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Abstract

The Turing test centers on the idea that if a computer

could trick a human into believing that it was human, then

the machine was deemed to be intelligent or indistinguish-

able from people. Designing a visual Turing test involves

recognizing objects and their relationships on images and

creating a method to derive new concepts from the visual

information. Until now, the proposed visual tests heavily

use natural language processing to conduct the question-

naire or storytelling. We deviate from the mainstream, and

we propose to reframe the visual Turing test through the

Kuleshov effect to avoid written or spoken language. The

idea resides on elucidating a method that creates the con-

cept of montage synthetically. Like the first days of cinema,

we would like to convey messages with the interpretation of

image shots that a machine could decipher while comparing

it with those scored by humans. The first implementation of

this new test uses images from a psychology study where the

circumplex model is applied to rate each image. We con-

sider five deep learning methodologies and eight optimiz-

ers, and through semiotics, we derive an emotional state in

the computer. The results are promising since we confirm

that this version of the visual Turing test is challenging as a

new research avenue.

1. Introduction

Imagine we walk into the house, and our companion

robot is reviewing our oldest son’s final-year college home-

work on the Kuleshov effect. This might sound like a black

mirror tale whose futuristic scenario is common among Sci-

Fi and fantasy lovers. However, to understand the implica-

tions, we need to come back to the first days of cinema. In

the Soviet Union, a revolution on silent film was developed

by film theorist Lev Kuleshov, the father of Soviet mon-

tage theory. In those days, silent movies needed to convey

messages without the written word. We hold to Kuleshov’s

viewpoint that cinema’s essence is editing, juxtaposing one

shot with another, and introducing the idea in computer vi-

sion that image understanding could be put to the test by

attempting to recreate a mental phenomenon known as the

Kuleshov effect in silico.

1.1. Related Work

The Turing test, originally called the imitation game by

Alan Turing in 1950, is a test of a machine’s ability to ex-

hibit intelligent behavior equivalent to or indistinguishable

from a human [33]. Turing’s idea consists of a natural lan-

guage conversation among a human evaluator, another hu-

man, and a machine designed to generate human-like re-

sponses. The evaluator is aware that one of the two partners

is a machine, and all participants would be separated from

one another. If the evaluator cannot reliably tell the machine

from the human, the machine is said to have passed the test.

The test results do not depend on the machine’s ability to

give correct answers to questions, only how closely its an-

swers resemble those a human would give. There are nu-

merous drawbacks as a rigorous and practical means of as-

sessing progress toward human-level intelligence like lan-

guage focus, complex evaluation, subjective evaluation, and

difficulty measuring incremental progress [1]. Neverthe-

less, the test is considered the holy grail of computer intel-

ligence. To reach the ultimate goal of machine intelligence,

where machines supplement humans, the research commu-

nity needs to resolve several hurdles. Some challenges may

be tackled purely technologically; others require insights

from sociology and psychology to break new ground [3].

Thanks to the advances in machine learning through a

neural network technique called deep learning, the research

community has a special interest in what is known as the

visual Turing test. A first attempt consists of designing a

written test that uses binary questions to probe a system’s

ability to identify attributes and relationships in addition



to recognizing objects [9]. The problem of visual ques-

tion answering (VQA) derives from the visual Turing test

proposed by Geman et al. in 2016. However, the world’s

inherent structure and language bias tend to be a simpler

signal for learning than visual modalities, resulting in VQA

models that ignore visual information leading to an inflated

sense of their capability [11] with no clear answer to this

dilemma. Moreover, despite great advances in multiple ar-

eas (object recognition, speech recognition, board games,

video games, and control) deep neural networks (DNN) dif-

fer from human intelligence in crucial ways. Also, the suc-

cess of DNN came with several major problems (adversar-

ial attacks, high-computational cost, high amount of labeled

data, lack of invariance, spatial relationship, and explain-

ability) that can hamper their applicability.

According to [21] progress in cognitive science suggests

that truly human-like learning and thinking machines re-

quire new approaches that define what and how machines

learn. They argue that such method builds causal mod-

els of the world that support explanation and understand-

ing, rather than merely solving pattern recognition prob-

lems, ground learning in intuitive theories of physics and

psychology to support and enrich the knowledge that is

learned, and harness compositionality and learning-to-learn

to rapidly acquire and generalize knowledge to new tasks

and situations. Compositionality is the classic idea that new

representations can be constructed through the combination

of primitive elements. In computer programming, prim-

itive functions can be combined to create new functions,

and these new functions can be further combined to cre-

ate even more complex functions. This function hierarchy

provides an efficient description of higher-level functions,

such as a hierarchy of parts for describing complex objects

or scenes [25]. Structural description models represent vi-

sual concepts as compositions of parts and relations, which

provides a strong inductive bias for constructing models of

new concepts. Lake et al. describe a computational model

that learns in a similar fashion and does so better than cur-

rent deep learning algorithms. The model classifies, parses,

and recreates handwritten characters, and can generate new

letters of the alphabet that look right as judged by Turing-

like tests of the model’s output in comparison to what real

humans produce [22].

Emotion classification, how one may distinguish or con-

trast one emotion from another, is a contested issue in emo-

tion research and affective science. Researchers have ap-

proached the classification of emotions from two funda-

mental viewpoints: 1) that emotions are discrete and fun-

damentally different constructs, 2) that emotions can be

characterized on a dimensional basis in groupings. Re-

cently, researchers study psychological theories of emo-

tion to develop an intelligent system of decision-making

for autonomous and robotic units focusing on verbal and

non-verbal agent communication [18]. In [6] also studied

limited Turing test for social-emotional intelligence with a

video game-like virtual environment. In recent years, with

the increasing use of digital photography, emotional seman-

tic image retrieval appears as an appealing subject of study.

In [23] authors study affective image classification using

features inspired by psychology and art theory. From a

psychology standpoint, affective pictures are widely used

in studies of human emotions [29]. The objects or scenes

shown in affective pictures play a pivotal role in eliciting

particular emotions. Affective processing derives from local

and global image properties as well as image composition.

A survey about affective image content analysis is provided

in [35]. Today, there is a gap between image content and

emotional response, and some researchers attempt to close

it using high-level concepts [2]. In the article, the authors

explain how to simplify the problem through databases’ di-

vision to understand affective classification. In [16] authors

attempt to infer communicative intents of images as a vi-

sual persuasion. Also, they strive to elucidate this ability

from a single image. Authors consider thousands of differ-

ent types of emotions or feelings that can attribute to the im-

age’s main target. They select ten emotional traits, personal-

ity traits and values (six additional dimensions), and overall

favorability (a binary variable reflecting positive or nega-

tive status). Also, they consider syntactical attributes like

facial display, body cues-gestures, and scene context. Im-

ages and human emotions were also investigated through a

mixed bag of emotions approach [26]. The aim is to model,

predict, and transfer emotion distributions. They study the

psychological problem of identifying the primary emotions

in an image and manipulating the image to evoke a differ-

ent response by adjusting color tone and texture-related fea-

tures. Finally, we would like to mention a work where af-

fective understanding in the film plays an essential role in

sophisticated movie analysis, ranking, and indexing [13].

They recognize the lack of work to close the gap between

low-level features and emotion. Authors follow a system-

atic approach grounded upon psychology and cinematogra-

phy to address several critical issues in affective understand-

ing. They follow a probabilistic method identifying a set of

categories and steps for classification. Also, they use many

of the concepts that we have described in the reviewed work

and recognize that this subject remains a largely unexplored

field.

1.2. Problem Statement

The reviewed literature exposes that current engineer-

ing trends demand new approaches based on psychology,

physics, and symbolic learning to answer the question Can

machines think? following the imitation game. In [7] the

author suggests that for such a move to be successful, the

test needs to be relevant, expansive, solvable by exemplars,



unpredictable, and lead to actionable research. Although

the test is at the top of artificial intelligence, its reliance on

language, whilst insightful for partially solving the prob-

lem, has put progress on the wrong foot, prescribing a top-

down approach for building thinking machines. Instead of

this path, Crosby proposes a bottom-up approach founded

in animal cognition tests. We propose to avoid the problem

of language–hence the top-down vs. bottom-up dilemma–

following the original pathway of cinema made during the

silent film era by adapting the Kuleshov theory to the task

of image understanding in computer vision. Unlike previ-

ous works that have studied the Turing test or the imitation

game, the goal is not to develop a new method that neces-

sarily outperforms previous methods. In other words, we do

not intend to make a technological contribution but to reveal

a scientific avenue that can serve in the long run to design

a visual Turing test. Here, we provide the first method to

illustrate the idea.

Figure 1 illustrates the Kuleshov effect using images

from the datasets described in Section 2.1. In the origi-

nal experiment, Kuleshov and his protégé Pudovkin edited

a short film in which a shot of an expressionless face ac-

tor (Ivan Mosjoukine) followed by either a bowl of soup, a

dead woman in a coffin, or a little girl playing affects the

perception. Pudovkin said that the audience viewing the se-

quences reported three different judgments of Mosjoukine’s

facial expression: heavy pensiveness, deep sorrow, and hap-

piness, respectively. Although the shot of the actor’s neutral

face was identical in all three scenarios, the context pro-

vided by the subsequent film shot affected the audience’s

interpretation of the actor’s emotion conveyed by his facial

expression [28]. The effect of visual context on the inter-

pretation of facial expression from an actor’s face was suc-

cessfully tested using isolated photographic stills instead of

the typical dynamic film sequences used to demonstrate the

Kuleshov effect [24].

The Kuleshov effect in the machine attempts to simu-

late a psychological phenomenon where a neutral face fol-

lowed by an image evoking two affective dimensions pro-

duce through montage–we need a technique to emulate such

phenomenon–the idea of a facial expression. For such an

idea (montage) to be implemented on the computer, we need

to introduce some concepts borrowed from semiotics [5, 4].

Note that montage is different from compositionality since

the former creates a novel idea not present in the primitive

elements. Semiotics is the study of sign processes (semio-

sis), any activity, conduct, or process that involves signs. A

sign is defined as anything that communicates a meaning

that is not the sign itself to the sign’s interpreter.

Semiotics deals with the relationships that arise when

something represents something else. This is the signifier-

signified relationship. In film semiotics, Christian Metz em-

phasizes that multiple potential sequences give structure to
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Figure 1. The Kuleshov effect in the machine attempts to simulate

a psychological phenomena where a neutral face followed by an

image evoking two affective dimensions produce through montage

(emulate phenomenon) the idea of a facial expression.

a film event whose signified can then be variable. The sig-

nified is the idea of the object, for example, a cat. The sig-

nifier can be an icon (image cat), an index (image of cat’s

footprint), or a symbol (Chinese cat symbol). To achieve the

Kuleshov effect, we have that this consists of the combina-

tion of (classically) two meanings (signified) for the extrac-

tion of a third whose meaning (signifier) is not necessarily

represented in a visual scene. This effect is widely used as

part of the montage technique in cinematography. Here, we

attempt to emulate such effect through machine interpreta-

tion of visual stimuli to produce an output not present in the

original sequence, see Figure 1.

1.3. Contributions

In this work, we propose a new way of pursuing the vi-

sual Turing test. The idea consists of replicating the phe-

nomenon of montage in the computer. An immediate bene-

fit is to avoid the usage of natural language processing while

pursuing the goal of inquiring about the logic of a machine

vision system regarding computer’s interpretations of im-

ages. This perspective allows us to frame the Turing test

within a purely visual processing scenario where artificial

cognitive aspects are confronted using several meaningful

images while altering the order in a sequence to produce a

new concept not explicit in the original shot.

2. Methodology

The goal of this section is to derive a visual Turing test

that doesn’t rely on language. Next, we describe the cir-

cumplex model and the flowchart of the proposed system.



2.1. The Circumplex Model of Affect

The circumplex model of emotion, also known as the

circumplex model of affect, can describe the complexity

of emotions and their representation [30]. Researchers

use the circumplex concept to study how different emo-

tions relate using a circular depiction of multiple variables’

similarities. Researchers studying emotion focus on spe-

cific core affects and create a circumplex representation

of them, with variables having opposite values or char-

acteristics (i.e. delighted-miserable, happy-sad, relaxed-

distressed) displayed at opposing points on the circumplex.

In contrast, variables having highly similar characteristics

are displayed adjacent to one another on the circumplex.

In other words, the similarity (and correlation) between el-

ements declines as the distance between them on the cir-

cle increases. Hence, a circumplex model is a model-

type that shows unique relationships within a visual frame-

work. It is a circular model divided into quadrants with

axes of crossed continua. Thus, the circumplex model of af-

fect suggests that emotions distributed in a two-dimensional

circular space containing arousal and valence dimensions

emerged from environmental stimuli. Arousal represents

the vertical axis, and valence represents the horizontal axis,

see Figure 2. The circumplex is a dimensional model whose

goal is to conceptualize human emotions by defining where

they lie in two or three dimensions. The theory states that

an ordinary and interconnected neurophysiological system

is responsible for all affective states. The idea in this work

is to relate the KDEF database’s basic emotions with the

OASIS database’s visual stimuli following the Kuleshov ef-

fect.

2.2. Visual Turing Test Flowchart

The test consists of simplifying the imitation game since

we first want to verify the capacity of current deep learning

technologies. Inspired by Kuleshov’s ideas, we juxtapose

different concepts (i.e., images of a city, money, fire, and

so on) with a neutral face through artificial montage, re-

sulting in an evoked facial expression not seen initially in

any of the signifiers. We use information collected by psy-

chologists as ground truth from the Open Affective Stan-

dardized Image Set (OASIS) study, where human beings

respond to a wide variety of visual stimuli [20]. Emo-

tions are measured in OASIS using normative ratings on

two affective dimensions (valence and arousal), which are

used to abstract both the physical and social worlds on im-

ages. Psychologists recruited a diverse set of participants

to gauge their affective responses to the images. Valence

is the degree of positive or negative affective response that

the image evokes, and arousal determines the intensity of

the affective response that the image evokes. The ratings

obtained covered much of the circumplex space and were

highly reliable and consistent across gender groups. With

Anger Fear Surprise Happiness Neutral Sadness Disgust

+ OASIS Image

Figure 2. Valence and arousal ratings for OASIS images as por-

trayed by human beings. Values are classified using the circum-

plex model of affect, where each colored region in the map shows

an emotion obtained from the KDEF database.

only a few thousand pixels, images can depict an unlim-

ited array of people, objects, and scenes. They can evoke

a range of affective responses, which we simplify by super-

posing the results of the two affective dimensions into seven

facial expressions (neutral, happy, angry, afraid, disgusted,

sad, and surprised) obtained from the Karolinska Directed

Emotional Faces (KDEF) dataset [10]. We select a few sub-

jects with a front profile from the dataset to demonstrate the

kuleshov effect.

Figure 3 illustrates two critical aspects of our proposal:

1) how we train CNN models based on the OASIS norma-

tive ratings, and 2) how we use the circumplex model to

map emotions. The idea put forward of our visual Turing

test consists of learning the mappings between the input im-

ages and the scored values of valence and arousal given by

people with several machine learning methods, see Table

2.1. We built a sequence by juxtaposing a subject’s neutral

face with a selected image from OASIS. The idea is to iden-

tify the subject in the neutral face, and with the computed

scores achieved by the mapping, the system could render the

appropriate facial expression of the related subject, which

matches the evoke displayed by people. The process of

mapping emotions to familiar facial expressions allows us

to establish common comparison grounds between humans

and machines.

Note that the proposed methodology has a limit given by

the number of facial expressions that humans can portray,

since it becomes facially challenging to show differences

between being happily amused, happily impressed, or hap-



CNN

AlexNet [19] Replacement of final

1000-way softmax layer

with two fully connected (FC)

output neurons activated by

a linear activation function.

DenseNet-121 [14] Stacked a two neuron FC

linear layer to perform

a regression on valence

and arousal values.

ResNet-18 [12] Stacked a two neuron FC

linear layer to perform

a regression on valence

and arousal values.

VGG-11(BN) [31] Stacked a two neuron FC

linear layer to perform

a regression on valence

and arousal values.

SqueezeNet [15] Stacked a two-dimensional

convolutional layer with

512 input channels and

two output channels, with

kernel and stride sizes of 1.

Optimizers

SGD [32] learning rate α = 1× 10−5

momentum coefficient γ = 0.9
Adam [17] learning rate α = 1× 10−4

weight decay norm L2 = 1× 10−5

exponential decay rate β1 = 0.9
exponential decay rate β2 = 0.999

AdaMax [17] learning rate α = 1× 10−4

weight decay norm L2 = 1× 10−5

exponential decay rate β1= 0.9
exponential decay rate β2= 0.999
constant ǫ = 1× 10−8

AdaGrad [8] learning rate α = 1× 10−4

weight decay norm L2 = 1× 10−5

constant ǫ = 1× 10−10

ADADELTA [34] learning rate α = 1× 10−4

weight decay norm L2 = 1× 10−5

constant ǫ = 1× 10−10

constant ρ = 0.9
ASGD [27] learning rate α = 1× 10−4

weight decay norm L2 = 1× 10−5

decay term λ = 1× 10−4

smoothing constant η = 0.75
averaging starting point t0 = 1× 106

RMSprop learning rate α = 1× 10−4

momentum coefficient γ = 0.9
smoothing constant η = 0.99
constant ǫ = 1× 10−8

Rprop learning rate α = 1× 10−5

etaminus set to 0.5

etaplis set to 1.2

step sizes from 1× 10−6 up to 50
Table 1. This table shows the design of frameworks divided into two parts: on the left, we show the list of CNNs with their main modifica-

tions, and on the right, we present several optimizers tested on the experiments.

pily expectant, to name a few examples shown in Figure 5.

In this way, we define a set of regions that classify the pri-

mary emotions by dividing the circumplex model into six-

teen equal portions with seven bounds set along the radius

of a circumference as seen in Figure 2. We assign the re-

sulting seven slices to the KDEF facial expressions. Also,

we evaluate the emotional response elicited by the OASIS

image and valence-arousal values with the absolute distance

between predictions and neighboring circumplex emotions

calculated as a probability with the softmax function as fol-

lows:

σ(
−→
d )i =

ed
−1

i

(
∑k

j=1
ed

−1

j )
, (1)

where
−→
d ∈ R

k is an array comprising the measured Eu-

clidean distances. Note that to attribute higher probabilities

to nearest emotions, we used the inverse relation for di and

dj and integrated it into the formula.

3. Experimental Results

We implemented, trained, and tested a total of 40 frame-

works into the previously delineated system workflow, mak-

ing use of CNNs and optimizers included in Table 2.1. Fig-

ure 4 illustrates the optimization algorithm that resulted

in the highest test accuracy for each network; these being

AlexNet with Rprop, DenseNet-121 with Adam, ResNet-

18 with SGD, SqueezeNet with AdaMax, and batch nor-

malized VGG-11 with SGD. Furthermore, columns inside

the figure provide insight for said individuals by using var-

ious graphics displayed along rows. The first row presents

a set of scatter plots that contain valence and arousal val-

ues predicted by the machine during training. The simi-

larity between frameworks is noticeable and comparable to

the emotional responses elicited on human beings, an ob-
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Regression through an arbitrary CNN
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emotion mapping
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Figure 3. This diagram shows the proposal to emulate the Kuleshov effect, where the upper section shows how we can determine through

arbitrary CNNs valence and arousal values from a given image taken from the OASIS database. The bottom part shows a neutral face taken

from the KDEF dataset superposed with results of the two affective dimensions to generate one of seven facial expressions.

servation that we can understand through the visualization

of adjacent confusion matrices. Such graphs aim to com-

pare the machine predicted values with the average human

emotions reported by psychologists on the OASIS study;

thus, by observing the confusion matrix’s columns, the cor-

responding network’s prediction can be visualized. Analo-

gously, the rows that comprise the confusion matrix show

the ground truth–mean human response–that corresponds

to the utilized photographs, and in the intersection of both

emotional replies, we establish a comparison. Two valu-

able metrics were extrapolated from the achieved results to

consolidate this comparison: the weighted accuracy and F1

score across classes.

As mentioned above, all these factors lead to the conclu-

sion that during training, all convolutional neural networks

were capable of reproducing with high fidelity the answers

collected in the OASIS study. The few misclassified im-

ages are close to the correct subclass (emotion) according

to the circumplex model. In the case of testing, a consistent

drop in accuracy occurs as shown in the third and fourth

rows of figure 4. Despite the efforts to minimize overfit-

ting, the high variability in concepts presented a challenge

to achieve correct emotional classification (e.g., it is not

equivalent to interchange happiness with neutral and hap-

piness with disgust). The fifth row presents the evolution

of the mean squared error across epochs, exemplifying the

pattern memorization of deep learning frameworks.

4. Discussion

Figure 5 shows an underlying and fundamental problem

causing emotional misclassification in CNNs, which goes

beyond overfitting issues. While a human being reacts ac-

cording to context and understands a presented scenario, ar-

chitectures such as AlexNet react according to previously

identified patterns. In the first part, we observe how two

images addressing the same theme (fire) can have two op-

posite emotional reactions. On the left side, we appreci-

ate how humans rightly agree to the visual stimulus, while

on the right side, the machine erroneously comprehends the

fire theme. In the last two rows, we observe results ob-

tained with four different images (city, money, couple, and

woman) considering human Vs. machine. Again it is re-

markable the automatic pattern identification that contrasts

with human perception.

The proposed experiments show how image understand-

ing is an issue that these technologies cannot yet fully ad-

dress. Moreover, the capability of memorization presented

during training is preoccupying. Cases such as the ones dis-

cussed previously, taken from the set of images reserved for

testing, would have been correctly classified if assigned to

the training set as shown by the results in Figure 4. The

proposed machine learning technique implies that if a more

extensive database had been used, with more images and

cases such as those previously presented, the various archi-

tectures would have had the opportunity to retain and iden-

tify a more significant number of patterns. Extending the

database, in turn, does not solve the underlying problems.

It only tries to cover them, where overfitting of CNNs man-

ifests as a symptom of this stumbling block.

Other areas and cases of application for CNN method-

ologies are not exempt from these issues (memorization,

size of database, image understanding), and as such, must

be taken into account and consideration. Learning leaves

an open road for research in identifying alternate solutions

and methodologies that could prove helpful in fields of

study, including–but not limited to–computer vision, pattern



Training

Testing

Mean squared error loss

AlexNet with 
Rprop

DenseNet-121 with

Adam

ResNet-18 with

SGD
SqueezeNet with

AdaMax

VGG-11 (BN) with

SGD

Figure 4. Emotion mapping of OASIS images using various convolutional neural networks (Alexnet, Densenet, Resnet, Squeezenet and

VGG). Figures depict the optimizer (SGD, Adam, Adadelta, Adagrad, Adamax, ASGD, RMSprop, and Rprop), that yields best test results

for the corresponding CNN. Additionally, difference between training and testing is displayed through scatter plots for the predicted valence

and arousal values, confusion matrices that compare human vs. machine emotion classification, and the evolution of training and testing

loss across epochs.

recognition, psychology, or even cinematography. On a fi-

nal note, it is worth mentioning that applications in the film

or video-game industry are possible for the current results,

which are environments with known and static scenarios,

where one of the tested frameworks could provide reliable

and accurate results through training. The idea of extending

the visual Turing test to more complicated videos through

the Kuleshov effect is a challenging research area.



Human AlexNet with Rprop

Figure 5. The following photographs show the importance of image understanding for accurate emotional interpretation. On the left, we

can observe a human being’s response towards visual stimuli taken from the OASIS database. On the right, we can appreciate AlexNet’s

reaction towards the same set of pictures, showing an expected–but incorrect–consistency due to the involved high-level knowledge.

5. Conclusion and Future Work

We devise a new framework for the visual Turing test

through the Kuleshov effect. The conceptual design avoids

using natural language processing based on the idea of syn-

thetically creating montage from two different shots in a

sequence of images. Like in the silent film era, we would

like to convey messages by juxtaposing independent pho-

tographs. The proposed technique applies a test designed

for humans to rate image content, and the results achieved

with the computer reveals the difficulty of solving this task.

In the future, we would like to test other deep learning ap-

proaches and take a step backward using computer vision

and computational intelligence methods since we hold to

the idea that less is more.
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