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Abstract

Advances in remote sensing technology have led to the

capture of massive amounts of data. Increased image reso-

lution, more frequent revisit times, and additional spectral

channels have created an explosion in the amount of data

that is available to provide analyses and intelligence across

domains, including agriculture. However, the processing of

this data comes with a cost in terms of computation time

and money, both of which must be considered when the goal

of an algorithm is to provide real-time intelligence to im-

prove efficiencies. Specifically, we seek to identify nutrient

deficient areas from remotely sensed data to alert farmers to

regions that require attention; detection of nutrient deficient

areas is a key task in precision agriculture as farmers must

quickly respond to struggling areas to protect their harvests.

Past methods have focused on pixel-level classification (i.e.

semantic segmentation) of the field to achieve these tasks,

often using deep learning models with tens-of-millions of

parameters. In contrast, we propose a much lighter graph-

based method to perform node-based classification. We first

use Simple Linear Iterative Cluster (SLIC) to produce su-

perpixels across the field. Then, to perform segmentation

across the non-Euclidean domain of superpixels, we lever-

age a Graph Convolutional Neural Network (GCN). This

model has 4-orders-of-magnitude fewer parameters than a

CNN model and trains in a matter of minutes.

1. Introduction

Nutrient monitoring and management is a central task for

farmers throughout the growing season. To prevent major

losses, growers must identify and respond to crop deficien-

cies promptly while avoiding excess applications of fertiliz-

ers that are costly and may have detrimental environmental

consequences. Monitoring the health of crops, potentially

across hundreds of thousands of acres of fields spread over

many miles, is a daunting task without the aid of accurate,

timely, automated crop intelligence at scale. Fortunately,

aerial imagery from remote sensing, including satellite, air-

plane, and UAV, combined with image processing, com-

puter vision, and more recently, deep learning, have led to

numerous advances in precision agriculture to address these

challenges.

Precision agriculture has seen rapid advancements in re-

cent years due to the quality and availability of data com-

bined with the advances in artificial intelligence and ma-

chine learning. Many applications focus on ground-level

imagery and point clouds to detect and classify disease and

pests, precisely localize weeds from crop to enable auto-

mated spraying, reconstruct scenes to enable robotic har-

vesting, automate counting, and numerous other tasks to

enable automation and improve efficiencies [7, 52, 54, 30].

Availability of more advanced remote sensing data has

also made a tremendous impact on digital agriculture. Key

intelligence can be extracted at scale from imagery col-

lected via satellite, plane, or UAV. However, aerial images

of any domain, pose many challenges for computer vision

techniques as they tend to be massive in size, lower in res-

olution, and have statistics very different from those of nat-

ural images [39, 41, 15]. Imagery size is a particular chal-

lenge as high-resolution (<1m/pixel) images are becoming

more and more prevalent: a single field may be several

GB in size and contain hundreds-of-millions pixels. Ap-

proaches to improve receptive field size, multi-scale under-

standing, long-range interactions, and global context under-
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standing in deep learning models has been an active area of

research, although the focus has remained largely on natural

images. Some approaches include dilated convolutions, ex-

plicit multi-scale modeling, combined CNN and RNN mod-

ules, superpixels and graphical models [44, 13, 12, 35, 34].

The use of techniques specifically adapted to handle large

images is important from the practical standpoint of infer-

ence speed and efficiency, in addition to performance im-

provements due to incorporating information from a larger

portion of the image.

While pixel-level classification may be required in some

scenarios, if the primary goal is to alert farmers to regions

of the field exhibiting stress, classifying each pixel may

be an unnecessarily fine-grained task. Instead, we pro-

pose a method based on Simple Linear Iterative Clustering

(SLIC) superpixels and a Graph Convolution Neural Net-

work (GCN) to detect regions of nutrient deficiency stress

(NDS) across a high-resolution image of field in an effi-

cient manner. We first over-segment the image into super-

pixels using SLIC and characterize each superpixel by a 9-

element feature vector; these superpixels become the nodes

of our GCN. We then construct a fully-connected graph

where each superpixel is connected to every other super-

pixel in the image, enabling information to propagate glob-

ally. Initial weights of the edges are further determined by

the similarities between the superpixels. Finally, we com-

pare two approaches in which the final task is either clas-

sification (whether any pixels in the super-pixel contained

the target class) or regression (prediction of the fraction of

target containing pixels directly). Our approach effectively

determines key areas of nutrient deficiency stress while us-

ing a network containing fewer than 5,000 parameters.

2. Related Work

2.1. Computer Vision and Machine Learning for
Precision Agriculture

Precision agriculture is undergoing rapid transformation

and advancement thanks to new sources of data and an-

alytical techniques in computer vision. The applications

of machine learning in precision and digital agriculture

are widespread including plant counting, weed detection,

yield forecasting, pest and disease detection, storm damage

quantification, high-throughput phenotyping, among oth-

ers [40, 3, 47, 6, 27, 37]. Machine learning applied to these

tasks is enabling farmers greater insight into the health of

their crops, allowing them to make economically and envi-

ronmentally better decisions in a more timely manner.

The detection of nutrient deficiency stress is a key task

for precision agriculture and has been explored extensively

using traditional computer vision and deep learning ap-

proaches with both ground-level and remotely sensed im-

ages [42, 53]. A large body of work relies on the use

of hyperspectral imaging to identify stressed areas from

changes in specific bands related to suppressed chlorophyll

activity[53]. Using machine learning approaches like sup-

port vector machines (SVMs) and artificial neural networks

(ANNs), [58] was able to improve the estimation of nitro-

gen nutrient levels in rice from aerial imagery.

Recently, deep learning approaches have become in-

creasingly common for machine vision applications in pre-

cision agriculture [28]. Particularly relevant to this work,

[15] used a CNN approach to segment nutrient deficient ar-

eas, among other relevant agricultural patterns, from high

resolution aerial imagery. Their work sought to determine

NDS at the pixel-level and relied on a heavy, DeepLabV3-

based architecture with several orders of magnitude more

parameters than the GCN approach explored here. Sim-

ilarly, [17] used a U-Net [46] framework for detection

and prediction of nutrient deficient areas; though lighter-

weight than DeepLabV3, their U-Net is still significantly

heavier than our proposed method. Leveraging a subset

of the dataset [15] which did not include the nutrient defi-

ciency class, the authors of [36] proposed a Multiview Self-

Constructing Graph Convolutional Network to segment the

high-resolution images into six (plus background) classes.

This approach used a CNN as a feature extractor followed

by modules of self-construction graphs and graph convolu-

tions before fusing to generate the final output and produced

competitive results on the challenge dataset [14].

2.2. Superpixels

Superpixels are a common primitive in complex com-

puter vision tasks because of their ability to produce a se-

mantically meaningful and compact representation of im-

ages. The Simple Linear Iterative Clustering (SLIC) [1]

algorithm for producing superpixels has become one of

the most prominent approaches for generating superpixels

across a variety of domains including natural images[24],

medical images (e.g CT and mammography) [49] , and re-

mote sensing [19, 61] because of its speed and simplicity.

SLIC adapts k-means clustering to group pixels based on

their similarity in color and proximity in the image.

Previously, superpixels have been combined with graphi-

cal models such as Conditional Random Fields (CRFs) [33]

to enable the segmentation of images. However, while these

probabilistic graphical models successfully capture the spa-

tial coherency of the image, they can be computationally

burdensome as many methods rely on determining the max-

imum a posteriori (MAP) estimate to find the optimal label

sequence. This has led to an interest in combining super-

pixel methods with deep learning-based graphical methods,

which will be explored in the next section.

Within the remote sensing domain, superpixels have

been combined with a variety of machine learning ap-

proaches for numerous tasks. To reduce computational
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time, [16] applied a Random Forest classification based on

SLIC superpixels to classify objects from remote sensing

data with equivalent or superior accuracy and at a faster

speed than pixel-based methods. [59] used superpixels

with a graphical model for semantic segmentation of remote

sensing image mapping. Particularly relevant to the present

work, [29] used a SLIC and Random Forest algorithm on

images collected from UAVs to classify regions of a field as

soil, crop, or weed.

2.3. Graph Neural Networks

Convolutional Neural Networks (CNNs) are common-

place in computer vision applications because their induc-

tive bias efficiently captures the Euclidean structure of im-

ages [32]. Graph Neural Networks (GNNs), in contrast, of-

fer a much greater degree of flexibility in the types of data

which they can model [4, 23, 48]. This has led to their

adoption in numerous domains including recommendation,

molecular generation, and animation [8, 55, 22].

Graph Convolutional Networks (GCNs) are a further

subset of GNNs which generalize the convolutional op-

erator of CNNs over the domain of graphs and capture

the dependencies between nodes. GCN approaches fall

into one of two main categories: spectral [9, 31] and spa-

tial [20, 2, 26] approaches. Spectral methods are based on

spectral graph theory and define the convolution operation

in the Fourier domain by computing the eigendecomposi-

tion of the graph Laplacian [9, 18]. Spatial methods define

the graph convolution operation based on a node’s spatial

relation in the graph as defined by its edges, and perform

convolution by aggregating the neighboring nodes [43].

Since the initial introduction of these methods, numerous

advances have been made to incorporate attention, gener-

ative methods, adversarial methods, reinforcement learn-

ing, recurrent methods, and other structures common in the

broader deep learning framework [51, 60, 57, 56, 45].

GNNs have recently received increased attention from

the remote sensing community. To perform image classifi-

cation on hyperspectral data, [10] used a cross-attention

mechanism and GCN. [11] used a novel Siamese Graph

Convolution Network (SGCN) to enable content-based im-

age retrieval on remote sensing data. Very relevant to the

present work, [38] constructed an attention graph convolu-

tion network to perform image segmentation. Their work

leveraged single-channel, lower-resolution Synthetic Aper-

ture Radar (SAR) as input and then generated superpixels

before using a GCN to segment the regions of the image

into different land usage categories.

3. Methods

3.1. Data Collection and Preprocessing

High-resolution (10cm/pixel) RGB aerial imagery of

corn and soybean fields in Illinois, Indiana, and Iowa was

collected during the 2019 growing season (April to Octo-

ber) using a Wide Area Multi-Spectral System (WAMS).

These images were mosaicked to create a single large (aver-

age 15k-by-15k pixels) image per field. Images underwent

orthorectification using a digital elevation model of the field

to produce a plainmetrically correct image [21]. Each field

was imaged multiple times over the course of the season,

but for this analysis, we focus only on the mid-season flights

in which nutrient deficiency was likely to be present in the

field. A single image was selected from 317 fields during

this period. These were annotated by human experts for re-

gions of nutrient deficiency stress; quality assurance (QA)

was conducted after annotation. The 317 flights were ran-

domly separated into 223(70%) train, 47(15%) validation,

and 47(15%) test.

3.2. Graph Generation from Superpixels

Figure 1 shows an overview of our approach and is de-

scribed by Algorithm 1.

We use the SLIC algorithm to generate 400 segmented

regions over the image, setting the initial compactness to 30.

Because this algorithm uses k-means clustering, in some in-

stances we need to add some neutral nodes which are only

responsible to make the number of regions consistent at 400

across images.

We define the undirected graph G as the set of nodes and

edges given by G = {χ, E} where

χ = {xi ∈ R
F |i = 1, ..., N} (1)

is the set of nodes with F-dimensional attributes and

E = {eij ∈ R
S |xi,xj ∈ χ} (2)

is the set of edges with S-dimensional attributes.

Each segmented superpixel region Ki becomes a single

node in the subsequent graph; the region is described by

the x and y coordinates of the superpixel centroid and the

multidimensional RGB color histogram (Hi) in that region.

As these are narrow-band images, many of the elements in

a given channel are zero, making the distribution strongly

non-Gaussian. Therefore we constructed an adjusted his-

togram, looking at only the non-zero elements to construct

our node-feature vector. From this adjusted histogram we

constructed F = 9 initial features: the three-element mean

µi, the three-element standard deviation σi, and the three-

element fractional activation αi. This last feature captures

the fraction of elements in each of the original channels that

are non-zero.
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Figure 1. Our proposed method uses SLIC to first divide the image into superpixels. Top Left: A fully connected graph is constructed over

the superpixels. The nodes are defined by a 9-element feature vector derived from the RGB histogram within the superpixel and the initial

edge weights are computed based on the RGB histogram similarity between pairs of superpixels. Top Right: Node targets are generated

for the respective regression and classification tasks. For regression, the target node value is the fraction of pixels containing the positive

class (i.e. NDS present) in the superpixel. For classification, the node is labeled as 1 if any pixel in the superpixel contained NDS and 0

otherwise. Bottom: The initialized adjacency matrix A and node feature matrix X are fed into six graph convolutional layers to predict

the final node output Y .

We connect all (N = 400) nodes to generate a fully-

connected graph and initialize the edge weights as follows.

First, we compute the Bhattacharyya coefficient[5] BCij

between the multi-dimensional RGB histograms, Hi and

Hj , of pairs of nodes Ki and Kj .

We define the similarity between nodes as Wij = 1 −
BCij . As the Bhattacharyya coefficient is defined on [0,1],

this maps nodes with low overlap (i.e. high BC value) to a

similarity score close to 0 and nodes with high overlap (i.e.

low BC value) to a similarity score close to 1. We then set

our initial edge weight to this similarity measure.

With this initialization, we represent G by its adjacency

matrix A ∈ {0, 1}N×N , node features X ∈ R
N×F , and

edge features E ∈ R
N×N×S . Applying the renormaliza-

tion trick according to [31], we define the convolved sig-

nal matrix Z ∈ R
N×F as Z = D̃−

1

2 ÃD̃−
1

2Xθ where

θ ∈ R
C×F is the matrix of filter parameters for C input

channels and D̃ii =
∑

j Ãij is a layer-specific trainable

matrix of weights.

3.3. Target Map Creation

We explore two approaches(classification and regres-

sion) using this framework and construct an appropriate tar-

get map for each as seen in the top-right sub-box of Fig-

ure 1.

For the “classification” target, the node’s label will be bi-

nary. We define the node’s label yi = 1 if any ground-truth

pixel with label 1 is inside that node’s region, otherwise, it is

considered 0. This has the effect of boosting the presence of

the NDS class, which is rare. A different threshold could be

used to generate the classification target which may make

the task easier for the model to learn, however, we chose

this approach because of the desire for the model to aggres-

sively identify regions of stress.

In contrast, for the “regression” target, we seek to iden-

tify the fraction of pixels within a superpixel that contain

NDS. We determine the label of each node yi as a propor-

tion of pixels with label 1 (i.e. NDS present) inside each

superpixel region boundary. In this way, a number between

0 and 1 is assigned as the label of that node.
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Algorithm 1: Graph Generation from superpixel

Data: Image I , Superpixel technique SLIC,

Number of nodes N , Task T

Result: Adjacency Matrix A , Feature Matrix X ,

Label Vector Y
begin

// Adjacency & Feature Matrix Creation

Nodes : {K1, ..KN} ←− SLIC(I,N)
for Ki in Nodes do
Xi ←−Feature-Extractor(Ki)
Hi ←−MultiD-Histogram(Ki)

for Ki in Nodes do

for Kj in Nodes do
BCij ←− Bhattacharyya-Coef(Hi, Hj)
Aij ←− 1−BCij

begin
// Target Map Creation

if T is “Classification” then
Yi ← 1 if in Ki any pixels contain the

target class 1

if T is “Regression” then
Yi ← fraction of target class 1 containing

pixels in Ki

3.4. Model Architecture and Training

The above adjacency matrix A and node feature matrix

X are input into our neural network. We use six graph con-

volutional layers with [320, 1056, 1056, 1056, 1056, 33] pa-

rameters in each respective layer. The first five layers have

l2 kernel regularization and elu activation. The last graph

convolutional layer uses a sigmoid activation function to

produce the output Y .

For both tasks, the loss is computed as the Dice Loss [50]

between the target and predicted maps. We elect to use

Dice loss for the regression task because the value being

regressed is a value between 0 and 1 corresponding to the

fraction of pixels in the superpixel containing the positive

class. The matrix multiplication to compute the intersec-

tion of the target and predicted maps is computed as in the

classification tasks except that the predicted map is continu-

ous instead of binary. This has the effect of “softening” the

impact from nodes which have minimal NDS.

All models are trained with a batch size of 32 for 200

epochs using Adam Optimization with an initial learning

rate of 1e-3. This value is decayed by a factor of 10 if no

improvement to the validation loss is seen for a period of 10

epochs.

The Graph Convolutional Network is build in Spek-

tral [25] and Keras (version 2.2.5) with a Tensorflow (ver-

sion 1.15) backend. Models are trained on a machine with

1 NVIDIA Tesla V100 GPUs with 32GiB memory in total.

4. Results

4.1. Classification Model

Results of the classification model are shown in Table 1.

This model had a dice loss of 0.83. We then threshold the

node probabilities at p = 0.4 to compare the regional over-

lap with the target map; at this threshold the precision is

0.33, recall is 0.65, F1-score is 0.43 and IOU-score is 0.28.

Note that the threshold is adjusted to 0.4 based on precision-

recall curve to achieve the highest F1-score. Recall that we

set the target value of the node to 1 if any pixel in that su-

perpixel contained NDS; this is an extremely difficult task

as the model may be penalized for miss-classifying a node

even if it has an very minimal amount of NDS. Exploring

this thresholding is the focus of future work.

Qualitative results are shown in Figure 2. We see that

the model does a good job identifying key areas of nutri-

ent deficiency stress. The first row shows a clear example

of how the use of superpixels and the GCN finds the large

region near the bottom of the field exhibiting NDS; while

a more detailed pattern exists at the pixel level, those fine-

grained details are not necessary to alert the farmer to this

key problem in the field.

4.2. Regression Model

In creating the target nodes for the classification task, we

made the decision to label the node as a positive class if any

pixel in the superpixel contained NDS; this is inevitably re-

moving information about the extent of NDS in that region.

Therefore, we sought to predict the fraction of pixels la-

beled as nutrient deficient directly through a regression task.

The Dice loss of the regression model is 0.95 as seen

in Table 1. The predictions obtained via direct regression

of the fraction of NDS in a superpixel are shown in 3.

These results demonstrate that regression model did not per-

form as well as the classification task even though a con-

tinuous target was provided. We elected to use Dice loss

of both tasks for more direct comparison, however, other

regression-appropriate loss functions, like RMSE, could be

used instead and may improve performance; this will be ex-

plored in future work.

5. Discussion

5.1. Performance and Comparison to Other Meth­
ods

Both the classification and regression models identify

key areas of nutrient deficiency stress from high-resolution

RGB aerial imagery. We used an “aggressive” target cre-

ation step for the classification model, setting a node with

any pixels containing NDS to 1. This threshold could be
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Model Dice Loss Precision Recall F1-score IOU-score

Graph convolution- classification 0.83 0.33 0.65 0.43 0.28

Graph convolution- regression 0.95 * * * *

Table 1. Results from the GCN-based classification and regression models on the test set.

Full-field Image Ground Truth
Ground Truth 

Classification 
Predicted Map

Figure 2. Example results for the classification model. The Ground Truth map shows pixel-level annotations and while the Ground Truth

Classification and Predicted Map show node-level labels at the superpixel level.

tuned as a hyperparameter to alter the model’s output de-

pending on the desired balance between precision and re-

call; a value which produces the highest F1 score may be

chosen, alternately there may be reasons to value higher

precision at the expense of a lower recall. Although the

regression model did not perform as well, we believe fur-

ther exploration around different loss functions may lead to

enhanced performance.

Detection of nutrient deficiency stress from remotely

sensed data is not a new tasks with past approaches span-

ning traditional image processing as well as more mod-

ern deep learning methods. Recent deep learning ap-

proaches have performed well on the task, although they

have been largely focused on pixel-level classification. The

DeepLabv3+ multi-class models of [15] demonstrated an

IOU on the nutrient deficiency class in the range 0.3418

- 0.3940 (validation) and 0.3937 - 0.4415 (test) on their

dataset. In [17], the authors achieved a top single-image

IOU of 0.34 and F1 Score of 0.43 using a U-Net with Effi-

cientNet backbone. Because our classification is at the node

(i.e. superpixel) level and uses only RGB (no NIR chan-

nel), it is not directly comparable to these approaches. We

believe that incorporating additional channels and vegeta-

tive indices within the node features will further improve

the models framework.

Additionally, our model with only 4,577 parameters is

orders of magnitude smaller than either of these approaches,

each which has tens-of-millions of parameters. Both the

classification and regression models trained in a matter of

minutes: over 200 epochs could be run on readily available

hardware in around 5 minutes and GCN inference can run at

650frames/sec. Pixel-level accuracy may be a requirement

for certain tasks, however, in the regime in which identifica-

tion of regions is sufficient, our approach offers tremendous

advantages on the computational front. As the amount of

data grows through additional channels (e.g. hyperspectral
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Full-field Image Ground Truth Ground Truth Regression Predicted Map

Figure 3. Example results for the regression model. The Ground Truth map shows pixel-level annotations and while the Ground Truth

Regression and Predicted Map show node-level labels at the superpixel level.

imagery) or revisits (i.e. longitudinal imagery) this can be-

come further computationally burdensome to process. As

the goal of such a model is to provide farmers with intelli-

gence about their fields in order to improve economic effi-

ciencies while minimizing any negative environmental im-

pact, such considerations around model design are impor-

tant.

5.2. Future Work

For our node features, we focus only on 9 simple fea-

tures which characterized the RGB histogram. Future work

will explore the use of more complex features including ad-

ditional moments of the distribution as well as additional

channels (like NIR) and indices (like NDVI, GNDVI). The

GCN framework enables the addition of other relevant fea-

tures such as these without dramatically increasing the size

or complexity of the network.

Similarly, we have chosen to focus on only a single (bi-

nary) task for this analysis. However, this method can easily

be extend to other patterns of interest such as flooding, in-

hibited emergence, drydown, weeds, etc..

Furthermore we have focus only on a single point in time

for this analysis. [17] demonstrated the significant boost

in performance which can be achieved through the use of

longitudinal data. The superpixel-GCN framework is well

posed to handle longitudinal data. A key advantage of this

framework is the ability to handle registration shifts which

may occur across multiple images. More specifically, per-

fect pixel-level alignment is not guaranteed across the se-

quence of images. While CNN-based approaches have been

successful even despite this noise, the GCN approach offers

additional flexibility as the graph can be constructed to en-

able information flow across all regions of all images.

Finally, in this work we have used a very simple GCN

to demonstrate the usefulness and effectiveness of this ap-

proach. Additional modules such as attention [51] have

proven to be highly successful in both natural image and re-

mote sensing domains [10] and are the focus of future work.

5.3. Conclusion

In this work we have presented an approach with uses a

Graph Convolutional Neural Network on top of SLIC Su-

perpixels to efficiently detect regions of nutrient deficiency

stress. Our model identifies regions of the field experienc-

ing nutrient deficiency stress and has only 4,577 parameters.

This work has only used a limited set of node features and

uses only RGB imagery, however, we believe the perfor-

mance of this approach demonstrates its usefulness and via-
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bility to detect NDS and other relevant agricultural patterns

from large remotely sensed imagery in a computationally

efficient manner.
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els compared to state-of-the-art superpixel methods. IEEE

transactions on pattern analysis and machine intelligence,

34(11):2274–2282, 2012. 2

[2] James Atwood and Don Towsley. Diffusion-convolutional

neural networks. arXiv preprint arXiv:1511.02136, 2015. 3

[3] Alexandre Barbosa, Rodrigo Trevisan, Naira Hovakimyan,

and Nicolas F Martin. Modeling yield response to crop man-

agement using convolutional neural networks. Computers

and Electronics in Agriculture, 170:105197, 2020. 2

[4] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Al-

varo Sanchez-Gonzalez, Vinı́cius Flores Zambaldi, Mateusz

Malinowski, Andrea Tacchetti, David Raposo, Adam San-

toro, Ryan Faulkner, Çaglar Gülçehre, H. Francis Song,
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Frank Liebisch, Juan Nieto, and Roland Siegwart. weed-

net: Dense semantic weed classification using multispectral

images and mav for smart farming. IEEE Robotics and Au-

tomation Letters, 3(1):588–595, 2017. 2

[48] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Ha-

genbuchner, and Gabriele Monfardini. The graph neural

network model. IEEE Transactions on Neural Networks,

20(1):61–80, 2008. 3

[49] Jaime Simarro, Zohaib Salahuddin, Ahmed Gouda, and

Anindo Saha. Leveraging slic superpixel segmentation and

cascaded ensemble svm for fully automated mass detection

in mammograms. arXiv preprint arXiv:2010.10340, 2020. 2

[50] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien

Ourselin, and M Jorge Cardoso. Generalised dice overlap as

a deep learning loss function for highly unbalanced segmen-

tations. In Deep learning in medical image analysis and mul-

timodal learning for clinical decision support, pages 240–

248. Springer, 2017. 5
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