244 0.148 0.557 0.601 5.348

wo/ Ladv 351.511 0.460 0.352 0.476 1.74
wo/ Lcls 30.236 0.139 0.425 0.717 5.873
wo/ Lrec 40.479 0.135 0.550 0.676 5.475
wo/ Lqual 46.420 0.168 0.544 0.621 5.190
wo/ Lid 35.429 0.140 0.566 0.587 5.861
LEGAN 29.964 0.120 0.649 0.649 5.853

10. LEGAN: Model Limitations

Although LEGAN is trained on just frontal face images
acquired in a controlled setting, it can still generate realis-
tic new views even for non-frontal images with a variety of
expressions, as shown in Figures 10 and 11. However, as
with any synthesis model, LEGAN also has its limitations.
In majority of the cases where LEGAN fails to synthesize
a realistic image, the input expression is irregular with non-
frontal head pose or occlusion, as can be seen in Figure 9.
As a result, LEGAN fails to generalize and synthesizes im-
ages with incomplete translations or very little pixel manip-
ulations. One way to mitigate this problem is to extend both
our quality model and LEGAN to non-frontal facial poses
and occlusions by introducing randomly posed face images
during training.

11. LEGAN: More Qualitative Results
In this section, we share more qualitative results gener-

ated by LEGAN on unconstrained data from the AFLW [12]
and CelebA [13] datasets in Figures 10 and 11 respectively.
The randomly selected input images vary in ethnicity, gen-
der, color composition, resolution, lighting, expression and
facial pose. In order to judge LEGAN’s generalizability, we
only train the model on 33k frontal face images from Mul-
tiPIE [7] and do not fine tune it on any other dataset.

12. Recolorization Network: Architecture De-
tails

For the colorization augmentation network, we use a
generator architecture similar to the one used in [4] for
the 128×128×3 resolution. The generator is an encoder-
decoder with skip connections connecting the encoder



Figure 6: Adding different upsampling techniques in our decoder modules generates hallucinations with slightly different perceptual scores for the same
input. Here the target expression and lighting conditions are set as - (a) (Smile, Bright), and (b) (Surprise, Left Shadow). However, the transformation
masks Me and Ml are smoother and more meaningful when bilinear interpolation is used for upsampling. Since both transposed convolution [22] and pixel
shuffling [17] learn the intensity of the upsampled pixels instead of simple interpolation, the masks they generate are more fragmented and discrete. We use
pixel shuffling in our final LEGAN model.

Table 7: Effects of different upsampling - quantitative results on held out CMU-MultiPIE [7] test set.

Models FID [9] ↓ LPIPS [23] ↓ SSIM [19] ↑ Match Score [8, 6] ↑ Quality Score ↑
Bilinear Interpolation 29.933 0.128 0.630 0.653 5.823

Transposed Convolution [22] 28.585 0.125 0.635 0.644 5.835
Pixel Shuffling [17] 29.964 0.120 0.649 0.649 5.853

and decoder layers, and the discriminator is the popular
CASIANet [21] architecture. Details about the generator
layers can be found in Table 9.

We train two separate versions of the colorization net-
work with randomly selected 10,000 face images from the
UMDFaces [5] and FFHQ [10] datasets. These two trained
generators can then be used to augment LEGAN’s training
set by randomly recoloring the MultiPIE [7] images from
the training split. Such an example has been shared in Fig-
ure 12.
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Figure 7: Sample results illustrating the effect of the hyper-parameter q on synthesis quality. The input images are randomly sampled from the MultiPIE [7]
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Figure 8: Our perceptual study interface: given a base face image with
neutral expression and bright lighting (leftmost image), a rater is asked
to select the image that best matches the target expression (‘Squint’) and
lighting (‘Right Shadow’) for the same subject.
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Figure 9: Failure cases: for each input image LEGAN fails to correctly generate the target facial expression. In (a) LEGAN manages to generate a surprised
mouth but fails to open the subject’s eyes, (b) the smile is half generated due to occlusion by the subject’s fingers, (c) the target disgusted expression is
missing, and (d) the subject’s eyes are not squinted. Most of these failure cases are either due to non-frontal facial pose or occlusion.

Figure 10: Synthesized expressions and lighting conditions for the same input image, as generated by LEGAN. These input images are randomly selected
from the AFLW [12] dataset and the results are generated by randomly setting different expression and lighting targets. LEGAN is trained on 33k frontal
face images from MultiPIE [7] and we do not fine-tune the model on any other dataset. All images are 128×128×3.
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Figure 11: Synthesized expressions and lighting conditions for the same input image, as generated by LEGAN. These input images are randomly selected
from the CelebA [13] dataset and the results are generated by randomly setting different expression and lighting targets. LEGAN is trained on 33k frontal
face images from MultiPIE [7] and we do not fine-tune the model on any other dataset. All images are 128×128×3.

Figure 12: Recolorization Example: We randomly select a test image from
the MultiPIE [7] dataset and recolor it using the colorization generator
snapshots, trained using UMDFaces [5] and FFHQ [10] datasets respec-
tively. Although the image is recolored, its lighting is preserved by the
colorization generator.


