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Abstract 

 
Micro-expressions recognition is a challenge because it 

involves subtle variations in facial organs. In this paper, 
first, we propose a novel pipeline to learn a facial graph 
(nodes and edges) representation to capture these local 
subtle variations. We express the micro-expressions with 
multi-patches based on facial landmarks and then stack 
these patches into channels while using a depthwise 
convolution (DConv) to learn the features inside the 
patches, namely, node learning. Then, the encoder of the 
transformer (ETran) is utilized to learn the relationships 
between the nodes, namely, edge learning. Based on node 
and edge learning, a learned facial graph representation is 
obtained. Second, because the occurrence of an expression 
is closely bound to action units, we design an AU-GCN to 
learn the action unit’s matrix by embedding and GCN. 
Finally, we propose a fusion model to introduce the action 
unit’s matrix into the learned facial graph representation. 
The experiments are comparing with SOTA on various 
evaluation criteria, including common classifications on 
CASME II and SAMM datasets, and also conducted 
following Micro-expression Grand Challenge 2019 
protocol. 
 

1. Introduction 
 
Facial expression is the most direct way of expressing 

human emotion, and it is also a very important way to 
understand human intention in human-centered computing. 
Facial expressions are divided into macro-expressions and 
micro-expressions (MEs). From a temporal perspective, 
macro-expressions last between 0.75 s and 2 s, while MEs 
last between 0.04 s and 0.2 s [1]. In spatial terms, facial 
muscle movements of MEs are more slight than those in 
macro-expressions. In addition, MEs are spontaneous, 
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meaning that a person does not know when he or she is 
exhibiting MEs. Consequently, MEs can show people's real 
emotions; therefore, MEs are often examined on important 
occasions, such as the diagnosis of mental diseases and 
during interrogation of major crime cases. Recognizing the 
emotional categories is difficult because revealing the 
spatial-temporal aspect in MEs is not obvious. Important 
micro information is easy to ignore especially when people 
use the naked eye to observe. A Micro-Expression Training 
Tool (METT) [2] has been developed to aid recognition. 
Even for professionals with special training, the results are 
still not ideal. Therefore, computer technology is needed to 
assist with micro-expression recognition (MER). 

In recent years, the development of ME has been very 
rapid. The literature includes three major categories as 
follows: LBP-based [22, 23, 25, 26, 27, 28, 29, 30, 31], 
optical-flow-based [32, 33, 34, 35, 36], and other novel 
methods (mainly deep learning) [1, 3, 4, 9, 14, 15, 16, 17, 
20, 37, 38, 39, 40, 41, 42, 43, 44]. The expansion of 
knowledge in the deep learning community has made great 
strides in the development of computer vision, as well as 
the field of MER. The current technology, after a series of 
preprocessing operations, first uses the method based on 
optical flow [1, 3, 4, 5, 6, 7, 8, 9] to extract the features of 
MEs. Efficient neural networks, usually CNN [10, 11], 
LSTM [12], GCN [13], etc., and their variant structures or 
combinations are designed to complete the feature learning 
task. In addition, there are some novel methods for MER, 
such as transfer learning [14], capsule networks [15], and 
knowledge distillation [16]. 

The variation in ME is caused by the subtle movements 
of facial muscles. Meanwhile, the variation of muscle 
movements reflected in the ME frame is mainly geometry 
variation. In contrast, texture variation is more subtle, and 
is easily disturbed by factors such as race and light 
environment. The optical flow-based method mentioned 
above mainly focuses on extracting facial geometry 
features of MEs, while the LBP-based method mainly 
focuses on extracting facial texture features of MEs. 
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Therefore, the feature extraction method based on LBP is 
not the best for recognition effect. However, because 
feature extraction using the optical flow method is the result 
of manual calculation, it is less self-adaptable when 
compared with the deep learning method. In a previous 
study [17], Lei et al. proposed a method from the 
perspective of deep learning to introduce a learning-based 
video motion magnification network (MagNet) [18] into the 
magnification step of MEs through transfer learning. The 
magnified shape representation, which is also called 
geometry features, is extracted from the intermediate layer 
as inputs for further feature extraction and learning. This 
method had the best accuracy rate at the time of report, 
which proves that magnified geometry features have a 
robust contribution to MER. However, in the subsequent 
process, this method roughly reduces the two-dimensional 
feature to a one-dimensional vector and ignores the loss of 
spatial information. Moreover, this method does not take 
into account the mechanism by which facial expressions are 
encoded by action units (AUs). For example, the expression 
of happiness is encoded by AU6 (cheek raise), AU12 (lip 
corner puller), and AU25 (lips part) [19]. Therefore, there 
is room for improvement. 

In the facial action coding system (FACS) [19] [54], the 
AUs explain the occurrence of facial expressions as facial 
movement based on muscles. Each AU corresponds to the 
facial movement of a specific area, and different classes of 
expressions correspond to the combination of different AUs. 
Therefore, the information contained in the AUs can be 
helpful for facial expression recognition. As a kind of facial 
expression, ME is also applicable, especially in the 
recognition method based on geometric features, and 
adding the information of the AUs will improve the 
recognition performance. In 2020, the latest two papers on 
this topic [16, 20] both propose a network structure in 
which AU information is introduced through dual channels. 
One channel is generally a common feature extraction 

method for MEs, and the other channel contains AU 
information. In the channel with AU information, AUs are 
introduced by the network structures of knowledge 
distillation [21] or GCN [13]. In the end, the two channels 
merge in a specific way. It is common knowledge that the 
variation of MEs is very subtle in the whole face; therefore, 
it is very rough to drop the whole image into the network 
directly. Thus, Lei et al. [17] utilized a facial graph 
proposed by Zhong et al. [53] to focus on these subtle but 
important parts, while using magnified geometric features 
as nodes, which has been proven to be more effective. 

In response to the above problems, in this paper, the main 
contributions to the MER field are as follows: 

(1) We propose a novel pipeline to learn a facial graph 
(nodes and edges) representation based on magnified 
geometry features. Depthwise convolution is adopted for 
node learning, and the encoder of the transformer is adopted 
for edge learning. 

(2) The AU information is learned through the GCN in 
the form of an adjacency matrix based on conditional 
probability. Moreover, we propose a reasonable two-
channel fusion mechanism that efficiently combines the AU 
matrix with facial graph representation. 

(3) Finally, we propose an end-to-end trainable MER 
network, which achieves the best recognition rate in two 
public datasets and their composite dataset. 

2. Proposed method 
 
In this paper, our proposed network structure is that one 

channel learns a facial graph representation, another 
channel learns an action unit matrix, and a novel 
mechanism is utilized to fuse the outputs of these two 
channels to recognize MEs. In our proposed method, as 
Figure 1 shows, there is one onset frame and one apex frame 
input into MagNet [18] to extract the magnified shape 

 
Figure 1: Proposed network structure. 



 

 

features from the intermediate layer. Similar to [17], we 
extracted 30 node patches with a size of 7×7 based on the 
eyebrow and mouth landmarks, which can be seen as a 
facial graph. Then, the graph representation was learned by 
the proposed node learning and edge learning models. On 
the other hand, nine AUs belonging to the eyebrow and 
mouth areas were embedded and fed into the GCN with 
their relationships to achieve the AU feature matrix [20]. 
Finally, using a designed fusion strategy, the final ME 
classification was performed by combining AUs with the 
learned facial graph representation. 

2.1. Node learning: Integrating features inside 
node patches by depthwise convolution 

Chollet et al. [45] proposed the mechanism by which the 
mapping of cross-channel correlations and spatial 
correlations in the feature maps of convolutional neural 
networks can be entirely decoupled. Based on this, 
depthwise separable convolution (DWSConv) was 
designed, which consists of depthwise convolution and 
pointwise convolution. In short, DWSConv decomposes 
the complete traditional convolution process into two steps. 
The first step independently performs a spatial convolution 
over each channel while keeping the number of channels 
unchanged. The second step performs a 1×1 convolution to 
project the channel space from the input onto the output. 
Xception, an architecture, based on the DWSConv with 
residual connections, has proven to be practical on many 
datasets. 

As Figure 1 shows, a magnified shape representation was 
extracted from MagNet, and patches based on landmarks as 

nodes were extracted from the shape representation. At this 
time, a multidimensional matrix with a size of N × H × W 
was obtained, where N is the number of landmarks and H 
and W are the height and width of the patch size, 
respectively. To address these patches, one straightforward 
method [17] is to compress the two-dimensional patches 
with a size of H × W directly into a one-dimensional vector 
with a size of 1× (H×W) to represent the nodes of the graph 
structure. However, the rough process loses the vertical 
spatial information between pixels inside the patches. 
Therefore, to integrate the spatial information in patches 
using deep learning, in this paper, we innovatively regard 
the patches as channels. From this perspective, our 
proposed graph structure with N node patches can be seen 
as an image with N channels, and then depthwise 
convolution can be applied to integrate features from each 
channel. Finally, the proposed depthwise convolution 
(DConv) can preserve the internal spatial information of 
each node patch. We call this step node learning. 

As shown in Figure 2, DConv can ensure that patches (H 
× W) from N channels are convolved separately and do not 
interfere with each other. The two-dimensional spatial 
features inside the patches are extracted by convolution to 
preserve spatial information. See section 3 for the 
implementation details. In the subsequent ablation analysis, 
we also proved the effectiveness of this module and 
performed parameter analysis experiments on the size of the 
convolution kernel. 

2.2. Edge learning: Learning relationship between 
node patches by encoder of transformer 

The vanilla transformer [46] consists of two modules, the 
encoder and decoder. The encoder consists of six layers, 
each mainly consisting of a multi-head self-attention 
mechanism and a fully connected feed-forward network. 
The decoder is also a stack of six layers, but each layer is 
mainly composed of a multi-head self-attention mechanism, 
a multi-head self-attention mechanism combined with the 
output of the encoder and decoder, and a fully connected 
feed-forward network. The function of the encoder is to 
learn the input features based on a multi-head self-attention 
mechanism to obtain an effective feature map. The decoder 

 
Figure 2: Node learning: DConv. The facial graph is seen 
as the multi-channels patches and learns the nodes features 
by channel-wise convolution. 𝑷, 𝑷ᇱ ∈ 𝑹𝑯×𝑾×𝑵. 

 
Figure 3: Edge learning: ETran. The encoder of the transformer. The multi-channels node patches 𝑷ᇱ are transformed to sequential 
vectors 𝑺. The encoder of the transformer is used to learn the edges features. 𝑺, 𝒁 ∈ 𝑹𝟏×𝑫, 𝑫 = 𝑯 × 𝑾. 



 

 

will combine with the feature map learned by the encoder 
to carry out feature learning based on a multi-head self-
attention and predict the output of each position. Currently, 
the transformer and its improved versions are widely used 
in the NLP community. 

In the feature learning of depthwise convolution 
described above, node learning is considered. The next step 
requires global feature learning between node patches, 
namely, edge learning. First, we utilized the attention 
mechanism ETran (Encoder of Transformer) for ME 
feature extraction due to the mechanism of the transformer, 
which can compute the relationships between components 
in a sequence. Each node patch as an independent 
component was fed into ETran, and then it is possible to 
learn the relationship, namely, edges, between nodes. Up to 
this step, the whole graph representation has been 
automatically learned from DConv and ETran. 

As shown in Figure 3, to feed the node patches 𝑃ᇱ ∈𝑅ே×ு×ௐ  into ETran, patches  𝑃௜ᇱ ∈ 𝑅ு×ௐ, 𝑖 ∈ (1,2, . . , 𝑁) 
are compressed to vectors 𝑆௜ ∈ 𝑅ଵ×஽, 𝑖 ∈ (1,2, . . , 𝑁), 𝐷 =𝐻 × 𝑊. Because node learning has been performed before 
this step, the spatial feature loss inside patches resulting 
from compression can be avoided to some extent. Then, 
following the rules of transformers, each of the vectors 𝑆௜  
produces 𝑄௜ , 𝐾௜, and 𝑉௜, 𝑖 ∈ (1,2, . . , 𝑁), which are queries 
and a set of key-value pairs, respectively. The rules of the 
multi–head self-attention [46] are as follows: 
For each head: 

 
𝑂௜(1, … , 𝑁)= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄௜𝐾ଵ்ඥ𝑑௄ , … , 𝑄௜𝐾ே்ඥ𝑑௄ ) (1) 

 𝑌௜ = 𝑂௜(1)𝑉ଵ+, … , +𝑂௜(𝑁)𝑉ே (2) 
For 8 heads: 
 𝑍௜ = 𝐶𝑜𝑛𝑐𝑎𝑡൫𝑌௜௛௘௔ௗଵ, … , 𝑌௜௛௘௔ௗ଼൯𝑊ை (3)𝑊ை is a weight matrix. We use eight heads and ignore the 
subsequent operations of residual connections and feed 
forward to simplify formula presentation. In the case of 𝑆ଵ, 
its 𝑄ଵ would be multiplied by the 𝐾ଵ, …, 𝐾ே, divided by the 
square root of 𝑑௞, and then calculated by Softmax to give 𝑂ଵ(1, . . . , 𝑁). Each element in 𝑂ଵ is multiplied by 𝑉ଵ..., 𝑉ே, 
and then added to get 𝑌ଵ, which is the result after attention 
matching with the global information. That is, each output 𝑌௜ is fully integrated with every 𝑆௜ (one 𝑆௜  means one node 
patch). As Figure 3 shows, we obtained a new matrix. See 
section 3 for the detailed implementation. The effectiveness 
of ETran has also been proven in the subsequent ablation 
analysis, and the analysis experiment of parameters in 
ETran has also been carried out. 

2.3. AUFusion: Importing AUs by GCN 

GCN [13] performs convolution based on a graph that 
can be understood as a non-Euclidean structure (CNN 

cannot be used on this structure). A graph consists of nodes 
and edges (a relationship between nodes). When GCN is 
performed, nodes and edges are input as node matrix 𝑋 ∈𝑅௡×ௗ  and adjacency matrix 𝐴 ∈ 𝑅௡×௡ , in which 𝑛  is the 
number of nodes and 𝑑  is the dimension of each node 
vector. The layer-wise propagation rules [13] are as follows: 

 𝐻(௟ାଵ) =  𝜎(𝐷෩ିଵଶ𝐴ሚ𝐷෩ିଵଶ𝐻(௟)𝑊(௟)) (4)

 𝐴ሚ = 𝐴 + 𝐼ே (5)

 𝐷෩௜௜ = ෍ 𝐴ሚ௜௝௝  (6)𝐻(௟) is the input data of the l-th layer, and 𝐻(଴) = 𝑋. 𝐼ே  
is the identity matrix. 𝜎(∙)  represents the nonlinear 
activation function. 𝑊(௟)  is the trainable weight matrix. 
Based on these rules, node features can be updated 
according to the relationship between them. 

ME can be represented by different combinations of AUs. 
When an ME appears, the AUs associated with the ME of 
this emotion type will be activated. In view of this, there is 
a dependency between each AU, and the cooccurrence in 
the training set can be used to describe the relationship 
between them [20]. As mentioned previously, our method 
only utilizes features from the eyebrows and mouth, and we 
selected nine AUs involved according to the FACS [19]. 
Thus, the cooccurrence relationship between these nine 
AUs can form an adjacent matrix 𝐴஺௎ ∈ 𝑅ଽ×ଽ. On the other 
hand, we applied word embedding [56] to learn the node 
matrix of these nine AUs. Embedding is a learned lookup 
table that is popular in the NLP community. Embedding can 
map the word sequences from their idx space {0,1,2, … , 𝑛} 
to high-dimensional space 𝑋 ∈ 𝑅௡×ௗ , which can make the 
machine better understand language. Here, nine AUs can be 
expressed as 𝑋஺௎ ∈ 𝑅ଽ×ௗ , which is learned by back 
propagation in embedding. Finally, we used GCN to learn 

 
Figure 4: AUGCN 

 
Figure 5: AUFusion 



 

 

more precise features for the AU node matrix 𝐻஺௎ ∈𝑅ଽ×ௗ based on the adjacent matrix and trainable weight 
matrix in Equation (4). At this point, the network has 
achieved the AU matrix and a learned facial graph 
representation (described in edge learning). To combine 
AUs with our facial graph representation, we designed a 
fusion network to combine 𝐻஺௎ ∈ 𝑅ଽ×ௗ with learned facial 
features in edge learning. We named this pipeline 
AUFusion. 

We designed a model, namely, AUGCN, which can be 
seen in Figure 4. The node matrix was generated by word 
embedding [56]. More specifically, 9 AUs are represented 
by 0, 1, 2, …, 8 and stored in an input vector. Then, the 
embedding class (torch.nn.Embedding) in Pytorch is 
utilized to map the input vector to the nodes matrix. The 
adjacency matrix was generated by conditional probability 
[20]. Two of them are fed into the GCN of two layers for 
feature learning. After this, as seen in Figures 4 and 5, the 
output 𝐻஺௎  was divided into two parts, since three of the 
AUs used only occur in the eyebrows (AoE), and the six 
remaining AUs only occur in the mouth (AoM). This is also 
an advantage of using facial graph representation that 
compares other representations. We can flexibly separate 
features (two ETran for two regions separately), eyebrow 
facial features fusing eyebrow AU features while mouth 
facial features fuse mouth AU features. As seen in Figure 5, 
the AUs of the eyebrows (AoE) and AUs of the mouth 
(AoM) take the dot product with each corresponding vector 
from ETran. Then, 𝑜ଵ and 𝑜ଶ are cascades for classification. 
See section 3 for the detailed implementation. Experiments 
on the selection of the method to generate a node matrix 
have also been carried out. 

3. Implementation of the experiments 

3.1. Datasets 
In our experiment, the Chinese Academy of Sciences 

Micro-expression II (CASME II) [47], Spontaneous 
Activity and Micro-Movements (SAMM) [48] datasets, and 
Spontaneous micro-expression corpus (SMIC) [24] were 
used, which are currently the three most commonly used 
datasets. 

In CASME II, the recording rate of the camera is 200 fps, 
the resolution is 640×480, and the facial resolution is 
280×340. The participants are one ethnicity. The total 
number of samples is 255. CASME II has emotion labels, 
apex frame labels and AU labels. Since AU labels for five 
of the samples were not been provided, the total number of 
samples in our experiment was 250. 

In SAMM, the recording rate of the camera is 200 fps, 
the resolution is 2040×1088, and the facial resolution is 
400×400. The participants are 13 different ethnicities. The 
total number of samples with emotion labels, apex frame 
labels, and AU labels was 159. 

In SMIC, the recording rate of the camera is 100 fps, the 
resolution is 640 ×480. The ethnicities of participants are 
diverse (Asian, Caucasians, and African). The total number 
of samples without apex frame labels, and AU labels was 
164. Follow the previous work [3], the apex frames can be 
roughly spotted by the difference deviation. 

In our experiments, evaluations based on four 
classifications and five classifications were carried out on 
CASME II and SAMM, respectively. At the same time, we 
also evaluated the composite database (CASME II + 
SAMM with 409 of the total samples) based on four 
classifications. The dataset partitioning method of the four 
classifications refers to [3], and the five classifications refer 
to [8, 17]. The AUs associated with the eyebrow and mouth 
areas are AU1, AU2, AU4, AU10, AU12, AU14, AU15, 
AU17, and AU25 [19]. Besides, we utilized the composite 
database evaluation (CDE) protocol from the Second Facial 
Micro-Expressions Grand Challenge (MEGC 2019) [55]. 
The CDE reorganizes CASME II, SAMM, and SMIC into 
442 samples with 3 class and 68 subjects. Because the 
SMIC doesn’t provide the annotations of the AUs, we only 
use the AUs information of the CASME II and SAMM to 
generate the adjacency matrix to apply our proposed 
methods to CDE. 

3.2. Preprocessing 
The onset and apex frames were extracted from the 

sequence of ME frames. The onset frame is the beginning 
of the ME, and the apex frame is the moment when the 
muscle movement of the ME is most intense. These frames 
were obtained through the annotation of the dataset. Then, 
the frames were aligned, cropped, gray processed and 
augmented. We obtained images 𝐼ଵ  (onset frame) and 𝐼ଶ 
(apex frame) with a size of 256×256. 

3.3. Patches on the facial landmarks from 
magnified shape representation 

First, following [17], 𝐼ଵ and 𝐼ଶ were put into MagNet [18] 
to obtain the magnified 𝑔 (shape representation) from the 
intermediate layer. The specific operation of the network 
was to multiply the shape difference (between two shape 
representations which are from 𝐼ଵ  and 𝐼ଶ ) with the 𝛼 
(magnified factor) and then add it to the 𝐼ଶ  to obtain the 
magnified 𝑔 with the size of 128×128. Based on this, the 
different 𝛼  (1.2, 1.4, 1.6, …, 2.8, 3.0) can be used to 
augment the dataset again. The coordinates of the 68 facial 
landmarks of the magnified 𝑔  were obtained based on 
DILB. Then, the 7×7 patches from 30 facial landmarks of 
the eyebrow and mouth regions were extracted. The size of 
the 𝑃 was 30×7×7. There were 30 landmarks, also called 30 
channels. The height and width were 7×7. 

3.4. Global feature learning 



 

 

The 𝑃 was sent into the DConv module (one layer) to 
make each channel of 𝑃 convolve independently and learn 
node features. The specific operation was to set the 
parameters of conv2D as in_channels = out_channels = 
groups = 30 in Pytorch, the deep learning framework, and 
use the same padding method to keep the size of the feature 
map unchanged. After this operation, 𝑃ᇱ  with a size of 
30×7×7 was obtained. We transformed 𝑃ᇱ  into one-
dimensional sequential vectors 𝑆 with a size of 30×49. In 
30 facial landmarks, the first 10 were points of the 
eyebrows, and the remaining 20 were points of the mouth, 
with a ratio of 1:2. Therefore, we divided 𝑆 into 𝑆௘ with a 
size of 10×49 and 𝑆௠ with a size of 20×49. 𝑆௘ and 𝑆௠ used 
the ETran module (six layers of encoder) for edge learning 
based on multi-head self-attention to obtain 𝑍௘ and 𝑍௠ with 
sizes of 10×49 and 20×49, respectively. Then, 𝑍௘ and 𝑍௠ 
were transformed into one-dimensional vectors 𝐿௘ and 𝐿௠ 
with lengths of 490 and 980, respectively. Next, two fully 
connected layers were used to obtain 𝐿௘ᇱ  and 𝐿௠ᇱ , and the 
lengths were both transformed into 160 to match the 
transformation of the dimension when fusing with another 
channel containing AU information. 

3.5. Learning the features of AUs 
According to previous work [20], the GCN is used to 

learn the features of AUs. The GCN has two important parts 
as follows: the adjacency matrix and the node matrix. The 
adjacency matrix 𝐴஺௎  uses conditional probability to 
construct the AU information. The size of 𝐴஺௎  is 9×9. 
There are nine nodes, which means that nine AUs related to 
the eyebrows and mouth were selected. The difference in 
our experiment is that when node matrix 𝑋஺௎is constructed, 
we adopted the word embedding [56] approach. The size of 𝑋஺௎ is 9×40, and 40 is the dimension of each node. Then, 𝑋஺௎  and 𝐴஺௎  were fed into the two-layer GCN. Node 
matrix 𝑋஺௎  learns features according to 𝐴஺௎  to obtain 
feature output 𝐻஺௎ , which has a size of 9×160. The 
dimension of the output after the processing of the two-
layer GCN was 160. 

3.6. Fusion of the features from two channels 
In matrix 𝐻஺௎ , which represents the nine AUs, the first 

three rows are related to AUs of the eyebrows (AoE), and 
the remaining six rows are related to AUs of the mouth 
(AoM). Therefore, 𝐻஺௎ can be divided into 𝐻஺௎௘  and 𝐻஺௎௠  
with sizes of 3×160 and 6×160, respectively. 𝐿௘ᇱ  and 𝐿௠ᇱ  are 
the dot products with 𝐻஺௎௘்  and 𝐻஺௎௠், respectively. The 
results are 𝑜ଵ and 𝑜ଶ with lengths of 3 and 6, respectively. 
Finally, 𝑜ଵ  and 𝑜ଶ  are cascaded to one vector 𝑜. The 𝑜 is 
sent to fully connected layers and Softmax for the 
classification. 

4. Ablative analysis 
 
In our ablative analysis, we analyzed the effectiveness of 

our designed models (DConv, ETran, AUGCN and 
AUfusion), the impact of the parameters in ETran and 
DConv, and the performance of different methods that 
generate the node matrix. All the experiments in the 
ablative analysis were conducted on CASME II with 4 
classes. The reason for this design is that our goal is to find 
the optimized configuration of network parameters and 
structure on an ethnically homogenous dataset (CASME II) 
and use this configuration to generalize to another 
ethnically diverse dataset (SAMM) as well as the composite 
dataset (CASME II + SAMM). In the experiments, the 
leave-one-subject-out (LOSO) protocol was used to 
evaluate our proposed method. Accuracy and F1-score were 
used to compute and evaluate the results. In Equation (7), T 
represents the total number of correct predictions, and N 
represents the total number of test samples. In Equation (8), 
P represents the precision and R represents the recall. 
 𝑎𝑐𝑐 =  𝑇𝑁 × 100% (7)

 𝐹ଵ =  2 × 𝑃 × 𝑅𝑃 + 𝑅  (8)

In the model analysis, we designed three experiments as 
comparison groups, which remove one model of our 
proposed models. The three comparison groups were ETran 
+ AUGCN + AUFusion, DConv + AUGCN + AUFusion, 
and DConv + ETran. Our proposed method is DConv + 
ETran + AUGCN + AUFusion. From Table 1, we see that 
our proposed models all contribute to MER. Among them, 
the DConv model contributes the most. This result means 
that preserving the spatial information of the window 
patches is helpful for improving the effectiveness of feature 
learning. Besides, the Graph-tcn [17] also utilized the facial 
graph to learn the representation of ME. In order to prove 
our proposed facial graph learning channel (DConv+Etran) 
is effective, the Graph-tcn [17] is reproduced on CASME II 
with 4 classes and the accuracy is 73.60%. The accuracy of 
the DConv+Etran is 78.80%, which can show that our 
proposed facial graph learning channel surpass the Graph-
tcn. 

In the parameter analysis of ETran and DConv, we 
conducted some experiments on 𝑑௞ , 𝑑௩  and 𝑛௛  of the 
ETran and k of the kernel size in DConv. For the parameter 
analysis of ETran, we referred to the method of [46], which 
sets 𝑑௞ and 𝑑௩ as equal and keeps their product with 𝑛௛ as 
a constant value. For DConv, we changed the kernel size of 
the convolution from 3 to 5. As shown in Table 2, the 
optimal combination of parameters is  𝑑௞ , 𝑑௩ =16, 𝑛௛ =8, 
and 𝑘 = 3. 

In the experiment to select the methods that generate the 
node matrix, we reproduced the one-hot method that is used 
in [20]. In this experiment, nodes of the AUs were 



 

 

generated by handcraft. In our proposed method, we 
utilized the word embedding [56] to generate the node 

matrix, which can be updated by learning in 
backpropagation. As shown in Table 3, the results of the 
experiment show that our method is effective. 

Through ablative analysis, we obtained the best 
optimized configuration of network parameters and 
structure on the CASME II with 4 classes. Then, our 
proposed method is compared with the existing methods of 
CASME II and SAMM with 4 classes. As table 4, 5, and 6 
show, MDMO [32], FDM [34], Bi-WOOF [35], and Hier. 
STLBP-IP [31] are the handicraft features based methods. 
Im-based CNN [52], Graph-tcn [17], STRCN-A [3], and 
STRCN-G [3] are the deep learning-based methods. Our 
proposed method has the best recognition effect on CASME 
II after optimized for specific network parameters and 
structure. At the same time, it also has the best results on 
SAMM and composite dataset (CASME II +SAMM). 

5. Further experimental results 

Table 1: Experiments with the selection of different models. 

Methods Accuracy 

Etran+AUGCN+AUFusion 73.20% 
DConv+AUGCN+AUFusion 76.40% 

DConv+ETran 78.80% 
DConv+ETran+AUGCN+AUFsuion 80.80% 

Graph-tcn [17] 73.60% 
 
Table 2: Experiments with the main parameters of ETran and 
DConv. 𝑑௞ , 𝑑௩ 𝑛௛ k Accuracy 

16 8 3 80.80% 
16 8 5 76.00% 
8 16 3 77.20% 
8 16 5 79.20% 
32 4 3 76.40% 
32 4 5 79.20% 

 
Table 3: Experiments to select the method to generate node 
matrix. 

Methods Accuracy 

One-hot 75.20% 
Embedding 80.80% 

 
Table 4: Experiment on CASME II with 4 classes. 

Methods Accuracy F1-score 

MDMO (2016) [32] 51.00% 41.80% 
FDM (2017) [34] 41.70% 29.70% 

Im-based CNN (2017) [52] 44.40% 42.80% 
Bi-WOOF (2018) [35] 58.90% 61.00% 

Hier.STLBP-IP (2018) [31] 63.80% 61.10% 
STRCN-A (2020) [3] 56.00% 54.20% 
STRCN-G (2020) [3] 80.30% 74.70% 
Graph-tcn (2020) [17] 73.60% \ 

ours 80.80% 78.71% 
 

Table 5: Experiment on SAMM with 4 classes 

Methods Accuracy F1-score 

Im-based CNN (2017) [52] 43.60% 42.90% 
Bi-WOOF (2018) [35] 59.80% 59.10% 
STRCN-A (2020) [3] 54.50% 49.20% 
STRCN-G (2020) [3] 78.60% 74.10% 
Graph-tcn (2020) [17] 80.50% 76.57% 

ours 82.39% 77.35% 
 

Table 6: Experiment on CASME II+SAMM with 4 classes. 

Methods Accuracy F1-score 

Im-based CNN (2017) [52] 36.50% \ 
Bi-WOOF (2018) [35] 45.30% \ 
STRCN-A (2020) [3] 49.50% \ 
STRCN-G (2020) [3] 62.90% \ 

ours 79.95% 74.26% 
 

Table 7: Experiment on CASME II with 5 classes. 

Methods Accuracy F1-score 

CNN+LSTM (2016) [37] 60.98% \ 
Bi-WOOF+Phase (2017) [49] 62.55% 65.00% 

 MagGA (2018) [39] 63.30% \ 
Hier. STLBP-IP (2018) [31] 63.97% 61.25% 
Sparse MDMO (2018) [33] 66.95% 69.11% 

HIGO+Mag (2018) [50] 67.21% \ 
DiSTLBP-RIP (2019) [30] 64.78% \ 
ME-Booster (2019) [51] 70.85% \ 

SSSN (2019) [8] 71.19% 71.51% 
DSSN (2019) [8] 70.78% 72.97% 

TSCNN (2019) [57] 80.97% 80.70% 
Graph-tcn (2020) [17] 73.98% 72.46% 

ours 74.27% 70.47% 
 

Table 8: Experiment on SAMM with 5 classes 

Methods Accuracy F1-score 

SSSN (2019) [8] 56.62% 45.13% 
DSSN (2019) [8] 57.35% 46.44% 

TSCNN (2019) [57] 71.76% 69.42% 
Graph-tcn (2020) [17] 75.00% 69.85% 

ours 74.26% 70.45% 
 



 

 

 
In order to further verify the generalization ability of our 

proposed method, we utilized the best configuration of 
network parameters and structure configuration in ablation 
analysis to directly carry out the 5-classification experiment 
without any adjustment. In the experiments, the leave-one-
subject-out (LOSO) protocol was also used to evaluate our 
proposed method. Accuracy and F1-score were used to 
compute and evaluate the results. The comparison results 
with the existing 5-classification methods are shown in the 
table 7 and 8. Sparse MDMO [33], Bi-WOOF+Phase, 
HIGO+Mag [50], DiSTLBP-RIP [30], ME-Booster [51], 
and Hier. STLBP-IP [31] are the handicraft features based 
methods.  MagGA [39], Im-based CNN [52], SSSN [8], 
DSSN [8], TSCNN [57], Graph-tcn [17], STRCN-A [3], 
and STRCN-G [3] are the deep learning-based methods. 
Among them, accuracy of our proposed method is only 
worse than TSCNN [57] on CASME II, but better than 
TSCNN [57] on SAMM. The accuracy of our proposed 
method on SAMM is very close to Graph-tcn [17], while 
better than Graph-tcn [17] on CASME II. As we can see, 
[17] [57] and our method have respective excellent 
performance on 5-classification. It is noticed that their 
accuracies in tables are all directly from their papers, which 
is in best settings, while our proposed method performs 
much the same with the existing optimal results [17] and 
[57] without adjusting network parameters and structure for 
specific tasks. 

To prove our method further, we utilized the CDE of 
2019 MEGC [55] to make a more robust experimental 
evaluation. The UF1 and UAR which used in MEGC 2019 
[55] are utilized to evaluate the results. In Equation (9) and 
(10), the UF1 is determined by averaging F1-scores of the 
per-class c (of C classes). In Equation (11), 𝑛஼  is the 
number of samples of the c-th class. 

 𝐹1஼ =  2𝑇𝑃஼2𝑇𝑃஼ + 𝐹𝑃஼+𝐹𝑁஼ (9)

 𝑈𝐹1 =  1𝐶 ෍ 𝐹1஼஼  (10)

 𝑈𝐴𝑅 =  1𝐶 ෍ 𝑇𝑃஼𝑛஼஼  (11)

Though the annotation of the AUs is not provided in 
SMIC, we just use the AUs information form CAMSE II 
and SAMM, which maybe make our proposed method 
doesn’t perform at its best. As the table 9 shows, the UF1 
and UAR of our proposed method obviously lag behind the 
current methods only in the SMIC part. But the overall 
performance goes beyond the current methods. It can be 
concluded that our proposed method is also valid on CDE 
even if there is no AU annotation provided on SMIC. 

6. Conclusion 
 
In this paper, we proposed a novel pipeline to learn a 

facial graph representation, which includes node learning 
and edge learning. Node learning can avoid the spatial loss 
inside each patch and extract features inside each patch. 
Edge learning can extract the relationship between patches 
based on multi-head self-attention. Besides, we introduce 
the AUs information into the facial graph representation by 
word embedding and GCN. The results of the experiment 
prove that our method is feasible and effective. 
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Table 9: Experiment on CDE with 3 Classes 

Methods Full SMIC CASME II SAMM 
UF1 UAR UF1 UAR UF1 UAR UF1 UAR 

LBP-TOP (2007) [23] 0.5882 0.5785 0.2000 0.5280 0.7026 0.7429 0.3954 0.4102 
Bi-WOOF (2018) [35] 0.6296 0.6227 0.5727 0.5829 0.7805 0.8026 0.5211 0.5139 

OFF-ApexNet (2019) [5] 0.7196 0.7096 0.6817 0.6695 0.8764 0.8681 0.5409 0.5392 
CapsuleNet [15] (2019) 0.6520 0.6506 0.5820 0.5877 0.7068 0.7018 0.6209 0.5989 

Dual-Inception (2019) [4] 0.7322 0.7278 0.6645 0.6726 0.8621 0.8560 0.5868 0.5663 
STST-Net (2019) [1] 0.7353 0.7605 0.6801 0.7013 0.8382 0.8686 0.6588 0.6810 

EMR (2019) [7] 0.7885 0.7824 0.7461 0.7530 0.8293 0.8209 0.7754 0.7152 
ours 0.7914 0.7933 0.7192 0.7215 0.8798 0.8710 0.7751 0.7890 
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