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Abstract

Deep learning and pattern recognition in smart farming

has seen rapid growth as a building bridge between crop

science and computer vision. One of the important appli-

cation is anomaly segmentation in agriculture like weed,

standing water, cloud shadow, etc. Our research work fo-

cuses on aerial farmland image dataset known as Agricul-

ture Vision. We propose to have data fusion of R, G, B,

and NIR modalities that enhances the feature extraction and

also propose Efficient Fused Pyramid Network (Fuse-PN)

for anomaly pattern segmentation. The proposed encoder

module is a bottom-up pathway having a compound scaled

network and decoder module is a top-down pyramid net-

work enhancing features at different scales having rich se-

mantic features with lateral connections of low-level fea-

tures. This proposed approach achieved a mean dice simi-

larity score of 0.8271 for six agricultural anomaly patterns

of Agriculture Vision dataset and outperforms various ap-

proaches in literature.

1. Introduction

Agriculture is an essential sector for income in most

of the countries and contributes a significant share to

the national economy. For example, In India, the gross

domestic product has an 18% contribution from agriculture

[29]. According to the Food and Agriculture Organization

Unites States (FAO), grain consumption is increasing

rapidly and therefore productivity of agriculture must be

increased to meet the demands of growing population

[40]. This can be mastered by smart farming as a vital

element for sustainability and productivity. Smart farming

brings application of various technologies in agriculture to

increase potential yield and prevent losses [21]. Several

challenges in agricultural production include decrease

in agricultural lands, climate changes, availability of

water resources, presence of weeds and diseases etc [23].

These challenges can be effectively handled by continuous

monitoring and analyzing various physical aspects and

phenomena.

Remote sensing is widely used for observing and ana-

lyzing the agriculture field [32]. The major area involved in

aerial agriculture image analysis is segmentation of remote

sensing images to generate coarse to fine semantic maps

like anomaly segmentation. Anomaly detection refers to

the problem of finding various patterns in the data that

don’t conform to the expected or normal behavior [12]. In

this study, several field anomaly patterns are considered

that are most important to farmers and have great impact

on potential yield of farmlands and it is of utmost impor-

tance to accurately locate them. Development of efficient

algorithms for detecting field conditions will enable timely

actions and planning to prevent major losses and improve

yield. However, semantic segmentation of aerial agriculture

images is different from other applications due to several

aspects like irregular shapes, size and scale, lack of clear

boundaries, missng edges, sparsity, absence of texture

contrast etc [10]. This makes aerial agriculture image

segmentation a unique and challenging task.

While visual pattern recognition on aerial agricultural

images carries enormous economic potential, the progress

in this area was restricted due to lack of publicly available

large scale and high quality dataset for research. The first

Agriculture-Vision dataset consisting of RGB+NIR farm-

land images was proposed in CVPR 2020 for agricultural

pattern recognition and to advance the research in this area

[10, 11]. We used the publicly available training data in our

research and validation data is used as independent test set.

Our main contributions are summarized as follows:

• We propose a multi-modal data fusion with RGB and

NIR images for anomaly pattern segmentation in agri-

culture.

• The proposed architecture, Efficient Fused Pyramid
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Figure 1: Classwise field patterns from Agriculture Vision dataset are shown from (a) to (f). Various field patterns are

marked with dark blue and sky blue in the images.

Network (Fuse-PN) has an encoder module, a bottom-

up pathway having a compound scaled network and

decoder module, a top-down pyramid network enhanc-

ing features at different scales having rich semantic

features with lateral connections of low-level features.

2. Literature Review

Many agricultural studies have been proposed in litera-

ture to extract meaningful information through images. A

review of various machine learning and image processing

based methods like Bayesian network, Artificial Neural

Network (ANN), Support Vector Machine (SVM), Wiener

filter, contrast enhancement etc. applied in agriculture is

described in [16, 38]. In recent years, the field of computer

vision and pattern recognition has seen tremendous growth

with the rise of Convolutional Neural Network (CNN) and

deep learning. CNN based approaches have outperformed

traditional machine learning based approaches in various

tasks like image classification, object detection, segmen-

tation etc. [4, 5, 7]. Deep CNN is used in agriculture

vision applications using uav imagery like land cover

classification by implying concept of transfer learning [27]

and crop classification [35]. A new model was proposed for

crop and weed segmentation by ensemble of various CNNs

but it was computationally complex [30]. A region growth

based algorithm for maize segmentation and R-CNN deep

network was proposed in [22]. Few studies worked on

discrimination between crops and weeds by using NIR and

RGB images [17, 26, 31] and observed that performance is

improved with use of such multispectral data.

Aerial image segmentation is a critical problem in the

field of visual recognition in agriculture [23]. Typically,

algorithms for semantic segmentation of aerial agricultural

images are derived from approaches aimed at common

semantic segmentation. Fully Convolutional Neural

Network (FCNN) [39] and SegNet [1] are among initial

attempts of deep learning based algorithms for semantic

segmentation and outperformed earlier approaches. The

Deeplab series [8] used concept of dilated convolution

to enhance the receptive field of neurons and capture

multiscale information. SPGNet [9] leveraged multiscale

context modules in order to improve performance. A

U-shaped fully convolutional network was proposed in

[36] especially for medical applications. Feature Pyramid

Network [24] was initially proposed for object detection

and also proved effective for segmentation. In general,

segmentation models mainly consists of two parts: encoder

and decoder. Various state-of-art architectures for image

classification are typically used for informative feature

extraction from the original data. Decoder does the

challenging job of upsampling the small resolution feature

map to generate precise segmentation map. The research

revolves around developing powerful feature extractors

(encoders) and upsampling networks (decoders) to improve

performance of segmentation [2, 3, 6, 14]

Existing segmentation datasets in literature consist of

wide number of object categories that majorly focus on

common objects or street scenes [15, 25, 13]. In past few

years, some datasets for research in aerial agricultural im-

age visual recognition have been proposed [18, 33]. But

they contain less number of high resolution images or less

class labels. This gap between agricultural datasets in com-

parison with common image datasets mentioned earlier hin-

dered growth in this domain [28]. Agriculture Vision is the

first publicly available largescale dataset considering high

resolution, multi band images and multiple field patterns an-

notated by agronomy experts. The details of this dataset are

described in the next section.
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Figure 2: Architecture of EfficientNetB7 as encoder which is build up using MBconv blocks. The overall architecture is

divided into seven blocks shown in different colours. Detailed MBConv is shown in Figure 3. Each MBConvX block is

shown with the corresponding filter size and the X=1 and X=6 denote the standard ReLU and ReLU6 activation function

respectively [3] (©2020 IEEE)

3. Dataset

The Agriculture Vision dataset was proposed in a

challenge as part of CVPR 2020 that focused on semantic

segmentation of aerial agricultural images [10, 11]. The

farmland images were captured between 2017-2019 in

growing season and in numerous different farming loca-

tions across US. Each image is provided with four input

channels viz. Red, Green, Blue (RGB) and Near Infra-Red

(NIR). Original captured aerial images were huge in dimen-

sion and not suitable for training segmentation models. So,

the Agriculture Vision dataset was constructed by cropping

field annotations with 512× 512 window size.

The dataset consists of six important field pattern anno-

tations viz. cloud shadow, double plant, planter skip, water-

way, standing water and weed cluster. These patterns have

significant impact on the field conditions and final yield. An

example of each class image with ground truth annotation

is shown in Figure 1 and ground truth annotations marked

as boundaries in each RGB and NIR image. The original

dataset was divided into Training (12901 images), Valida-

tion (4431 images) and Test (3729 images) set. The dataset

also provides boundary maps and six different annotated

ground truth as binary masks for training and validation set

having six classes. As the challenge is over, validation set is

treated as independent test data in performance evaluation.

4. Methodology

In this section, we have briefly illustrated the proposed

methodology for semantic segmentation of aerial agricul-

tural images. First the design approach for encoder is de-

scribed as feature extractor followed by modified multiscale

pyramid decoder with lateral connections.

4.1. EfficientNet as Encoder

The semantic segmentation architecures consist of two

main modules: Encoder and Decoder. The encoder module

Figure 3: MBConv (mobile inverted bottleneck convolu-

tion) basic building block [3](©2020 IEEE)

known as contraction path basically contains a stack of

convolutional layers and downsampling blocks to extract

dense high-level semantic features from the input image.

The encoders are built using various state-of-art CNNs

as backbone. We explore effectiveness of EfficientNet

which involves idea of scaling depth, width and resolution

of network in systematic manner combined with transfer

learning. There are eight variants of EfficientNet from

EfficientNetB0 to EfficientNetB7 with increasing network

depth, width and resolution and also the accuracy. The

basic building block of EfficientNet is mobile inverted

bottleneck convolution (MBConv) as shown in Figure 3

[37]. It is constructed with depthwise separable convolu-

tion, squeeze and excitation optimization [20] and swish

activation function [34].

We worked on EfficientNetB7 as encoder whose archi-

tecture is shown in Figure 2. This architecture consists

of a combination of MBConv modules divided into seven

blocks. We modified EfficientNetB7 to incorporate multi-
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Figure 4: The proposed encoder-decoder architecture for anomaly segmentation. Decoder consists of two stages; DI

represents the decoder intermediate block stage while D represents the decoder block stage.

modal input data. Since NIR images are robust to noise with

bright textures even in low light conditions, we propose to

fuse RGB and NIR modalities and offer them as 4-channel

input to the network. Original EfficientNetB7 progressively

downsamples the original image such that feature map is 32

times smaller than the input resolution. Such small feature

map leads to loss of fine grained details. So, directly us-

ing the EfficientNetB7 as encoder doesn’t result in adequate

performance. To overcome this issue, we propose to use

idea of dilated convolution [42] in last few blocks of con-

volution layers. Thus we maintain the downsampling factor

of 16 as well as the receptive field of neurons. This en-

coder creates a feature hierarchy consisting of feature maps

at several scales.

4.2. Feature Pyramid Network as Decoder

The decoder creates higher resolution features by upsam-

pling the spatially coarser and semantically stronger feature

maps. In our proposed Fuse-PN architecture, we combine

effectiveness dilated EfficientNet as encoder and Feature

Pyramid Network (FPN) [24] as decoder. FPN exploits the

inherent pyramidal feature hierarchy of deep CNN rather

than computing features repeatedly. We build a 2-stage de-

coder inspired from FPN with modification in Decoder In-

termediate (DI) and Decoder (D) blocks as shown in Figure

4. Semantic maps obtained from encoder blocks are first

fed to the intermediate decoder block stage. In every block

DI, if the spatial resolution of input feature maps is differ-

ent, feature map of coarse resolution is first upsampled by

two using nearest neighbour technique. The feature maps

first undergo 1 × 1 convolution in lateral connection to ad-

just the number of channels and then the bottom up (low

level) and top down (high level) feature maps are merged

by element wise addition in the DI block to enhance the

intermediate decoder feature maps, as shown in Figure 4.

The top down pathway has strong semantic features that is

combined with bottom up feature maps having better spatial

information via lateral connection.

The output spatial resolution of the finest DI block is half

of the size of input image. Rather than directly upsampling

it by two, it is passed to Decoder (D) blocks. All the inter-

mediate feature maps from DI1-DI4 block are scaled to the

size half of the input size and are then concatenated. It is

finally upsurged, followed by 3 × 3 convolutional layer to

obtain the required number of segments in output map. The

complete Fuse-PN architecture is tabulated as blocks in Ta-

ble 1 with operation, output resolution, number of output

feature maps, and number of layers. The decoder achieves

scale invariance while building high level semantic feature

maps as scale change is accounted just by different level in
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Table 1: Proposed network – Each row describes a stage i as Block with Operation, Input Resolution, Output Feature Maps

and Layers

Block Operation Resolution Channels Layers

IN Conv 3x3 512 x 512 1 4

1 MBConv1 256 x 256 16 2

2 MBConv6 128 x 128 24 4

3 MBConv6 64 x 64 40 4

4 MBConv6 32 x 32 80 6

5 MBConv6 32 x 32 112 6

6 MBConv6 32 x 32 192 8

7 MBConv6 32 x 32 256 2

DI Upsample ->Conv 256 x 256 256 4

D Conv ->Upsample 256 x 256 128 4

Concatenate D1+D2+D3+D4 ->Conv 256x256 128 1

OUT Conv ->Upsample 512 x 512 1 1

the feature pyramid. This is especially useful in this ap-

plication as the same field pattern can be present in variety

of scales in different locations. The Fuse-PN architecture

proved itself to be advantageous for segmentation as it al-

lows the use of global context and local information simul-

taneously.

5. Results and Discussion

The proposed end-to-end semantic segmentation model

is built with Tensorflow 2.0 and Keras. The network is

trained with the input of 512 × 512 × 4 with a batch size

of 8 for 100 epochs on NVIDIA P100 GPU. Training was

carried out using Adam optimizer with initial learning rate

of 0.001. The results are evaluated in terms of the Dice

Figure 5: Results on validation dataset from Agriculture Vision using different input modalities with Fuse-PN

Similarity Score (DSC) which is defined as:

Dice =
2× TP

(TP + FP ) + (TP + FN)
(1)

where TP, FP and FN indicates number of True Positive,

False Positive, and False Negative classified pixels.

To accomplish this task of agricultural field pattern

segmentation, we choose a multiple CNN approach that

segments each class independently. As there exists overlap

between the different class labels, Fuse-PN is trained

separately for each category. The effectiveness of the data

fusion of RGB and NIR modalities with the proposed deep

neural network is presented in Figure 5 with result analysis.
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Table 2: Classwise Dice Similarity Score of various network architectures with RGB modality

Sr.

No.
Network

Classwise Dice Similarity Coefficient Mean

Dice ScoreCloud Shadow Double Plant Planter Skip Standing Water Waterway Weed Cluster

1 DeeplabV3+ (ResNet50) 64.29 66.68 68.23 72.77 70.08 73.86 69.31

2 DeeplabV3+ (MobileNet) 69.16 62.44 62.6 64.73 66.24 69.06 65.71

3 Res-U-Net 61.59 66.05 67 65.74 66.37 61.36 64.68

4 Mobile-U-Net 65.11 60.95 62.53 61.09 71.25 62.44 63.89

5 Eff-U-Net 63.78 68.85 69.62 73.63 68.68 62.16 67.78

6 Res-FPN 71.42 67.97 75.2 78.1 63.32 74.77 71.79

7 Mobile-FPN 76 62.1 73 66.38 73.02 60.78 68.55

8 Eff-PN 60.98 68.15 63.49 64.66 76.48 73.54 67.88

9 Fuse-PN 66.3 74.15 73.19 76.32 72.96 76.63 73.26

Table 3: Classwise Dice Similarity Score of various network architectures with NIR modality

Sr.

No.
Network

Classwise Dice Similarity Coefficient Score Mean

Dice ScoreCloud Shadow Double Plant Planter Skip Standing Water Waterway Weed Cluster

1 DeeplabV3+ (ResNet50) 67.86 63.34 64.13 62.39 63.97 68.12 64.97

2 DeeplabV3+ (MobileNet) 59.88 52.38 56.48 56.32 57.66 64.25 57.83

3 Res-U-Net 55.92 48.27 58.01 56.89 62.48 66.27 57.97

4 Mobile-U-Net 52.86 55.28 42.85 59.66 54.91 63.82 54.90

5 Eff-U-Net 53.64 56.71 54.97 51.05 60.59 66.08 57.17

6 Res-FPN 58.31 59.96 50.39 57.18 64.31 67.06 59.54

7 Mobile-FPN 57.02 55.31 56.55 60.99 47.2 54.85 55.32

8 Eff-PN 59.68 57.21 59.55 63.33 64.25 67.88 61.98

9 Fuse-PN 63.35 66.23 61.42 66.8 69.1 69.65 66.09

Table 4: Classwise Dice Similarity Score of various network architectures with RGB & NIR modality

Sr.

No.
Network

Classwise Dice Similarity Coefficient Mean

Dice ScoreCloud Shadow Double Plant Planter Skip Standing Water Waterway Weed Cluster

1 DeeplabV3+ (ResNet) 78.43 77.51 78.45 78.51 79.28 81.2 78.90

2 DeeplabV3+ (MobileNet) 67.61 74.17 68.57 67.09 70.05 76.63 70.68

3 Res-U-Net 75.14 78.87 77.02 75.69 77.54 81.28 77.59

4 Mobile-U-Net 71.53 69.53 69.71 71.78 69.69 73.27 69.25

5 Efficient-U-Net 74.81 70.67 71.79 69.57 70.58 75.08 72.08

6 Res-FPN 79.76 69.2 71.14 74.01 77.76 78.29 75.03

7 Mobile-FPN 72.83 70.75 72.81 73.62 68.3 74.57 72.15

8 Efficient-PN 78.64 73.81 79.41 70.32 73.12 73.57 74.81

9 Fuse-PN 85.91 81.69 79.83 82.34 81.85 84.59 82.71

For comparison of performance, the same model was

trained with three different strategies: (i) Only RGB

independently, (ii) Only NIR independently and (iii) Fusion

of RGB and NIR. As seen from the figure, the dice score of

the anomaly patterns like Double Plant, Planter Skip, Weed

Cluster, Waterway, Cloud Shadow, and Standing Water, has

significantly improved performance with multi-modality

compared to the models when trained as an independent

modality. The X-axis in Figure 5 represents network from

Table 2 while Y-axis represents Dice Similarity Score for a

particular modality for the corresponding network.

We compared the proposed Fuse-PN architecture with

various other encoder-decoder architectures from literature

like DeeplabV3+ [8], UNet [36], FPN [24]. The classwise

dice similarity score for various networks evaluated on val-

idation dataset is tabulated in Table 2, 3 and 4 for differ-

ent combinations of input image modalities. As seen from

the tables, the dice score of the anomaly patterns like Dou-

ble Plant, Planter Skip, Weed Cluster, Waterway, Cloud

Shadow, and Standing Water, has significantly improved

performance compared to the models when trained as an

independent modality. Original UNet consists of a sym-

metric contraction and expansion path designed for medical

image segmentation but its performance was limited. We

experimented by changing the contraction path i.e. encoder

by different state-of-art CNN networks like ResNet [19],

MobileNet [37] and EfficientNet [41] as the backbone in

encoder. We also implemented DeepLabV3+ decoder by

combining it with ResNet and MobileNet as encoder. Af-

ter several experimentation with FPN, it was observed that

it performed better than other models due to the inclusion

of various low level features stacked like a pyramid to form
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Figure 6: Results on validation dataset from Agriculture Vision. The 1st and 2nd column presents the RGB and NIR image

for each pattern respectively. 3rd depicts the labels. The prediction of corresponding samples of NIR modality, RGB

modality, Fuse-PN based modality is depicted in column 4th, 5th and 6th column respectively.

the decoder, as shown in Figure 4. These pyramids are use-

ful to extract features and analyze the complex agricultural

scenes at multiple levels. Also, alternative lateral connec-

tions from the low-level features to the high-level features

help the pyramid generate an excellent segmentation map

that significantly modifies the original FPN decoder. Re-

sults of segmentation for various patterns with training on

RGB, NIR, and RGB+NIR modalities are as shown in Fig-

ure 6 for visual interpretation. As seen from Figure 6, the

model has improved performance when multi-modality is

fused. Various approaches are also compared in terms of

inference speed on P100 NVIDIA GPU and is tabulated

in Table 5. Our Fuse-PN architecture can process 8 im-

ages/second at the time of inference.

6. Conclusion

This paper focuses on anomaly segmentation from aerial
farmland images using the Agriculture Vision dataset. A
novel deep learning architecture is developed to capture
the different features of the RGB and NIR images. The
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Table 5: Inference Speed for models with multi-modal data

fusion.

Network
Inference Speed

(Frames per Second)

DeeplabV3+ (ResNet50) 7

DeeplabV3+ (MobileNet) 10

Res-U-Net 9

Mobile-U-Net 13

Efficient-U-Net 16

Res-FPN 8

Mobile-FPN 12

Eff-FPN 14

Fuse-PN 8

proposed deep learning-based Fusion Pyramid Network
(Fuse-PN) with multi-modality data of RGB and NIR im-
ages performed better than other models. These pyra-
mid features are useful to extract information and analyze
the complex agricultural scenes. The mean Dice score
with RGB-NIR fusion increased by 20% and 10% respec-
tively in comparison with training on NIR and RGB modal-
ity independently. With mean Dice Similarity Score of
0.8271 over 6 classes, Fuse-PN proved to be effective for
anomaly segmentation and can be extended to other appli-
cations.
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