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Abstract

Hypomimia, also known as “facial masking”, is a com-

mon symptom of Parkinson’s Disease (PD). PD is a neu-

rological disorder characterized by non-motor and motor

impairments. Hypomimia is the reduction of facial expres-

siveness, including the emotion expressions. In this work,

we explore the use of static and dynamic features for the

analysis of evoked facial gestures in PD patients. The main

contributions of this work are: (1) We propose a multimodal

PD detection system based on both static and dynamic fea-

tures obtained from evoked face gestures; (2) we propose a

novel set of 17 dynamic features to characterize the facial

expressiveness and demonstrate that facial dynamics fea-

tures can be used to improve PD detection; and (3) we ana-

lyze different evoked facial expressions and its performance

for PD detection. Different expressions activate different

Action Units (AUs) and we analyze to what extent each of

these AUs contribute to PD detection. The results show that

the use of static features generated by pre-trained deep ar-

chitectures yield up to 77.36% of accuracy for PD detection

and the combination with dynamic features improves PD

detection by up to 13.46% (from 75.00% to 88.46%). Our

experiments also suggest differences in the performance of

evoked face gestures in this PD detection task.

1. Introduction

Parkinson’s Disease (PD) is a neurological disorder that

affects between 1 and 2 percent of people over 65 years

old [6]. PD is characterized by motor deficits includ-

ing bradykinesia, rigidity, postural instability, tremor, and

dysarthria. Non-motor deficits include depression, anxi-

ety, sleep disorders, and slowing of thought [31]. Besides,

bradykinesia affects facial muscles, making it difficult for

them to express emotions or specific expressions on their

faces. Possible signs of such abnormalities include reduced

range of facial muscle movement, wider eye-opening, a

half-open mouth, and slower blinking. All of these phe-

nomena in their facial expression are grouped in the litera-

ture and referred to as hypomimia [4], which is the result of

motor alterations at the level of the facial muscles.

The evaluation of the condition of Parkinson’s patients

is performed at hospitals by neurologist experts, who usu-

ally administer the Movement Disorder Society - Unified

Parkinson’s Disease Rating Scale (MDS-UPDRS) [19]. The

items evaluated with the MDS-UPDRS scale range between

0 and 4, where 0 means no perceived impairment and 4

means completely impaired. Section III of the scale in-

cludes an item to evaluate hypomimia and consequently

facial expressions in patients [19]. The following list in-

dicates the possible values that the hypomimia evaluation

item can take:

0. Normal: Normal facial expression.

1. Slight: Minimal masked facies manifested only by de-

creased frequency of blinking.

2. Mild: In addition to decreased eye-blink frequency,

masked facies present in the lower face as well, namely

fewer movements around the mouth, such as less spon-

taneous smiling, but lips not parted.

3. Moderate: Masked facies with lips parted some of the

time when the mouth is at rest.

4. Severe: Masked facies with lips parted most of the

time when the mouth is at rest.

Because neurological evaluation depends on the exper-

tise of neurologists, this measure is variable and may con-

tain biases of experts at the time of evaluation. The de-

velopment of automatic systems to assist in the evaluation

has increased over the years. These systems are used in
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different aspects of PD, such as speech [29, 28], handwrit-

ing [33, 8, 13, 9], gait [17, 10], hand movement [35], and fa-

cial expression [2]. Among these physiological modalities,

the Facial Expressivity Evaluation (FEE) is a field rarely ex-

plored in automatic PD detection, but this modality is very

important in the social interaction and the nonverbal com-

munication of PD patients. On the other hand, FEE has

become a popular field among engineers and computer sci-

entists, which opens a space for research in different appli-

cations related to Affective Computing.

Our work is focused on the study of FEE in PD patients

and how facial gesture analysis can be used to improve PD

detection. The main aim is to explore dynamic features ob-

tained from videos collected from PD patients and healthy

controls and to evaluate their capability to produce specific

face gestures during evoked emotions.

1.1. Related Works

One of the first studies of FEE in Parkinson’s patients

was conducted by Simons et al. [34]. The authors used

videos with social interactions to evoke expressions in pa-

tients. The videos were recorded using facial measure-

ments, self-questionnaires, and subjective measures based

on the Facial Action Units (FAUs) presented in [16]. The

authors evaluated a total of 44 participants (25 healthy con-

trols and 19 PD patients). The results of the study show

that patients have a reduced ability to generate spontaneous

facial expressions. In 2006, Bowers et al. [5], based on

the bradykinesia in the patients, concluded that the patients

would have slower and less amplitude of intentional fa-

cial expressions than healthy controls. The patient’s videos

were evaluated frame-by-frame and the entropy in tempo-

ral changes of the frames was calculated [32]. The results

showed that healthy controls had a higher entropy than the

patients. Additionally, the authors reported that the patients

took longer in reaching a peak in facial expression.

In 2016 Almutiry et al. [1] presented a longitudinal anal-

ysis on FEE in 4 PD patients who were recorded for 6

weeks. Their experiments considered 5 videos per week per

patient (recorded only 1 time per day). Four healthy con-

trols were also recorded for 5 days per week. All the sub-

jects performed specific facial expressions on a daily basis.

The authors used 2 feature extractors: 1) Active Appearance

Model (AAM) and 2) a Constrained Local Model (CLM),

to obtain a total of 27 facial features. The results confirmed

the observations made by Bowers et al. [5], showing that

patients had less movement capability than controls.

One year later, Bandini et al. [2] classified a total of 4

acted and imitated expressions (happiness, anger, disgust,

and sadness) involving 17 PD patients (13 male) and 17

healthy controls (6 male). Each expression was modeled

with 49 landmarks [36, 22] around the face. A linear combi-

nation of specific points was performed to extract a total of

20 features. A Support Vector Machine (SVM) was trained

to detect each emotion expressed by the participants. The

results showed that acted and imitated expressions by the

controls yielded a better accuracy than the PD patients.

More recently, Grammatikopoulou et al. [23] analyzed

the facial expressions of a total of 34 participants (23 with

PD and 11 healthy controls). This study was performed

from images captured directly with smartphones. Two ge-

ometric feature sets [37] were extracted: one using Google

Face API and the other using Microsoft Face API [21]. The

stored feature sets were used to estimate the Hypomimia

Severity index (HSi) with 2 linear regression models (one

per feature set). These indices were also used to perform

the classification between healthy controls and PD patients.

The authors report sensitivity and specificity values of 0.79
and 0.82 for HSi1, and 0.89 and 0.73 for HSi2.

1.2. Contributions of this Work

As shown in the literature review, there is still much

to explore in the field of FEE for modeling hypomimia

in Parkinson’s Disease (PD) patients. To the best of our

knowledge, this is the first work exploring dynamic feature

sets to improve PD detection. The main contributions are:

• We propose a multimodal PD detection system based

on both static and dynamic features obtained from

evoked face gestures.

• We propose a novel set of 17 dynamic features to char-

acterize the facial expressiveness and demonstrate that

facial dynamics features improve the PD detection.

• We analyze different evoked facial expressions and

their performance for PD detection. Different expres-

sions activate different action units (AUs) and we an-

alyze to what extent each of these AUs contributes to

PD detection.

Our experiments are performed on the FacePark-GITA

database. This database includes short videos with evoked

facial expressions from 30 PD patients and 24 healthy par-

ticipants. Our results demonstrate that dynamic features im-

prove the performance of PD detection with a classification

accuracy of 88.46% for the evoked surprise gesture.

2. Parkinson Detection based on Evoked Ex-

pressions from Video

Parkinson’s patients show difficulties to control the fa-

cial gestures mainly caused by bradykinesia. We propose to

study different facial gestures aimed to characterize the hy-

pomimia in PD patients. The features included in this study

can be divided into: 1) static features obtained from face

recognition pre-trained models; and 2) dynamic features ex-

tracted from motion sequences based on facial meshes. A
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Figure 1: Block diagram of the proposed PD detection system based on static and dynamic features from evoked face gestures.

Facial Expression AUs

Happy 6 + 12

Anger 9 + 15 + 16

Surprised 1 + 2 + 5 + 26

Wink 46

Table 1: AUs associated to the evoked gestures included in

our experiments.

block diagram of the systems can be seen in Figure 1, which

shows a multi-classifier approach [14] that simply averages

the classification scores of both parallel classifiers [15].

Our experiments include 4 evoked facial gestures

(Happy, Angry, Surprise and Wink) determined by differ-

ent FAUs. Each evoked gesture involves the coordination

of several facial muscles in different face regions. We have

chosen 3 of the 6 basic emotions [12]. These evoked ges-

tures have been chosen because its simplicity. These three

emotions comprise a total number of 9 FAU (see Table 1).

2.1. Static Features

In this work we employ a ResNet50 architecture [24],

with 50 layers and 25.6M parameters pre-trained for face

verification tasks [7]. This model is used to generate an

initial face representation. The model is used as feature ex-

tractor by removing the final decision layer. For each face

image, the model generates a 1 × 2048 feature vector. Al-

though the model was initially trained for face verification,

the generated embeddings are rich in face features including

gestures [20, 30]

For each evoked expression video sequence, we select

the frame representing a maximum peak of the facial ges-

ture (Apex). The 1×2048 feature vector is extracted for the

selected frame (only one feature vector per sequence).

2.2. Dynamic Features

Searching to characterize the hypomimia in PD patients,

we propose to study dynamic features of different facial ar-

eas using facial landmark detection and sequence analysis.

The most recent facial landmark detection algorithms are

able to get a large number of facial landmarks in different

pose and changing illumination conditions. The position of

these landmarks provides information about the movement

of different face regions. In our approach, we use the land-

marks to calculate distances between key face regions and

characterize the movements associated to the AUs. There-

fore, our dynamic feature set is structured into two blocks:

i) Facial Landmark Detection Algorithm; ii) Dynamic Fea-

ture Extraction.

2.2.1 Facial Landmark Detection Algorithm

The performance of facial landmarks detectors has been

largely improved in the last years [11, 27]. In this work

we use the landmark detector from MediaPipe library1 that

estimates 468 3D face landmarks in real-time [27]. The 468
landmarks contain information of different facial areas like

cheeks, forehead, mouth, eyes, etc. This detailed face mesh

allows to analyze different face regions and the motion of

most of the 43 muscles in the face.

The library MediaPipe contains different solutions. In

the present study, we use two solutions: i) MediaPipe Face

Mesh [26], which is a face geometry solution that estimates

468 3D face landmarks; and ii) MediaPipe Holistic, which

utilizes the previous 468 face landmark model in a newer

version that gets better results in the face gestures included

in this work. The two face landmark models are based on a

custom residual neural network architecture. For all points

we used the average between both models.

1https://google.github.io/mediapipe/
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Neutral expression Smile expression Surprise expression Left wink

Figure 2: Example of the facial mesh generated by MediaPipe for four different face expressions. Representative FAUs for

each expression are highlighted in red.

We analyze each frame of the videos as follows: i) The

models invoke the face detector based on BlazeFace [3] to

select the most centered face. BlazeFace includes Convo-

lutional Neural Networks (CNN) inspired by, but distinct

from MobileNetV1/V2 [25]. And ii) The models invoke a

3D landmark network whose input is a cropped video frame

without additional depth input. The model outputs the posi-

tions of the 3D points mesh of 468 landmarks [26].

The models outputs are:

• x and y: Landmark coordinates normalized to [0, 1] by

the image width and height respectively.

• z: Represents the landmark depth with the depth at the

center of the head being the origin, and the smaller the

value, the closer the landmark is to the camera.

• Visibility: A value ranging between [0, 1] indicating

the likelihood of the landmark being visible or hidden

(occluded by another body part) on a frame.

• Presence: A value that indicates if the point is present

or outside a frame.

Figure 2 shows examples of the face meshes of a partic-

ipant during the evocation of different facial gestures.

2.2.2 Dynamic Feature Extraction

The facial mesh of a single user can be described as a set of

landmarks α
j
i with i = 1, 2, . . . , 468, and j = 1, 2, . . . , N :

α
j
i =

[

xj
i , y

j
i , z

j
i

]

, (1)

where i denotes a particular landmark and j denotes the

frame at which the face mesh was captured. The landmark

α
j
i is transformed to a common coordinate system by sub-

tracting the center of mass of the face mesh:

m
j =

1

468

468
∑

i=1

α
j
i . (2)

The normalized landmarks are therefore:

α̂
j
i = α

j
i −m

j . (3)

With all the feature points centered on the same coordi-

nate axis we then normalize the scale of the whole facial

mesh. This is done by obtaining the InterCanthal Distance

(ICD) or the Interocular distance for each frame, then this

distance is averaged across frames:

ICD =
1

N

N
∑

j=1

∥

∥

∥
α̂

j
133

− α̂
j
362

∥

∥

∥
, (4)

where ‖∗‖ is the L2-norm, and the feature points α̂
j
133

and

α̂
j
362

are the canthal locations of each eye. Finally the nor-

malized landmarks are:

β
j
i =

α̂
j
i

ICD
. (5)

With the feature points normalized, we calculate a total

of 8 distances Dj
i related to the face configuration for each

frame, see Table 2 and Figure 3, where the distances

djm,n =
∥

∥

∥
β

j
m − β

j
n

∥

∥

∥
(6)

are calculated between the landmarks m and n.

We propose to model the facial dynamics through 17 fea-

tures as described in Table 3. This feature set is aimed to

characterize the dynamics of each of the 8 proposed dis-

tances Dj
i (i denotes each distance) across the N frames

(j = 1, . . . , N ). The proposed feature set includes mea-

sures related to the way each user performs each face ges-

ture: velocity (v), acceleration (a), and jerk (j). For each

video sequence (i.e. one video sequence for face gesture),

we finally obtain a feature matrix F ∈ R
8 × R

17.
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Table 2: Description of the 8 computed distances Dj
i (i = 1, . . . , 8) measured for each face mesh (one for each frame

j = 1, . . . , N ). The subscript djxxx,yyy indicates the index of the landmarks of the face mesh obtained from MediaPipe.

Opening of the left eye: Dj
1
= 1

7
(dj

398,382 + dj
384,381 + dj

385,380 + dj
386,374 + dj

387,373 + dj
388,390 + dj

466,249)

Opening of the right eye: Dj
2
= 1

7
(dj

246,7 + dj
161,163 + dj

160,144 + dj
159,145 + dj

158,153 + dj
157,154 + dj

173,155)

Opening of the jaw: Dj
3
= 1

7
(dj

80,170 + dj
81,140 + dj

82,171 + dj
13,175 + dj

312,396 + dj
311,369 + dj

310,395)

Opening of the mouth: Dj
4
= 1

7
(dj

80,88 + dj
81,178 + dj

82,87 + dj
13,14 + dj

312,317 + dj
311,402 + dj

310,318)

Left eyebrow height: Dj
5
= 1

5
(dj

384,336 + dj
385,296 + dj

386,334 + dj
387,293 + dj

388,300)

Right eyebrow height: Dj
6
= 1

5
(dj

161,70 + dj
160,63 + dj

159,105 + dj
158,66 + dj

157,107)

Lip Stretch: Dj
7
= 1

2
(dj

33,78 + dj
263,308)

Mouth width: Dj
8
= (dj

78,308)

Figure 3: Distances measured to characterize the face dynamics.

2.3. SVM Classification

The automatic classification between healthy people

and PD patients is performed using Support Vector Ma-

chines (SVMs). The SVM classification experiments

consider linear and Gaussian kernels. The optimiza-

tion of hyper-parameters is performed in a search grid

of powers of ten with C ∈ {10−8, 10−7, . . . , 102, 103}
and γ ∈ {10−8, 10−7, . . . , 103} for the Gaussian ker-

nel, and for the linear kernel the search considered C ∈
{10−8, 10−7, . . . , 103, 104}. Optimization and evaluation

of the models is performed following a 5-folds cross-

validation strategy. Results of the SVM classification are

reported in terms of Accuracy (Acc), Precision (Pre), Re-

call (Rec), and F1-Score (F1).

3. Experiments and Results

3.1. Database

The FacePark database was created by GITA Lab2. The

recording of patients is still ongoing and the most up-

dated version of the corpus contains video recordings of 24

healthy participants and 30 PD patients. The videos were

recorded at 15 frames per second in non-controlled environ-

ment conditions, i.e., light conditions and the background

were not controlled prior the recording and differ among

participants. PD patients were diagnosed by an expert neu-

rologist and were evaluated according to the MDS-UPDRS-

III scale and the Hoehn and Yahr scale (H&Y) [18]. A sum-

mary of the clinical and demographic information is pre-

2https://gita.udea.edu.co/
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Table 3: Description of the 17 features F i
k (k = 1, . . . , 17)

extracted from each distance Dj
i across the N frames (j =

1, . . . , N ).

F i
1
= number of local maxima N

F i
2
= (average velocity ṽ)/ |v|

max

F i
3
= (average velocity ṽ)/vmax

F i
4
= (velocity rms vRMS)/ |v|max

F i
5
= (centripetal acceleration rms ac)/amax

F i
6
= (tangential acceleration rms at)/amax

F i
7
= (acceleration rms aRMS)/amax

F i
8
= (integrated abs. centri. acc. rms aic)/amax

F i
9
= standard deviation of v

F i
10

= standard deviation of a

F i
11

= average abs. jerk |j|

F i
12

= average jerk j̃

F i
13

= |j|
max

F i
14

= j̃
max

F i
15

= average rms jerk jRMS

F i
16

= (
∑

(v > 0)/(
∑

(v < 0))

F i
17

= maxj D
j
i −minj D

j
i

sented in Table 4. All participants gave written informed

consent. The study is in accordance with the Declaration of

Helsinki and it was approved by the Ethical Research Com-

mittee at the University of Antioquia.

The participants of the study were asked to produce dif-

ferent facial expressions while being recorded. A total of

five video-task recordings are included: right eye wink, left

eye wink, smile, anger, and surprise. The average duration

of each video is 6 seconds. Patients have an average age of

69 years old and healthy subjects were chosen with a simi-

lar range of age. Possible bias introduced by age or gender

were discarded via a chi-square statistical test (p = 0.44)

and a Welch’s t-test (p = 0.15), respectively.

3.2. Experimental Protocol

Our acquisition protocol contains videos associated with

different tasks that evoke facial gestures, including emo-

tional responses (smile, anger and surprise) and coordinated

facial gestures (right eye wink, left eye wink). Given the

nature of winking, both activities are grouped into a single

set of features for the experiments performed in this work.

We propose an experimental protocol to explore: 1) the dis-

criminative power of static and dynamic feature sets; and 2)

the discriminative power of different face gestures.

Static features classifier: We evaluate the use of a pre-

trained Face Recognition model and evaluate its capability

in the classification of PD patients.

• Hypothesis (H1): the facial expressions shown during

Table 4: Demographic and clinical information of the par-

ticipants included in the FacePark-GITA database. Table

from [20].

PD patients Healthy participants

Men Women Men Women

# of Participants 18 12 12 12

Age [years] 70.2 ± 10.4 67.4 ± 10.9 65.3 ± 8.7 65.2 ± 10.1

Age range [years] 52 – 90 53 – 87 49 – 83 49 – 80

t [years] 8.7 ± 5.4 15.6 ± 17.3 — —

t range [years] 2 – 20 1 – 45 — —

MDS-UPDRS-III 35.4 ± 13.9 29.7 ± 12.3 — —

MDS-UPDRS-III range 16 – 65 15 – 54 — —

H&Y 2.3 ± 0.5 2.5 ± 0.5 — —

H&Y range 2 – 3 2 – 3 — —

MDS-UPDRS: Movement Disorder Society - Unified Parkinson’s Disease Rating

Scale. H&Y: Hoehn & Yahr scale. t: Years since diagnosis

evoked emotions are different between PD patients and

healthy controls.

• Experiment: we evaluate the performance of PD detec-

tion for different face gestures using a pre-trained Face

Recognition model trained with VGGFace2 [7] and an

acquisition protocol including 4 evoked gestures.

• Methodology: First, one Apex frame per video-task

was extracted manually in all the participants. Later,

each Apex frame is used as input of the pre-trained

ResNet50 model (see Section 2.1) to obtain a set of

feature vectors. Finally, these feature vectors are used

to determine to what extent they can discriminate be-

tween PD patients and healthy controls.

Dynamic features classifier: We propose a dynamic fea-

ture set for modeling Hypomimia in facial expressions and

to improve the PD detection.

• Hypothesis (H2): dynamic information in evoked fa-

cial gesture allows modeling of hypomimia in PD pa-

tients.

• Experiment: we propose a feature set to model the dy-

namics in areas directly related to the FAUs of each

facial gesture. We evaluate the performance of this fea-

ture set in the detection of PD patients.

• Methodology: Using the methodology presented in

Section 2.2.2 for dynamic feature extraction, all videos

are analyzed and their resulting dynamic feature vec-

tors are used in an SVM classifier to determine the

effectiveness in classifying between PD patients and

healthy controls.

Multimodal classifier: We propose a multimodal system

[15] with the combination of static and dynamic features to

improve the performance of PD detection.
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Table 5: Binary classification results (PD vs Healthy) using

the 3 proposed strategies. Accuracy (Acc), Precision (Pre),

Recall (Rec).

Static Features

Facial gestures Acc[%] Pre[%] Rec[%] F1[%]

Happy 75.00 74.29 86.67 80.00

Angry 66.00 67.74 75.00 71.19

Surprise 75.00 72.22 89.66 80.00

Wink 77.36 75.00 90.00 81.82

Dynamic Features

Happy 67.31 68.57 80.00 73.85

Angry 66.00 66.67 78.57 72.13

Surprise 71.15 70.59 82.76 76.19

Wink 69.81 69.44 83.33 75.76

Static + Dynamic (Linear SVM)

Happy 67.31 69.70 76.67 73.02

Angry 78.00 75.76 89.29 81.97

Surprise 88.46 87.10 93.10 90.00

Wink 79.25 82.76 80.00 81.36

Static + Dynamic (RBF SVM)

Happy 73.08 73.53 83.33 78.12

Angry 76.00 73.53 89.29 80.65

Surprise 86.54 86.67 89.66 88.14

Wink 81.13 85.71 80.00 82.76

• Hypothesis (H3): The complementarity between static

and dynamic information from the video sequences al-

lows to better classify between PD patients and healthy

controls.

• Experiment: The decision scores from the static and

dynamic feature classifiers are combined for improved

PD detection.

• Methodology: the classification score of both static

and dynamic feature classifiers are combined at score

level using Sum Rule fusion [15].

3.3. Results

Table 5 summarizes the results of the 3 experiments. The

results show that Apex images (Static Features) and pre-

trained Face Recognition models obtain PD classification

accuracies from 66.00% to 77.36% depending on the face

gesture (one decision per video, average duration 6 seconds,

see Section 3.1 for the experimental details). These results

provide support for the first hypothesis (H1), where it is pre-

sented the idea that images during maximal evocation of a

gesture allow PD detection. Besides, the results obtained

for the dynamic feature set show accuracies ranging from

66.00% to 71.15%. This performance suggests that dy-

namic information allows the modeling of hypomimia and

supports the second hypothesis (H2).

Regarding the performance obtained for the different

face gestures, the best results are achieved using surprise

and wink gestures that are directly related to the upper mus-

cles of the face (AU 1, 2, 5, 46, etc.), suggesting that these

AUs provide more information to model hypomimia.

Finally, it can be observed that the combination at the

score level of static and dynamic information increases the

PD detection accuracy for almost all facial gestures (see

Figure 4). The improvements of the classifiers are above

3.77% (Wink gesture) and up to 13.46% (Surprise gesture).

The new representation space created with the multimodal

scores improves the separation between healthy controls

and PD patients, demonstrating the third hypothesis (H3)

presented in this work.

4. Conclusions

This work has explored the performance of evoked fa-

cial gestures for PD detection. We have studied the use of

static and dynamic features for modeling hypomimia in PD

patients. Face videos of people while evoking four different

facial gestures were considered for this study (i.e., Happy,

Angry, Surprise, Wink). We have proposed a novel feature

set of 17 features aimed to characterize the expressiveness

in evoked facial gestures in video sequences.

The approach based on static features provides up to

77.36% PD detection accuracy in the wink gesture, which

is 11.36% higher than using the angry expression. Simi-

larly, it can be observed that the dynamic features provided

a performance of 71.15% PD detection accuracy using the

surprise gesture. Once gain the angry gesture obtained the

lowest PD detection accuracy with 66.15%. These result

suggests that: 1) both dynamic and static features can be

used for PD detection, and 2) different face gestures (char-

acterized by different AUs) show performance differences

with highest PD detection rates obtained by gestures asso-

ciated to upper muscles of the face.

Finally, the static and dynamic domains were combined

following a score level fusion strategy. This approach evi-

dences that the results of both domains are complementary

to each other and improved the separation space of healthy

controls and PD patients. The results showed improvements

in the performance of the system, increasing up to 13.46%
in PD detection accuracy (from 75.00% to 88.46%).

The results obtained in this work encourage us to explore

new approaches to model hypomimia through static and dy-

namic features. There is a need for larger databases for PD

detection based on facial expressions. With larger datasets,

approaches based on data driven methods (e.g. deep learn-

ing architectures) should be considered.
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Figure 4: ROC curves for the different feature sets and facial gestures.
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